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optimization, reducing the need for design iterations by human designers. Despite its
acceptance as a design tool, however, structural optimization seems yet to gain main-
stream popularity in industry. To remedy this situation, this paper reviews past literatures
on structural optimization with emphasis on their relation to mechanical product devel-
opment, and discusses open research issues that would further enhance the industry

acceptance of structural optimization. The past literatures are categorized based on their
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1 Introduction

Structural analyses in the context of product development refer
to the predictions of the product states in response to external
loads. In industry settings, they are usually done by conducting
finite element analyses (FEA) on the product geometries gener-
ated by computer-aided design (CAD) software. Since most me-
chanical products operate under external loads, structural analyses
are essential to modern product development processes, where the
use of physical prototype is minimized or even eliminated due to
the ever-increasing demands for high quality, low cost products
with short development time. In the last decade, the widespread
availability of affordable high-performance personal computers
and commercial FEA software further prompted the integration of
structural analyses with numerical optimization (i.e., structural op-
timization), reducing the need of the design iterations by human
designers.

A very brief history of structural analyses and optimization
from an industry perspective can be summarized as follows [1,2]:

(1) Pre-1980: Structural analyses became widespread, replac-
ing physical tests. Structural optimization was just not fea-
sible due to high demands on computer resources.

(2) 1980s: Structural analyses became a tool for design
iteration/exploration. Despite growing interests [3], struc-
tural optimization was mostly for researchers.

(3) 1990s: Coupled with desktop 3D CAD, structural analyses
became a main driver for design cycle reduction. Structural
optimization became an effective option for some product
segments.

(4) 2000-present: Structural analyses completely replaced
physical tests in some product segments. Despite its accep-
tance as a design tool, structural optimization seems yet to
gain mainstream popularity.

In light of its potential impact on the product development pro-
cesses, this paper attempts to provide a bird-eye literature survey
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of the developments in structural optimization research, with em-
phasis on its relation to mechanical product development. The
past literatures are categorized based on their major research fo-
cuses: geometry parameterizations, approximation methods, opti-
mization algorithms, and the integration with nonstructural issues.
Since structural optimization is a matured research area with 20
+ years of rich history, some issues must be inevitably excluded
from the discussion, whose choices are biased by the authors’ own
experiences. In particular, the following issues are not discussed
due to the page limit: CAD/FEA integration, structural optimiza-
tion in manufacturing process design, composite material design,
and biomechanical product design. While the paper attempts to
cover representative application areas in mechanical engineering,
there is some bias towards automotive applications. Also, the ap-
plication areas traditionally regarded as outside of mechanical en-
gineering, such as aerospace engineering, civil engineering, naval
architectures and shipbuilding, and electrical engineering, have
very limited coverage, despite a vast amount of work on the ap-
plication of structural optimization in these area.

The rest of the papers is organized as follows: Sec. 2 provides
an overview of the branches of structural optimization researches
as addressed this paper. Section 3 discusses the research focusing
on geometry parameterization (sizing, shape, and topology). Sec-
tion 4 discusses the research focusing on the methods to approxi-
mate costly structural analyses for use within optimization loops.
Section 5 discusses the optimization algorithms used for structural
optimization. Section 6 discusses the integration of structural op-
timization with nonstructural issues in mechanical product devel-
opment. Finally, Sec. 7 summarizes open problems in each cat-
egory and discusses anticipated future research trends.

2 Overview

Structural optimization is a class of optimization problems
where the evaluation of an objective function(s) or constraints
requires the use of structural analyses (typically FEA). It can be
symbolically expressed in a compact form as [4]:

minimize f(x)
subject to g(x) <0

h(x)=0
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Fig. 1 Types of geometry parameterization: (a) sizing, (b)
shape, and (c) topology [5]
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where x is a design variable, f(x) is an objective function, g(x)
and h(x) are constrains, and D is the domain of the design vari-
able. Note g(x) and h(x) are vector functions. The design variable
x is typically a vector of parameters describing the geometry of a
product. For example, x, f(x), g(x), and h(x) can be product di-
mensions, product weight, a stress condition against yielding, and
constraints on product dimensions, respectively. Depending on the
definition of design variable x, its domain D can be continuous
(e.g., a continuous range of the length of a bar), discrete (e.g., the
standard gage thicknesses of a plate or the existences of structural
member in a product), or the mixture of both. Also, a variant of
structural optimization has multiple objectives, where the objec-
tive function is a vector function f(x), rather than a scalar function
fx).

