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ABSTRACT 
 
Automated assembly systems often stop their operation 
due to the unexpected failures occurred during their 
assembly process. Since these large-scale systems are 
composed of many parameters, it is difficult to anticipate 
all possible types of errors with their likelihood of 
occurrence. Several systems were developed in the 
literature, focusing on on-line diagnosing and recovering 
the assembly process in an intelligent manner based on 
the predicted error scenarios. However, these systems do 
not cover all of the possible errors and they are deficient 
in dealing with the unexpected error situations. The 
proposed approach uses Monte Carlo simulation of the 
assembly process with the 3D model of the assembly line 
to predict the possible errors in an offline manner. After 
that, these predicted errors can be diagnosed and 
recovered using Bayesian reasoning and Genetic 
Programming. A case study composed of a peg-in-hole 
assembly was performed and the results are discussed. It 
is expected that with this new approach, errors can be 
diagnosed and recovered accurately and costly downtime 
of robotic assembly systems will be reduced.  
 
 
1. INTRODUCTION 

Automation is one of the unavoidable concepts 
nowadays. The developments in the robotics area enable 
to use robots in large-scale assembly operations for high 
productivity. However, robotic assembly systems are so 
sensitive to any perturbation during their operation and 
this makes the system open to unexpected failures. The 
cost for excessive maintenance of these systems to 
recover from these unexpected failures was identified as 
200 billion dollars in the USA in 1990 [15]. 

The unexpectedness of the errors for these systems 
arises from the fact that most of the errors are unforeseen 
to human design experts before the operation of the line. 
This is natural since these systems are composed of many 
working parameters such as dimensional variations of the 
products, fixtures, sensor capabilities and robot 
repeatability and when these working parameters are 
coupled with the 3D workspace, it is difficult to anticipate 
the conditions, likelihood of occurrence and 3D state of 
all of the failures [2]. 

Previous approaches on the error diagnosis and 
recovery are focused on either “on-line” investigation of 
error followed by a manual recovery when an error is 
detected or providing automated intelligent means (i.e., 
expert systems) to diagnose and patch the process. 
However, these systems are deficient to deal with most of 
the errors because of the following reasons: 

 
• Not all of the error scenarios can be predicted, 
• 3D-state of the possible errors is not included 

[2]. 
• Most of the systems are deficient in dealing 

multiple error conditions [17], 
• Mapping the sensory domain to failure domain is 

not easy [13], 
• It is not easy planning heuristics to all 

conditions, so they are not robust [13]. 
 

Therefore, the challenge is to predict all possible 
error conditions as well as their likelihood of occurrence 
and the associated 3D-state to provide efficient and robust 
error recovery means.  

The proposed approach looks at the problem from a 
different viewpoint, which has not been used so far. It is 
called “off-line error prediction and recovery”. The 
method uses a commercial software package to model the 
assembly environment virtually in 3D. After that, the 
possible error situations and their likelihood of occurrence 
are predicted by using Monte Carlo simulation of the 
assembly process. Having the sensory symptoms and their 
associated failure type and 3D state, these conditions are 
stored and used for the diagnosis using Bayesian 
reasoning. Next step is using an off-line error recovery 
system to generate robust recovery plans [4] that can deal 
with multiple error conditions of similar nature using 
Genetic Programming [3,12] and the 3D model of the 
assembly system. Finally, this offline recovery system can 
be downloaded to the controller of the robotic system to 
patch the process. 

It is expected that this approach will provide efficient 
means of gathering information about the probable error 
situations during an assembly process and use this 
information correctly to develop robust recovery plans. 
The outcomes of this approach have impact on the 
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industry to reduce costly downtime and maintenance 
expenses.   
 
2. PREVIOUS WORK 

Past research on error recovery in automated 
assembly lines has focused on using failure trees, expert 
systems or other intelligent reasoning methods. Among 
these people, Srinivas [18] is one of the earliest 
researchers who investigated error detection and recovery 
strategies. His approach was considering the tasks 
decomposable into a sequence of transformations from 
the initial state to a goal state. The next step is building a 
failure tree and generating an error recovery plan. 

