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ABSTRACT 

Unexpected failures are one of the most important 
problems, which cause costly shutdowns in an assembly line. 
Generally the recovery process is done by the experts or 
automated error recovery logic controllers embedded in the 
system.  The previous work in the literature is focused on the 
“on-line” recovery of the assembly lines which makes the 
process, time and money consuming. Therefore a novel 
approach is necessary which requires less time and hardware 
effort for the generation of error recovery logic.  The proposed 
approach is based on three-dimensional geometric modeling of 
the assembly line coupled with the evolutionary computation 
techniques to generate error recovery logic in an “off-line” 
manner. The scope of this work is focused on finding an error 
recovery algorithm from a predefined error case. An automated 
assembly line is virtually modeled and the validity of the 
recovery algorithm is evaluated in a “generate and test” 
fashion by using a commercial software package.  The obtained 
results showed that the developed framework is capable of 
generating recovery algorithms from an arbitrary part 
positioning error case.  It is aimed that this approach will be 
coupled with the error generation in the future, providing 
efficient ways for the study of error recovery in automated 
assembly lines.      

   
Keywords: Error Recovery Synthesis, Genetic Programming, 
Off-line Programming, Automated Assembly Lines. 

 
 

INTRODUCTION 
An unexpected failure is an unavoidable phenomenon, 

which causes the automated assembly lines to halt their 
operation. These failures can bring out drastic results in 
economical issues. As indicated in the results of EUREKA 
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(Luxhoj et al., 1997) project, initiated to benchmark 
maintenance in Scandinavian countries in 1992, approximately 
30% of the time spent on maintenance is used for unforeseen 
repairs, 20% for preventive maintenance and 37% for planned 
repairs. A similar survey in the United States showed that 
excessive maintenance costs were approximately 200 billion 
dollars in 1990. 

The diagnosis and recovery from such failures are normally 
handled by “on-line” investigation of the assembly line by the 
experts, which means costly shutdown of the assembly lines. In 
automated systems (Zhou and DiCesare, 1989), up to 90 % of 
the control coding effort is based on error recovery by using 
Programmable Logic Controller (PLC) codes. However these 
PLC codes are programmed by humans based on “expected” 
error scenarios and they are deficient in dealing with 
unforeseen, “unexpected” scenarios, leaving the recovery 
process to manual labor work. A novel approach to deal with 
the unexpected failures is “off-line” synthesis of error diagnosis 
and recovery logic based on the three-dimensional geometry 
based modeling of an entire assembly line. Generation of 
“unexpected” error cases can be accomplished by using Monte 
Carlo simulation of the assembly process based on the statistical 
model of the dimensional and functional errors in sensors, 
robots and products. Once those “unexpected” cases are 
generated, error recovery logic synthesis for those cases can be 
studied. As an initial step, this paper is focused on the second 
part of the proposed approach, mainly automated synthesis of 
error recovery logic from a predefined error case. 

It is stated in (Visinsky et al., 1994) that in an assembly 
line, most errors occur during the part transport and part mating. 
However since the part presentation errors are mostly 
dependent on the nature of the assembly line (Lopes and 
Camarinha-Matos, 1994), there may be different ways of 
recovery. The objective of this study is to obtain an error 
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recovery algorithm for a part presentation error in a given three-
dimensionally modeled assembly line. The solution of this 
problem consists of a special computer program, which is 
composed of several commands and directions for the industrial 
robot. This program can be downloaded to the robot controller 
to perform the recovery task. These commands in the recovery 
program are chosen from available set of commands which 
makes the problem a discrete decision making process. The 
generation of the optimal recovery program is done by a 
heuristic-search (Koza, 1992) among the alternative error 
recovery programs and it is called Genetic Programming. 
Genetic Programming (GP) (Banzhaf et al., 1998) aspires to do 
precisely that – to induce a population of computer programs 
that improve automatically as they experience the data on which 
they are trained. 

The method of finding the optimal computer program is 
done in a “generate and test” fashion and the validity of the 
generated programs is tested with a commercial software 
package (Workspace, 1998) called Workspace from Flow 
Software Inc.  