While there are numerous variations of structural optimization
expressed in the form of Eq. (1), they can be roughly classified
according to the following three viewpoints:

(1) Analysis types: Linear static (stress and displacement), ei-
genvalues (normal modes and buckling), nonlinear and
time-transient (postbucking and cursh), flexible multibody,
and multiphysics.

(2) Application domains: Generic mechanical, civil, automo-
tive, aerospace, naval architecture and shipbuilding, and
microelectromechanical systems (MEMS).

(3) Research focuses: Geometry parameterization, approxima-
tion methods, optimization algorithms, and the integration
with nonstructural issues.

The present paper adopts the third viewpoint, research focuses, as
a primary method to classify the past literatures with special em-
phasis on mechanical product development.

Geometry parameterization determines the type of geometry
changes that can be described by design variable x. It can be
classified to (1) sizing, (2) shape, and (3) topology parameteriza-
tions as illustrated in Figs. 1(a)-1(c), in the order of increasing
freedom in possible geometry changes. In sizing parameterization,
the geometry of a product is expressed in terms of a set of dimen-
sions and only the values of these dimensions are allowed to vary.
Shape parameterization relaxes this constraint so the boundary of
product geometry can be changed more freely using, e.g., para-
metric curves/surfaces, while topology (the connectivity among
geometric subdomains) remains constant. Topology parameteriza-
tion allows the change in topology in addition to shape, so holes
can be placed within product geometry. Due to the amount of
design freedom and the difficulty in representing detailed product
geometry, topology parameterization is generally suitable for con-
ceptual design, whereas sizing and shape parameterization are ef-
fective for both conceptual and detailed designs.

Since optimization is an iterative process, objective function
f(x) and constraint functions g(x) and k(x) need to be evaluated
many times to obtain a solution. Approximation methods replace
costly structural analyses during the optimization iterations, so a
solution can be obtained within a reasonable amount of time. It is
of a significant importance in product development since compu-
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tation time is still a large obstacle against the industry acceptance
of structural optimization [6]. Major classes of approximation
methods are: (1) surrogate modeling, (2) reduced order modeling,
and (3) reanalysis methods. Surrogate modeling approximates the
input-output relationships of structural analyses by means of im-
plicit or explicit algebraic equations. While surrogate models sim-
ply “copy” the input-output relationships with no consideration of
the underlined physics, reduced order modeling builds a simpli-
fied version of physical model by dropping unimportant details,
such as mass-spring-damper models of an automotive suspension.
Since most optimization algorithms iterate by slightly modifying a
current design, reanalysis methods approximate the analysis result
of a new design based on the (nonapproximated) analysis result of
the current design.

The third category in research focuses is optimization algo-
rithms, which are classified to (1) nonlinear programming (NLP),
(2) metaheuristic, (3) reliability and robustness optimization, and
(4) other special purpose algorithms. Since f(x), g(x), and h(x)
are usually nonlinear to x, nonlinear programming algorithms are
often used if x is continuous. In particular, sequential approxima-
tion algorithms are successfully applied as they exploit the nature
of structural optimization problems whose objective and con-
straints often exhibit near-monotonic behaviors within small
variations of x. During the last decade, metaheuristic algorithms
such as genetic algorithms (GA) and simulated annealing (SA)
have gained popularity in structural optimization due to their glo-
bal optimization capability, no need of derivative information, the
applicability to both continuous and discrete variables, and the
ease of computer implementation. While these methods, espe-
cially when coupled with topology parameterization, can be effec-
tive in exploring many design alternatives, the need of a large
number of analyses is limiting their applicability to practical prob-
lems. This is also the case for reliability and robustness optimiza-
tion where one evaluation of f(x), g(x), and h(x) involves many
structural analyses due to the stochastic nature of the definition of
reliability and robustness. Consequently, special algorithms are
developed to efficiently estimate the reliability and robustness,
without resorting to expensive Monte Carlo methods. Other spe-
cial purpose algorithms include the ones that tightly integrate
with, and hence are inseparable from the corresponding geometry
parameterizations.