Expert systems are also one of the most popular tools 
used in the error diagnosis and recovery in flexible 
assembly systems. Several systems were developed in the 
literature [1] to provide diagnosis and recovery. These are 
knowledge-based systems, which try to provide recovery 
plans for possible error conditions for multi-station 
assembly systems. However, since they are at an abstract 
level and do not include all of the possible scenarios, they 
are deficient in handling the unexpected error situations.  

Manipulating PLC codes is another approach. Zhou 
and DiCesare [21], proposed four argumentation methods 
of process control logic code with error recovery codes: 
input conditioning, alternate path, feedback error recovery 
and feedforward error recovery. Fuzzy reasoning was also 
used in conjunction with the Fuzzy Petri-Nets [6,10] or 
with expert systems [11,19] to provide probabilistic 
reasoning on the error diagnostics. 

However, those approaches are deficient in handling 
geometric features of the assembly line, which is essential 
to make predictions of error scenarios. Since those 3D 
error states are missing, generated recovery plans’ 
robustness are questionable since some unanticipated 
error states for the same error type (i.e., collision) may 
require different plan of recovery.    

The need for a robust plan was first discussed in [9]. 
They developed an automated compliant motion planner 
based on geometric theory of error detection and 
recovery. However, the model is limited on modeling the 
configuration space with all of the properties such as 
kinematics or motion planning of the robots and 3D 
positional change of the products. Therefore, it is limited 
to one-station only. Consequently, a gap was formed 
between this type of concrete approach (i.e., prediction of 
the 3D error states) and the abstract approach that was 
followed by the expert systems.  

The following illustration in Figure 1 shows the 
mapping of the two approaches and this gap between 
these two approaches. Therefore, a different approach is 
needed to fill this gap and combine the two different types 
of approaches discussed above in order to provide 
efficient means of error recovery. The proposed method 

discussed in the next section aims to satisfy this need by 
combining latest developments in the robotics simulation 
technology with the intelligent reasoning and recovery 
planning. 

 

 
Figure.1: Station Level and System Level Approach 

 
 
3. PROPOSED METHOD 

Recent developments in the computer aided robotic 
simulation field revealed a new concept called “off-line 
programming”. In off-line programming, any robotic 
system can be modeled virtually in 3D and the 
performance of the system can be evaluated accurately 
from the simulations.  

The proposed method takes the advantage of off-line 
programming to predict the possible error scenarios with 
their 3D-geometric state. The first step is the three-
dimensional geometry-based modeling of an entire 
assembly line using a commercial modeling software. At 
this step Workspace [22] from FLOW Software Inc. is 
used. After the system is modeled virtually, next step is 
the prediction of probable error scenarios by Monte Carlo 
simulation of assembly processes with the three-
dimensional model, based on the statistical model of the 
dimensional and functional errors in sensors, actuators, 
products and fixtures. 

After probable symptoms and their likelihood is 
obtained, the next step is the off-line logic synthesis for 
error diagnosis and recovery from the predicted error 
scenarios based on the three-dimensional model using 
Bayesian reasoning and Genetic Algorithms. The use of 
Genetic Algorithms to generate recovery logic is 
discussed in our previous works in detail [2,3,4].  

The final step is building a library of recovery logic 
and implementing this library to the robot controller in the 
assembly system to patch the process against unexpected 
error situations. The following sections give information 
on the details of the each step.  
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The following figure summarizes the logic of the 
proposed approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.2: Working mechanism of the proposed 
approach 

 
3.1 Prediction of Error Scenarios: 

A widely used technique for simulating the errors is 
applying statistical methods to tolerance analysis of 
mechanical assemblies. At this step, Monte Carlo 
simulation is used to predict the possible errors. Process 
parameters are sampled from the appropriate distributions 
and simulations are performed. The main drawback of 
this method is that, to get accurate estimates, it is 
necessary to generate very large samples, which is 
computationally expensive. However, with the 
availability of high-speed computers this was overcome. 
For each simulated error with relatively high likelihood of 
occurrence, error diagnosis logic will be synthesized for 
effective error recovery from the error. Fundamental 
difference from the diagnosis in on-line cases is that a 
complete sequence of the events, which caused the 

detected error, is readily available in terms of the sampled 
parameters.  