PREVIOUS WORK 
Srinivas (Srinivas, 1977) is one of the earliest researchers 

who investigated error detection and recovery strategies. His 
approach was considering the tasks to be decomposable into a 
sequence of transformations from the initial state to a goal state. 
Each of the states between the initial state and the goal state is 
monitored. If a state has not been reached, this means a failure 
is occurred. The next step is building a failure tree and 
generating an error recovery plan. 

Expert systems are one of the most popular tools used in 
the error detection and recovery in flexible assembly systems. 
Two different methods are used in the literature. The first 
method (Brnyjolfsson and Arnstrom, 1990) uses an expert 
system to monitor robot operations and if detects an error, the 
robot stops. The expert system goes into an error diagnostic 
mode and analyses the sensors that describe the environment. 
After finding the cause of the error, it recommends a solution 
procedure. The second method (Abu-Hamdan and El-Gizawy, 
1997) uses the expert system to plan and execute the assembly 
process. The user enters a part oriented description of the 
assembly. The expert system generates an assembly plan and if 
an error occurs, it revises the plan. 

Tzafesas and Stamou’s approach (Tzafestas and Stamou, 
1997) is based on using knowledge-based approaches for 
automated assembly. It is believed that fuzzy logic and fuzzy 
reasoning-based techniques are more adequate than the others 
under specific circumstances. The assembly system is trained 
on-line for the possible errors and appropriate recovery logic 
rules are embedded to the system. Recovery is accomplished by 
making deductions out of these rules. Telagi and Soni (Telagi 
and Soni, 1994) investigated the different control 
methodologies such as neural networks and fuzzy logic in 
manufacturing environment. Evans and Lee (Evans and Lee, 
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1994) developed a method to integrate reactive planning for 
automated error recovery while Kao (Kao, 1995) discussed the 
selection of an optimal error recovery strategy among the given 
recovery options using a semi-Markovian model of production 
states during recovery operations. 

Several work have also been done on how to manipulate 
the PLC code safely with the error recovery codes generated 
manually or automatically without introducing new errors. Zhou 
and DiCesare (Zhou and DiCesare, 1989) proposed four 
argumentation methods of process control logic code with error 
recovery codes: input conditioning, alternate path, feedback 
error recovery and feedforward error recovery. Cao and 
Sanderson (Cao and Sanderson, 1992) proposed a fuzzy Petri-
net controller as an integrated representation of process control 
logic and error recovery. However, those approaches are lack of 
handling geometric features of the assembly line, which is 
essential to make predictions of error scenarios. 

All of the methods discussed above are focused on the “on-
line” recovery and training of the assembly lines which makes 
the process, time and money consuming. Therefore a novel 
“off-line” approach is necessary which requires less time and 
hardware effort for the generation of the error recovery logic.   

PROPOSED METHOD  
For robots to execute the programs generated off-line 

successfully, the dimensions of the real-world components need 
to be modeled accurately. Otherwise, the difference will lead to 
positioning and orientation errors. The method presented here is 
based on accurate three-dimensional geometric model of the 
assembly line by using a commercial software package. This 
three dimensional model provides the framework of testing the 
generated error recovery logic “off-line” in less time than the 
conventional “on-line” methods. 

 In this study, during the generation of the error recovery 
logic for a predefined error state, Genetic Programming is used. 
The term “Genetic Programming” was first introduced by Koza 
(Koza, 1992) in 1992 and it addresses the problem of automatic 
programming namely, the problem of how to enable a computer 
to do useful things by automatic programming (Banzhaf et al., 
1998). It uses the working principles of Genetic algorithms 
(GAs).  

Genetic algorithms were first introduced by Holland 
(Holland, 1975) in 1975. In GAs, design variables are coded 
onto fixed-length or variable-length strings that are analogous to 
chromosomes in biological systems (Goldberg, 1989). Strings 
are composed of characters, which are analogous to genes. Each 
string represents a solution point in the search space. An 
objective function is defined within the problem and the GA 
tries to maximize the fitness of a solution point based on a 
fitness function related with the objective. In GA, two basic 
operators are applied to the selected pairs. First operator is 
called “crossover” in which the strings of two members are cut 
and recombined from a random point, producing two new 
members. The second operator is called “mutation” and it is 
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applied by selecting a place in the string randomly and changing 
its value. Mutation has the advantage of introducing some 
diversity into the search while crossover uses the properties of 
the current population to combine and produce better results. 