Viewed as a tool for effective product development, structural
optimization should be an integral part of nonstructural issues in
product development processes. Relatively few papers are found
in this category, perhaps due to the implicit segregation between
the research communities of structural mechanics and of product
design. Nevertheless, related literatures are classified as the ones
addressing (1) cost, (2) manufacturing and assembly, and (3) prod-
uct platform design. Although both (2) and (3) are in essence
aiming at cost reduction, they include the papers that explicitly
deal with the respective issues, beyond the use of simple cost
models.

3 Geometry Parameterizations

3.1 Sizing and Shape. In sizing parameterization, design
variable x is a predefined set of the dimensions that describe prod-
uct geometry. The application of sizing optimization, therefore, is
mostly limited to detailed designs where only the fine tuning of
product geometry is necessary. Sizing optimization is typically
done in conjunction with feature-based variational geometry [7]
available in many modern CAD software systems. With today’s
fast personal computers, sizing optimization is relatively a
straightforward task since it typically requires no remshing of fi-
nite element models during optimization iterations. A difficulty
arises, however, when extremely large finite element models or
highly nonlinear phenomena need to be analyzed, in which case
surrogate models are typically employed.

Shape parameterization allows the changes in the boundary of
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product geometry. In shape optimization, boundaries are typically
represented as smooth parametric curves, since gunsmith and ir-
regular boundaries deteriorate the accuracy of finite element
analysis or even cause the numerical instability of optimization
algorithms. Since product geometry can change dramatically dur-
ing the optimization process, the automatic remeshing of finite
element models is usually required. Since shape parameterization
is suitable for representing product geometries with smooth exter-
nal boundaries, many developments have been made in the area of
aerospace vehicle design, which is not covered in this paper due to
the space limit. Instead, this subsection briefly describes two pri-
mal approaches in shape optimization along with major applica-
tion areas related to mechanical product developments.

Structural optimization based on the shape parameterization of
geometry can be classified to (1) direct geometry manipulation
and (2) indirect geometry manipulation approaches. In the direct
geometry manipulation approaches, design variable x is a vector
of parameters representing the boundary of product geometry,
e.g., the control points of the boundary surfaces. In the indirect
geometry manipulation approaches, design variable x is a vector
of parameters that indirectly defines the boundary of the product
geometry, e.g., a fictitious load is applied on the boundary.

An excellent review of shape optimization based on the direct
geometry manipulation approaches can be found in [8], where the
boundary representations are classified as polynomials, splines,
and design elements. In the polynomial representation, design
variable x is the coefficients of the polynomials that describe the
boundary shape of the product [9-11]. A variant of this approach
is to use a linear combination of the nonpolynomial basis func-
tions that can better describe desired product boundaries [12,13].
In the spline representation, design variable x is the control points
of spline such as Bezier and B-spline curves [14,15]. In the design
element representation, product geometry is discretized to design
elements, whose boundaries are represented by a set of key nodes
and their interpolation functions [16,17]. Each design element can
contain several finite elements, and the design variable x is the
coordinates of the key nodes that are allowed to move. The direct
geometry manipulation approaches had been implemented in a
number of commercial software such as Optistruct [18].

A representative method of the indirect geometry manipulation
approaches is the Natural Design Variable method originally de-
veloped by Belegundu and Rajan [19], which uses fictitious loads
applied on the boundaries of the product geometry as design vari-
ables. In each iteration, a new boundary is obtained by adding the
displacements induced by these fictitious loads to the original
boundary. Since the displacements are calculated by Finite Ele-
ment Methods based on force equilibrium, the resulting new
boundary tends to be smoother and less likely to have heavily
distorted meshes, than the ones obtained by the direct geometry
manipulation approaches. On the other hand, imposing geometric
constraints on product boundary is more complicated than the
direct geometry manipulation, since the constraints must be trans-
lated to the ones on the fictitious loads. Variants of the Natural
Design Variable method have been implemented in a number of
commercial software, such as NASTRAN [20], GENESIS [21],
and ABAQUS [22].