 
3.2 Error Diagnosis: 

Since only providing error recovery logic is not 
adequate for the complete recovery process, a diagnosis 
system is necessary to identify the correct source(s) of 
error. Error diagnosis is implemented in the following 
way. First, from the simulation results conditional 
probabilities of each error situation is obtained for the 
sampled parameters. Since Monte Carlo simulation is 
being used, complete sequence of the events that caused 
an error and their likelihood are readily available.  A 
reasoning engine is developed based on the symptoms 
(outputs from the sensory values) and the probable error 
conditions as it is suggested in [13]. This engine will 
process each possibility of failure and come up with most 
probable one (or multiple) of the five error classifications. 
The belief value of each type of failure is calculated by 
using Bayesian reasoning using the following formula: 
 

 
In the above formula, Yo indicates the given 

symptoms from the sensor array. The sensor values can 
only get 0 or 1 depending on their activeness. Fk is the 
type of failure from the following failure array given in 
the table below. Depending on the number of sensors or 
the assembly process each failure type can take any 
numerical value. 

 
Table.1: Failure Array 

Failure Array = {d, e, f, g, h} 
d= Grasping Error 
e= Collision Error 
f= Sensor Failure 

g= Misplacement Error 
h= Flawed Parts 

 
3.3 Error Recovery: 

The proposed approach provides the generation of the 
error recovery logic using a method called Genetic 
Programming (GP). The term “Genetic Programming” 
was first introduced by Koza [12] and it enables a 
computer to do useful things by automatic programming. 
It uses the working principles of Genetic algorithms 
(GAs). In Genetic Programming, each member in the 
population is a computer program for the solution of the 
problem. Using an error situation obtained with the 
sampled parameters, a fitness function based on the 
allowed recovery criteria can be defined. After the 
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definition of this fitness function, genetic programming 
can be used to explore an efficient recovery algorithm.  

The performance of the error recovery logic can be 
tested in a generate and test fashion [2] such that, several 
recovery logic algorithms are generated with the genetic 
programming engine and tested with the commercial 
software package, Workspace. The results of this 
evaluation will then be inputted to the GP engine and 
improved recovery logic is generated based on the 
obtained results [3,4].  
 
4. EXPERIMENTAL RESULTS 

A sample assembly process, which was mainly 
focused on inserting a peg in a hole, is experimented. The 
sampled parameters are statistical variations in the 
dimensions of peg and hole, robot repeatability (both 
translational ability and wrist repeatability effect), 
grasping ability and sensor reliability for the grasping 
sensor in the gripper and the position sensor located 
above the peg. Figure.3 shows the studied system. 

The assembly process is as follows: First, a peg is 
grasped from the table. During this process, a camera is 
examining the position of peg, detecting whether it was 
grasped correctly or not. A sensor in the gripper is also 
detecting whether the peg is in the gripper or not. After 
peg is grasped, it is inserted into the hole. During the 
insertion, process torque/force sensors indicate whether a 
collision is occurred or not. In addition, during the 
releasing step of the peg, gripper sensor detects the 
whether the peg is released correctly or not. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure.3: Monte Carlo Simulation of a Peg-in-Hole 

Problem 
 
During the Monte Carlo simulation, normal 

distribution is assumed for the variations of peg, hole and 
robot repeatability, as it is suggested in [7]. Robot 
repeatability is a measure of positional deviation from the 
average position achieved by repetitive motion commands 

from a start position to target position. The parameters 
and tolerances are as follows: 