In Genetic Programming, each member in the population is 
a computer program for the solution of the problem. The reason 
of selecting GP as an optimization method in this work is its 
power of dealing with discrete design optimization problems as 
well as the ease of its implementation in this case. Since an 
optimal computer program is being searched, GP is a perfect 
choice to be used in such a problem. 

A software module, which is responsible from the 
evolutionary computation process, is developed and 
implemented to the system. This program enables the user to 
generate programs for the problem and after that evaluate the 
outputs form the commercial software and proceed with the 
evolution process for the next generations. The basic working 
mechanism is given in Figure 1.  

Error recovery algorithm is basically a computer program, 
which is responsible from the recovery process and composed 
of several specific commands. These commands (Workspace, 
1998) move the robot arm to the specified point (taking the 
reference as the robot base and the destination point as the tool 
center point) or move the arm relative to a predefined 
coordinate point. The commands used in this study are from 
KAREL2 Robot Language and they are Move To, Move Away, 
Move Near and Move Relative.  

 

Figure.1: Framework of the Optimizer 
 
 

The use of program commands requires a formal way of 
combining with the variables for Tool Center Point (TCP), 
relative movement in the negative z-direction (Offset) and 
relative movement in 3D space (Vector).  The following table 
shows the appropriate lexical representation for each command. 

 
 

Table 1: The use of Commands 

Command Suffix 
Move To <TCP> 

Move Away <Offset> 
Move Near < TCP> By <Offset> 

Move Relative <Vector> 
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TCP variable is composed of 6 sub-variables. These variables 
are the three coordinate points in the robot frame and three 
orientations of the tool holder arm. A vector is composed of 
three offset variables in the space. This variable is coupled with 
the Move Relative command enabling the robot to move its arm 
relatively from its current position. 

The objective is to minimize the part placement error 
between the final position and its optimal position on the 
fixture. Therefore if a distance function is used between the 
recovered position and the optimal position, the problem can be 
stated as a single objective optimization problem such as: 

 
 

Minimize 222 )()()( ooo zzyyxx −+−+−             (1) 
 
 

The global optimum is located at (xo, yo, zo).  However, in 
this study the modeled system allows the workpiece to be 
placed in tolerance limits of the optimum place so a local 
optimum is also acceptable. Therefore, in all dimensions the 
acceptable tolerances are taken as 5 mm. This enables to 
simplification of the problem against the computational cost 
since it is easy to converge a local optimum. Therefore the 
following constraints are added to the problem: 
 
 

5|| ≤− oxx                 (2) 
5|| ≤− oyy                              (3) 

5|| ≤− ozz                 (4) 
 
 

All of the physical constraints (collisions between the 
objects, restrictions due to robot kinematics, etc.) are defined 
within the software package and evaluated with its internal 
engine. After the problem is defined as an optimization 
problem, the infrastructure for the evolutionary computation 
side is developed.  

A recovery program is composed of lines and each line is 
composed of commands and appropriate suffixes. A 
chromosome structure is defined for each line. Each program is 
composed of several strands of chromosome and maximum is 
limited to 10. For each chromosome the values of the variables 
are taken from a set, which is randomly generated in the 
beginning. These values are stored in one main matrix and 
several sub-matrices in order to be retrieved and processed 
during the evolution process.  

The fitness function is defined as the inverse value of the 
objective function and the problem is turned out to be a 
maximization problem. In each generation all of the members of 
the population are evaluated with respect to the desired fitness 
function. The crossover probability is taken as 0.9. This means 
that 90% of the population participates in the crossover 
sequence. The probability of a member to participate in the 
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crossover is directly proportional with its fitness value and it is 
selected randomly, which is also called weighted roulette wheel 
selection. The probability for a member to be in the mate pool 
is given as: 
 
 

∑
=

i

i
i f

fp                 (5) 

 
 
fi is the fitness of the individual. After two parents are selected 
the crossover operation takes place. The first step in the 
crossover process is locating the crossover line point between 
the programs. After the crossover line is determined, the next 
step is locating the crossover point on the chromosome 
structure. A point on the chromosome is selected randomly and 
two children are generated in the next generation by exchanging 
the genes after the crossover point.  

Mutation takes place after the crossover operation in order 
to prevent premature convergence. By applying mutation, a 
small portion of new members is introduced to the population. 
The mutation probability changes between 0.015 and 0.05 
depending on the nature of the population. 