As a hybrid of the direct and indirect geometry manipulation
approaches, Azegami et al. [23,24] proposed the Traction Method,
where the boundary sensitivities are replaced with the velocities
of boundary changes in response to the fictitious loads that deform
the original shape to the target shape defined by the boundary
sensitivities. By this replacement, sufficient smoothness of the
boundary can be achieved via the direct manipulation of the prod-
uct boundary.

In addition to stiffness maximization problems, sizing and
shape optimization has been applied to numerous areas of concern
in mechanical product developments, including vibration [25-27],
crashworthiness [28-37], thermomechanical [38], strcture-
acorustics [39], structure-electromagnetics [40], fluid-structure
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Fig. 2 Two approaches for structural topology optimization.
(a) Discrete element (ground structure), and (b) continuum.

[41], compliant mechanisms [42-44], microelectromechanical
systems (MEMS) [45-49], and reliability optimization [50-53].

3.2 Topology. Topology parameterization allows the changes
in the way substructures are connected within a fixed design do-
main. Structural optimization based on the topology parameteriza-
tion of geometry can be classified to (1) discrete element and (2)
continuum approaches. In the discrete element approach, (also
known as ground structure approach), the design domain is repre-
sented as a finite set of possible locations of discrete structural
members such as truss, frame, and panels [the left figure of Fig.
2(a)]. By varying the width/thickness of each member in the de-
sign domain between zero (in this case the element becomes non-
existent) and a certain maximum value, structures with different
sizes and topologies can be represented [the right figure of Fig.
2(a)]. In the continuum approach, the design domain is repre-
sented as the continuum of “void,” or material with very low
density [the left figure of Fig. 2(b)]. By varying the void/material
distributions or the material density within an infinitesimally small
microstructure at each location in the continuum, structures with
different size and topologies can be represented [the right figure of
Fig. 2(b)]. A survey of structural topology optimization from a
product design viewpoint is found in [54].

Since structures are represented as a collection of primitive
structural members that allow easy interpretation, the discrete el-
ement approach is suitable to conceptual design. However, the
feasible topologies for a given design domain is limited by the
number and types of possible member locations defined in the
design domain. Thanks to the assumption of a continuum design
domain, on the other hand, the continuum approach does not have
this limitation, with an expense of additional computational costs.
The right figures in Figs. 2(a) and 2(b) illustrate this difference.

While the optimization of structural topology based on the dis-
crete element approach has a long history that dates back to the
early 1900s [55], significant developments were made mostly dur-
ing last two decades. Comprehensive history of the area can be
found in [56-58]. Using trusses as structural members, Bendsge et
al. [56] applied the simultaneous analysis and design (SAND), Gil
and Andreu [59] conducted simultaneous shape and size optimi-
zation, and Pedersen and Nielsen [60] solved problems with
eigenfrequencies, displacements, and buckling constraints. Nishi-
gaki et al. [61] presented an Excel-based desk-top tool for the 3D
topology optimization of automotive bodies approximated by net-
works of frame elements with rigid joints, later extended to in-
clude flexible joints [62], panel elements [63,64] (Fig. 3), and
frame elements with ellipsoidal cross sections [65]. Inspired by
the continuum approach, several researchers presented topology
optimization methods in discretized (meshed) design domains,
such as a binary material approach solved by Genetic Algorithm
[5,66-68], Evolutional Structural Optimization (ESO) [69,70],
Cellular Automata [71-74], and metamorphic development
[75,76].

Independent to these developments, Cagan et al. [77] developed
another class of discrete element approaches called shape anneal-
ing. Instead of eliminating unnecessary structural members, to-
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Fig. 3 3D topology optimization with frame and panel ele-
ments [64]. (a) Design domain, and (b) optimal panel
configuration.

pologies are “grown” from a primitive member in an optimal fash-
ion, through the repeated applications of a shape grammar using
simulated annealing [78-80].

A continuum approach to topology optimization was first intro-
duced by Bendsge and Kikuchi [81] in their Homogenization De-
sign Method (HDM). Bendsge [82] also proposed another ap-
proach called SIMP (Solid Isotropic Microstructure with
Penalization), which is further developed by Rozvany et al. [83]
and Yang and Chuang [84]. The idea of a material-based interpo-
lation within the SIMP model was introduced in [85]. A textbook
by Bendsge and Sigmund [86] describes the recent developments,
applications, and details of the SIMP methods. A comprehensive
list of literatures on HDM and SIMP are found in [87].