 
Table.2: Tolerances of the Sampled Parameters 
Sampled Parameter Value 

Hole diameter 50.3 ± 0.0508 mm 
Peg diameter 49.92 ± 0.03175 mm 

Robot Repeatability  0.2 mm 
Wrist Angle Repeatability 0.006 deg 

 
For calculating the mean and standard deviation of 

the normal distribution, it is assumed that the tolerances 
are taken in 3σ-range as suggested in [7]. Therefore, the 
distribution values of the sampled parameters are given in 
the table below: 

 
Table.3: Distribution values of sampled parameters 

Sampled Parameter Distribution type 
Peg Normal (0, 0.0106mm) 
Hole Normal (0, 0169 mm) 

Robot Repeatability Normal (0, 067 mm) 
Wrist Angle Repeatability Normal (0,0.002 deg) 

Grasping ability Uniform (0.9 probability) 
Position sensor  Uniform (0.95 probability) 
Gripper sensor  Uniform (0.95 probability) 

 
The number of simulations is taken as 1000 and the 

process capability is investigated. Out of 1000 simulations 
317 errors are occurred. The observed results for each 
error type are shown in the table below: 

 
Table.4: Failure Types and percentage  

Failure Type: Percentage: 
Collision Error 36.6 % 

Grasping Error (Picking) 27.44 % 
Grasping Error (Releasing) 27.1 %  

Misplacement Error 0 
Sensor Failure 0 
Flawed Parts 0 

Collision + Sensor Failure 5.397 % 
Gripper + Sensor Failure 3.45 % 

 
It is realized that none of the pure sensor failures is 

observable. This does not mean that no sensor failures 
occurred, the reason is sensor failures cannot be detected 
at this stage and may be propagated with the later steps of 
the assembly process to produce detectable errors. Also 
there is coupled collision and sensor failures that are 
detected as pure collision errors from the detection 
system, however Monte Carlo simulation reveals that the 
percentage of this coupled error type is 5.397 %. 
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A failure diagnosis system is developed based on a 
probabilistic Bayesian reasoning discussed. The system 
uses the symptoms obtained from the assembly system 
and calculates the likelihood of each possible failure 
based on these symptoms, coming up with most probable 
failure type(s). The sensor and failure arrays are given in 
Table.5.  

The sensor values can only get 0 or 1 depending on 
the activeness. The values for the failure array are given 
in Table.6 below: 

 
Table.5: Sensor and Failure Arrays 

 
Table.6: Failure Types and Associated Values 

Failure Type: Values: 
Grasping Error 0-none, 1-picking, 2-

releasing 
Collision Error 0-none, 1-collision 
Sensor Failure 0-none 1-gripper sens., 2-

camera, 3-both 
Misplacement Error 0-none, 1-misplacement 

Flawed Parts 0-none, 1-flawed part 
 
For each failure type, a belief value is calculated 

using the equation discussed before. The following results 
are obtained with the given input symptoms as shown in 
Table.7: 

 
Table.7: Results of Diagnosis Process 

Symptom Failure Type/Probability 
(1,0,0) (2,0,0,0,0) / 0.996 
(0,1,0) (0,1,0,0,0) / 0.989 
(0,0,1) (1,0,0,1,0) / 1 
(1,0,1) (1,0,0,0,0) / 1 

 
It is realized that having a symptom from 

torque/force sensor does not mean that the error is due to 
pure collision. There is a possibility of having this error 
coupled with one/all sensor failures but the most probable 
action is using the error recovery strategy for collision. 