After the evolution step, the new generation of the 
programs is stored in the main matrix structure. This encoded 
structure is decoded into working programs in KAREL2 
language. These programs are tested in Workspace and their 
outputs are written into text files. After that, these outputs are 
processed with the developed program and next evolutionary 
step takes place according to these outputs. The maximum 
number of generations is limited to 50 as it is suggested in 
(Banzhaf et al., 1998) as a rule of thumb, while the population 
size in one generation is restricted to 100 for initial results. It is 
observed that this size of population is adequate from the case 
studies. Figure 2 summarizes the steps of processing. 
 

CASE STUDIES  
Several case studies are conducted with the model to test 

the efficiency and validity of the developed system. An 
automated assembly line model is constructed with the 
commercial software package. This line consists of four robots, 
which are responsible from the transportation and welding 
operation of two sheet-metal parts. Our pre-defined 
“unexpected” error scenario is the collision of the workpiece 
with the environment during its transportation from the 
conveyor to the fixture.  An IRB6001 type 6-axis industrial 
robot is responsible for the presentation of the workpiece to the 
fixture. Figure 3 shows the ideal positioning of the workpiece 
with the fixture. The desired orientation of the workpiece is 
known and this orientation is to be restored at the end of the 
recovery program. 
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Figure.2: Working Mechanism of the Developed 

Framework 
 
 

 
 

Figure.3: Ideal Positioning of the Workpiece 
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During the case studies it is assumed that after the collision, 
the part is still held in the gripper and the sensor on the fixture 
is working properly in order to detect the correct positioning.  

 
Case Study 1 

The first case study is taken from a collision state occurred 
between the workpiece and the fixture, shown in Figure 4. 
Several runs are carried with the developed infrastructure. A 
cubical space for the robot movement is defined as the 
envelope, which has the size of 400x400x400 mm3. As it is 
observed from the outputs (Table 2), an error reduction of 65% 
is gained in the replacement of the workpiece after the initial 
generation. In generation 11, an optimal result is found since all 
the final position of the workpiece is in the limits of 5 mm 
tolerance placement. This is a local optimum however 
acceptable since it is in the tolerance limits.  
 
 

 
 

Figure.4: Collision case between the workpiece and 
the fixture 

 
 
The best program obtained after the 10th generation is 

composed of the lines stated below. The last command line is 
added automatically by the system in order to restore the 
desired final orientation. The resulting placement errors are 
given in Table.3. 

 
 

Table.2: Outputs from the 1st Case Study 

Generation Objective Function  
1 24.535 
2 31.968 
3 14.866 
4 14.866 
5 14.212 
6 13.967 
7 12.180 
8 12.180 
5

Table.2: Outputs from the 1st Case Study (continued) 
 

9 11.682 
10 9.708 
11 8.66 

 
 

‘ Best Program of Case Study 1: 
ROUTINE GPCode26 
BEGIN 
Move To POS (-710, -684, -982, 90, 80, 0,’RUFB’) 
Move Relative (9,8,10) 
Move To POS (-701 –692, -992, 90, 90, 0,’RUFB’) 
END GPCode26 
 
During the recovery process, it is observed that the algorithm is 
composed of three lines only between ‘BEGIN’ and ‘END” 
commands. The maximum lines are limited to 10 and this result 
shows that recovery is accomplished in significant small 
number of steps. 
 
 

Table.3: Placement Errors 

Coordinate: Error (mm): 
X: 5 
Y: 5 
Z: 5 

 

The history of the optimization is given in Figure 5. It is 
observed that both the fitness values of the best and the worst 
recovery programs are increasing as the evolution takes place. It 
should be noted that the fitness function (to be maximized) in 
the inverse of the objective function (to be minimized). 
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Figure.5: Optimization Progress of the 1st Case Study 
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Case Study 2 
In the second case study, the effect of expanding the 

working envelope of the robot is experimented. Same collision 
point is used from the first case and the envelope is expanded to 
5 times. It is expected that this approach would get better results 
since much freedom is left for the robot movement.  

It is observed that 91% reduction is obtained relative to the 
initial generation and the performance is increased relative to 
the first case study. However in this case it took 14 generations 
to obtain the optimal result. Table 4 shows the objective 
function values obtained after each generation. 