The continuum approach has been applied to various design
problems such as stiffness problems [88], eigenfrequency prob-
lems [89-91], automotive crashworthiness problems [92-98], and
reliability optimization problems [99,100]. However, these appli-
cations have been limited to high-level, conceptual designs due to
the difficulty in presenting detailed geometries and smooth bound-
aries. In the situation where representing detailed geometries or
smooth boundaries are crucial (e.g., when checking stress concen-
tration and local bucking and failure), the results of topology op-
timization need to be postprocessed to a parametric boundary rep-
resentation for subsequent sizing/shape optimizations [101].

Compliant mechanisms are mechanisms which gain some or all
of their motion from the relative flexibility of their members
rather than from rigid-body joints [102]. During the last decade,
topology optimization has been extensively applied to the design
of compliant mechanism. Based on the discrete element approach,
Frecker et al. [103] posed compliant mechanism design as a mul-
ticriteria optimization. Hetrick and Kota [104] introduced a con-
cept of efficiency to the problem formulation. Saxena and Anan-
thasuresh [105] developed a method to enforce a prescribed
nonlinear output deflection. Compliant mechanism design based
on the continuum approach was introduced by Sigmund [106] and
Nishiwaki et al. [107,108] under the linear elastic assumption,
which was later extended for large displacements [109,110] and
snap-through behavior [111]. Tai and Chee [112] and Tai et al.
[113] proposed a design method for compliant mechanisms based
on the ESO approach.

These developments lead to the successful applications of opti-
mal compliant mechanism designs for piezoceramic-driven flex-
tensional actutators [114,115], piezoresistive sensors [116], ther-
mal [117] and electrothermal [118-120]  actuators,
micromechanical resonators [121,122], and micromechaical bio-
probes [123].

Open research issues on topology optimization may include: (1)
nonlinear problems, (2) large-scale problems, and (3) topology
optimization based on level set theory. Despite several attempts,
topology optimization of structures considering nonlinear phe-
nomena has shown limited successes due to underlying numerical
difficulties. A similar problem exists on the use of topology opti-
mization in a large scale, multidisciplinary problems. Further re-
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search efforts are desired in these areas, including the integration
with surrogate or reduced order models. Recently, a new class of
shape optimization methods based on the level set theory was
proposed [124] and later extended to allow limited topological
changes [125,126]. Since the level set representation allows topo-
logical changes with smooth boundary, it is expected to overcome
the difficulty of the conventional topology parameterization in
representing smooth product boundaries without postprocessing
and the subsequent sizing/shape optimization. Considering the in-
dependent development of level-set based geometry modeling
[127,128], the research in this area may lead to a seamless inte-
gration of geometric modeling and shape and topology optimiza-
tion, which would have a profound impact on product develop-
ment processes.

4 Approximation Methods

The computation time required for structural analyses was a
major obstacle against structural optimization in the 1980s due to
the limited computer power in those days. Surprisingly, however,
it is still a problem after 20 years, even with the dramatic increase
in the computer power in the last decades. This paradoxical situ-
ation is due to the increased demands in high accuracy (higher
DOFs with finer meshes), complex analyses (e.g., nonlinear and
multiphysics), and in large design spaces (e.g., topology param-
eterizations). The approximation methods, therefore, are key tech-
nologies for the industry acceptance of structural optimization [6].

4.1 Surrogate Models. Representative surrogate models em-
pirically capture the input-output relationship of structural analy-
ses for evaluating the objective functions and constraints. They
are utilized for two reasons, the first of which is to obtain global
the behavior of the original functions that have complex local
noises. The second is to shorten optimization calculation time by
using surrogate functions that can quickly return approximate val-
ues, instead of relying on the time-consuming function calls such
as crashworthiness analysis [129-134], and optimization under
uncertainties [135,136]. Artificial Neural Network (ANN) [137],
Polynomial Regression, Kriging Method [134,138], and Radial
Basis Function [139,140] are popularly used.

The formulations of the approximation methods are described
as follows. The Polynomial Regression approach represents a sur-
rogate function that uses a polynomial expression. For instance, a
second-order polynomial model can be formulated as the follow-
ing equation:

k k
y=Bo+ 2 Bxi+ E :Biixiz + E 2 Bijxix; (2)
i=i i=i i

where y is the estimated function value and k is the number of
design variables, B;(i=1,2,...,k) are the coefficients to be ob-
tained via the surrogate model construction processes.