A virtual recovery system is developed based on the 
obtained errors and their states in 3D Workspace. The 
system uses Genetic Algorithms to provide error recovery 
logic and based on a system developed before and 
discussed in [3,4]. A robust recovery code for collision 
error is generated in RAPID language. The following 

lines are belong to the generated code for the collision 
recovery only: 
 

MODULE collision recovery
CONST robtarget NewGP005 := [[1553.09,
530.71, 770.341], [0.707107, -8.65927E-017,
0.707107, 8.65927E-017], [0, 0,-1, 0],
[9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];
CONST robtarget NewGP006 := [[1553.09,
530.89, 770.341], [0.707107, -8.65927E-017,
0.707107, 8.65927E-017], [0, 0,-1, 0],
[9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];
CONST robtarget NewGP007 := [[1553.09,
530.89, 722.85], [0.707107, -8.65927E-017,
0.707107, 8.65927E-017], [0, 0,-1, 0],
[9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];
PERS tooldata t_Gripper := [ TRUE, [[0,
2.27777E-014, 93],[1, 0, 0,
0]],[0.01,[0.01, 0.01, 0.01],[1, 0, 0,
0],0, 0, 0]];
PERS tooldata t_Nil := [ TRUE, [[0, 0,
0],[1, 0, 0, 0]],[0.01,[0.01, 0.01,
0.01],[1, 0, 0, 0],0, 0, 0]];
PERS wobjdata w_Nil := [ FALSE, TRUE,
"",[[0, 0, 0],[1, 0, 0, 0]],[[0, 0, 0],[1,
0, 0, 0]]];

PROC Path1()
MoveJ NewGP005, v1000, z1, t_Gripper;
MoveJ NewGP006, v1000, z1, t_Gripper;
MoveL NewGP007, v1000, z1, t_Gripper;
!- ThisDocument.RunBehavior "Gripper",
"OpenGripper", ""

!- ThisDocument.RunBehavior "Gripper",
"UnGrasp", ""
ENDPROC

PROC main()
Path1;
ENDPROC
ENDMODULE

 
This case study demonstrated the validity of the 

proposed approach. The sensory information is mapped 
on the failure domain efficiently, to predict the probable 
failures and their 3D state. Another advantage is the 
generation of the recovery code using the virtual assembly 
system saves the time on finding a robust recovery logic 
algorithm for the system. 

 
5. CONCLUSIONS 

A new approach on the investigation of error 
diagnosis and recovery is discussed in this paper. Current 
systems use intelligent reasoning on the diagnosis and 
recovery for the automated assembly lines. However, they 
are deficient in anticipating all errors and they leave the 
3D state of the possible errors out of consideration, which 
makes the generated recovery codes non-robust.  Because 
of these facts, the need is identified as to predict all 
possible error conditions as well as their likelihood of 
occurrence and the associated 3D-state to provide 
efficient and robust error recovery means.  

Sensor Array 
{a, b, c} 

Failure Array  
{d, e, f, g, h} 

a = Gripper Sensor d= Grasping Error 
b = Torque/Force Sensor e= Collision Error 

c = Camera f= Sensor Failure 
 g= Misplacement Error 
 h= Flawed Parts 
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The proposed system uses a commercial software 
package for robotic simulation for the prediction, 
diagnosis and recovery of the possible failures during an 
assembly process in four steps: 
 
• Modeling of the assembly system using a commercial 

off-line robotic software package. 
 
• Monte Carlo simulation of assembly processes to 

predict the possible error conditions and their 
likelihood of occurrence. 

 
• Logic synthesis for error diagnosis and recovery from 

the predicted error scenarios based on the three-
dimensional model using Bayesian reasoning and 
Genetic Algorithms. 

 
• Downloading the developed recovery codes to the 

robotic controller to patch the assembly process 
against the unexpected errors.  

 
A case study was conducted by developing a virtual 

assembly system, which is responsible from a peg-in-hole 
assembly process. The obtained results showed that, the 
system is capable of identifying the possible failures and 
their likelihood as well as their 3D geometrical state. The 
system is also capable of generating robust recovery 
codes as in discussed in our previous works [2,3,4]. 

The proposed method aims to cover the gap between 
the configuration space approach and the abstract-level 
knowledge-based approach. Future studies will be 
performed on more complicated assembly process 
composed of multiple assembly stations. It is expected 
that with this new approach, errors can be diagnosed and 
recovered accurately and costly downtime of robotic 
assembly systems will be reduced.  
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