 
 

Table.4: Outputs of the 2nd case study 

Generation Objective Function  
1 55.652 
2 48.093 
3 57.775 
4 31.874 
5 23.706 
6 19.647 
7 19.027 
8 19.027 
9 21.471 

10 21.471 
11 19.647 
12 12.45 
13 10.321 
14 5.196 

 
 
The best program is composed of three lines and it has 3 

mm error in the replacement after the recovery process as 
shown in Table 5. 
 
‘Best Program of Case Study2: 
ROUTINE GPCode14 
BEGIN 
Move To POS( -710, -684, -982, 90, 80, 0,'RUFB') 
Move To POS( -703, -694, -990, 20, 90, 0,'RUFB') 
Move To POS( -703, -694, -990, 90, 90, 0,'RUFB') 
END GPCode14 
 
 

Table.5: Placement Errors 

Coordinate: Error (mm): 
X: 3 
Y: 3 
Z: 3 

 
 

In this case, a similar way of recovery as in the first case is 
obtained. At first the robot carries the workpiece to the same 
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point as in Case 1. Then places it to a place closer than before 
and it is in acceptable tolerance. The progress of optimization is 
shown in Figure 6. 
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Figure.6: Optimization Progress of the 2nd Case Study 
 
 
Case Study 3 

For the third case study, the collision point is changed in 
order to test the robustness of the developed system. Figure 7 
shows the new collision scenario between the workpiece and the 
fixture.  

Similar to the previous results, this time it took 13 
generations to reach the optimum results. A reduction of 87 % 
is gained relative to the initial generation. Table 5 shows the 
progress of decreasing in the objective function. 

 
 

 
 

Figure.7: Positioning error in the 3rd case study 
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Table.5: Outputs of the 3rd case study 

Generation Objective Function  
1 50.577 
2 35.525 
3 33.136 
4 17.972 
5 17.972 
6 12.884 
7 12.884 
8 12.884 
9 12.884 

10 12.884 
11 12.884 
12 9.210 
13 6.708 

 
 

The placement errors are acceptable and given in Table 6. 
It is observed that similar to the previous cases, the recovery 
algorithm is composed of three lines. This time robot carries the 
workpiece to a different initial point when the recovery 
procedure starts. 

 
 

Table.6 Placement Errors 

Coordinate: Error (mm): 
X: 4 
Y: 3 
Z: 4 

 
 

‘Best Program of Case Study3: 
ROUTINE GPCode26 
BEGIN 
Move To POS (-695, -670, -987, 90, 30, 0,'RUFB') 
Move Away -36 
Move To POS (-710, -700, -991, 90, 90, 0,'RUFB') 
END GPCode26 
 

The optimization progress is given in Figure 8. Although 
the fitness value of the best member is same between the 6th and 
11th generation, in the end it has converged to an acceptable 
optimum value. It is observed that the average value increased 
during these generations, which eventually gave a “jump” to the 
best fitness value. 
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Figure.8: Optimization Progress of the 3rd Case Study 
 
 

The case studies demonstrated that the developed 
framework is efficient for generating recovery logic and flexible 
to handle different positioning errors. 

DISCUSSIONS AND FUTURE WORK 
Automated assembly lines are subjected to unexpected 

failures during their normal operation. Such failures may lead to 
costly shutdowns and generally require “on-line” diagnosis and 
recovery by the experts in order to restore their normal 
operation. Previous methods for the automated recovery are 
focused on the “on-line” recovery and training of the assembly 
lines. In this paper a different approach, which uses three 
dimensionally modeled systems, is proposed. A computer 
program is developed and coupled with a commercial software 
package to work “off-line” on the error recovery logic 
generation by using evolutionary computation. Several case 
studies are performed on a virtually modeled assembly line and 
they are demonstrated that the developed system is efficient to 
find the optimum recovery logic from an arbitrary collision 
case, which is originated from a part placement error. 

It is expected that this approach will require less time and 
labor effort for the generation of the error recovery logic and 
provide efficient ways for the study of error recovery in 
automated assembly lines. The possible directions for the future 
work include determining the robust recovery algorithms from 
multiple error cases and generation of unexpected error cases 
from the assembly model by using Monte Carlo simulation of 
the assembly process based on the statistical model of the 
dimensional and functional errors in sensors, robots and 
products. 
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