The formulation of the Kriging Method is the following equa-
tion:

k
$=2 BY %) + 2(x) 3)
J=1
COV[Z(xi),Z(Xj)] = U'ZR(xi,xj) 4)

where Y;(x) is a known fixed function for the global approxima-
tion of design space, and Z(x), which represents the localized
deviations of the approximation model, is the realization of a nor-
mally distributed Gaussian random process with mean zero and
variance o, and R is the correlation function. The Kriging method
provides good approximation models while its implementation is
relatively complex and time-consuming.

Radial basis functions, formulated as the following equation, is
a popular approximation method since it offers good approxima-
tion models for various functions and is easy to be implemented.
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where a; is a coefficient and X is the observed input.

4.2 Reduced Order Models. Since the construction of surro-
gate models requires the sample data of the input-output pairs
calculated by the structural analyses of detailed product models,
they cannot be used during conceptual design stages when no such
models are available. For an effective concept exploration via op-
timization, approximation models must be based on physics to
allow the interpretation of the resulting designs by human design-
ers, with an reasonable accuracy and a computational speed [141].
Reduced order models have been developed to meet these goals
for various applications, such as compliant mechanisms and auto-
motive structures.

Since members in compliant mechanisms often experience
large elastic deformations, geometric nonlinearly becomes signifi-
cant. However, such large deformations are highly localized to the
“hinged” ends of slender members, allowing most portions of the
members to be seen as rigid links. Pseudorigid body models
[142-146] exploit this fact and model a compliant mechanism as
rigid links connected by nonlinear torsional and translational
springs.

For static analyses of structures with general geometries, fla-
vors of Guyan reduction can be applied to obtain reduced-order
models. Guyan reduction is essentially a substructuring method
which reduces the problem to a smaller one by relating certain
degrees of freedom to certain others by means of constraint equa-
tions, thereby reducing the size of the problems. Using this
method, Sugiura et al. [147] and Tsurumi et al. [148] presented
reduced order models of an automotive torsion bar suspension and
spot-weld joints of thin-walled members in automotive bodies,
respectively.

Due to the massive computational requirements, there is a sig-
nificant need for reduced-order models for automotive crashwor-
thiness optimization. As such, coarse mesh, lumped parameter,
and lattice models [149-151] have been developed. While these
models can be computationally inexpensive and also bear some
physical roots in underlying crash phenomena, they are too ab-
stract for the examination of crash modes (sequences of collapse
events), which are essential for early design iterations to identify
effective energy-absorbing strategies [153]. Since most crash en-
ergy is absorbed by beam-like structural frames in a body struc-
ture, techniques similar to pseudorigid body models for compliant
mechanisms have been successfully applied to automotive crash-
worthiness [152-157]. With a “right” level of abstraction preserv-
ing general geometries of automotive bodies, these models would
be capable of simulating the crash mode of a body structure with
complex topologies. Hamza and Saitou demonstrated that their
equivalent mechanism (EM) models (Figs. 4 and 5) could in fact
simulate the crush modes with a reasonable accuracy [153], and
the crash mode of the optimized EM model could be used to guide
design iterations with a detailed FE model to dramatically reduce
the total number of FE crash simulations [154,155].

With the common use of structural analyses during conceptual
design, reduced-order models are becoming increasingly more im-
portant in product development. The methodologies for building
reduced order models with right abstraction levels in various ap-
plication domains will continue to be a challenging research area
[141]. In particular, advancements are desired on reduced-order
modeling for multidomain and multiphysics analyses, due to their
increased use in the development processes of many mechanical
products.

4.3 Reanalysis Methods. Reanalysis is a class of methods for
approximating the structural responses of modified designs, based
on the analysis results of a single original design. In contrast to
surrogate models that require multiple analyses (multipoint ap-
proximation), reanalysis methods only utilize a single analysis
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Fig. 4 (a) Finite element, (b) lumped parameter, and (c)
equivalent mechanism models of a vehicle front subframe [153]

result (single point approximation). Due to this character, reanaly-
sis methods are most suitable for design exploration within a
small neighborhood of a nominal design, and post-optimization
sensitivity analyses.

Of most notable in structural reanalysis is the Combined Ap-
proximations (CA) method [158-160], which is based on the
reduced-basis approximation of the nodal displacement vector in
terms of a binomial series. Initially developed for static linear
analyses, the method is later extended to nonlinear static analyses,
eigenvalue analyses, and also applied to calculate design sensitivi-
ties [161,162]. Another class of reanalysis methods is based on
Taylor series approximation [163-165], where the derivatives of
desired structural responses with respect to design variables are
calculated by using Adjoint Method [163,164] or Direct Method
[165].

Since reanalysis methods efficiently and accurately estimate the
structural responses of a modified design within a small neighbor-
hood of the original design, their integration with robust/reliability
optimization seems a very promising research direction.

Fig. 5 Equiavlent mechanism model of vehicle front half-body
[155]. Boxlike outlines are shown only to provide a visual clue
to human designers.
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5 Optimziation Methods

5.1 Nonlinear Programming Algorithms. Typical math-
ematical approaches for solving nonlinear optimization problems
such as structural optimization can be represented as iterative pro-
cesses of approximated optimizations. Sequential Linear Program-
ming (SLP) [166], also known as Successive Linear Program-
ming, approximates nonlinear optimization problems as linear
optimization problems. SLP can handle a range of objective func-
tions and a large number of design variables, while the computa-
tional efficiency is sensitive to the values of the move limit pa-
rameters. Kumar developed an adaptive move limits setting
method to stably obtain good solutions [167].

In Sequential Quadratic Programming (SQP), an approximation
is made of the Hessian of the Lagrangian functions in each itera-
tion to generate a quadratic subproblem [4]. While SQP provides
a good searching efficiency when the number of design variables
is relatively small [168], the calculation of the Hessian becomes
cumbersome in large-scale problems.

Sequential Convex Programming (SCP) is based on a convex
approximation. Convex Linearization (CONLIN) [169] uses the
following intervening variables to obtain better approximations:

if ghlax, >0

X
5=y " fori=1,2,....n (6)
1/x; if dhldx; <0
where h(x) are objective or constraint functions. When using the
Method of Moving Asymptotes (MMA) [170], the following in-
tervening variables are used for the convex approximation:

1(U;-x) if dhlox; >0

%= ) fori=1,2,...,n (7)
(x;=L;) if dh/ox; <0

Using artificial intermediate variables, MMA provides an im-
proved convexity of approximation. Recently, better convex ap-
proximation techniques have been developed [171-173], however
parameters the values of U; and L; cannot be determined a priori.

Instead of sequentially solving an optimization problem locally
approximated in each iteration, the Method of Feasible Directions
(MFD) determines a direction of the next iterate by solving an
auxiliary optimization problem based on the gradients of the ob-
jective function and the active constrains. Vanderplaats [174]
greatly improved the numerical stability of MFD, which later
evolved to commercial software DOT and GENESIS [21].

Semidefinite Programming (SPD) [175] is an effective algo-
rithm that can solve optimization problems with the constraints
represented as positive semidefinite matrices. Since SPD does not
require explicit sensitivity coefficients, eigenvalues and buckling
loads in structural problems can be easily handled [176,177].

Hierarchical optimization techniques have been proposed for
efficiently solving multidisciplinary optimization problems, tech-
niques such as Bi-level Integrated Synthesis (BLISS) [178] and
Collaborative Optimization (CO) [179,180], which provide multi-
disciplinary optimization environments where optimization pro-
cesses in each engineering discipline are hierarchically connected
using linking variables, facilitating the achievement of compre-
hensive optimal solutions. The Analytical Target Cascading (ATC)
method [181,182] includes a representation scheme for engineer-
ing design problems of hierarchical systems. In the ATC method,
a given mechanical system can be partitioned into multiple lay-
ered components, each of which corresponds to a subsystem that
are interconnected using linking variables. A system level optimal
solution is obtained through iterative optimization procedures
[183].

Thanks to these developments, commercial software can now
handle many practical structural optimization problems using con-
tinuous design variables [184]. However, the design optimization
of large-scale structures still remains a time-consuming matter. To
reduce computational time, parallel computing methods have been
applied [185,186].
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Fig. 6 Optimization result of cross-sectional shape of automo-
tive body frame using genetic algorithm [192]

5.2 Metaheuristic Optimization Methods. Metaheuristic ap-
proaches that imitate natural phenomena have been applied to
complex optimization problems that cannot be solved using con-
ventional mathematical methods.

Genetic algorithms seem the most widely used metaheuristic
methods in structural optimization, and numerous applications,
such as shape optimization [187,188] and topology optimization
[68], have been developed. Genetic algorithms can be applied to a
range of design optimization problems since GAs allow a variety
of design variable representations using various types of gene
structures. A mixed discrete/continuous design variable problem
in mechanical component design was solved by Deb and Goyal
[189]. Structural optimization using real-coded GAs has been car-
ried out by Deb and Gulati [190]. Yoshimura and Izui proposed a
genotype representation method of hierarchical design alternatives
for machine tool structural optimization problems [191], and
Yoshimura et al. applied GAs to cross-sectional shape optimiza-
tion problems of automotive body frames involving mixed
discrete/continuous design variables [192] (Fig. 6). Another im-
portant advantage of using GAs is that multiobjective optimiza-
tion problems can be solved and non-dominated solutions can be
obtained in a single optimization run [193-195].

One crucial problem in the use of GAs is their high computa-
tional cost, since GAs are population-based algorithms, and GAs
that use parallel processing methods have been developed
[196,197] to try and mitigate this. However, the handling of con-
straints still remains difficult, though some improved methods
have recently appeared [198,199].

Many GA-like metaheuristic methods also have been applied to
structural optimization such as new crossover [200] and mutation
[201] schemes, Immune Algorithms (IAs) [202], and Pareto-
frontier differential evolution (PDE) [203] to enhance computa-
tional efficiencies for obtaining an optimal solution or multiple
Pareto optimal solutions.

While GAs are population-based optimization methods utilizing
multiple searching points in a single iteration, simulated annealing
(SA) methods [204] use a single searching point. SA can be ap-
plied to discrete design variable problems [205], and SA compu-
tational requirements are relatively modest, particularly when
compared with genetic algorithms. However, parallel-computing
methods for SA are required since the computational cost of SA is
higher than mathematical approaches in large-scale problems
[206]. Furthermore, parameter settings for temperature control re-
mains problematic since the optimal cooling schedule depends on
optimization problems.

Particle Swarm Optimization (PSO) is another metaheuristic
method, one that mimics the social behaviors of groups of living
organisms. In certain structural applications, PSO offers better
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searching efficiencies for obtaining global optimal solutions than
genetic algorithms, especially for problems that include numerous
continuous design variables [207,208].

5.3 Reliability and Robustness Optimization Methods. The
general optimization techniques described above often can pro-
vide the optimal solutions for practical optimization problems set
by designers. However, the premises of optimization problems
occasionally differ from practical design cases due to the uncer-
tainties in material forming, product assembly and so on. There-
fore, optimization methods have been developed that take such
uncertain factors into consideration.

Reliability analysis is a method for quantifying the relations
between the variations in parameter values and the resulting per-
formance insufficiencies or failures. A variety of design optimiza-
tion techniques based on reliability analysis have been proposed
[209]. Such techniques are called Reliability-Based Design Opti-
mization (RBDO) techniques [50].

Murotsu et al. proposed a topology optimization method based
on reliability analyses using truss elements [51]. Recently, Khar-
manda et al. clarified that a reliability-based design optimization
method can be applied to a topology optimization problem based
on continuum mechanics [100].

To date, the Reliability Index Approach (RIA) and the Perfor-
mance Measure Approach (PMA) [50,52] are used as basic algo-
rithms for the RBDO. These algorithms require double loop cal-
culations, where the reliability index is calculated in the inner
loop and the design optimization is conducted in the outer loop.
However, such double loop calculation approaches result in an
extremely high computation cost, but accurate reliability indexes
can be calculated for multiple failure-mode problems.

The Single Loop Single Variable (SLSV) method, the Safety-
Factor Approach (SFA), and the Sequential Optimization and Re-
liability Assessment (SORA) method are popular techniques in
which the double loop problems are transformed to single loop
problems to reduce calculation time. The SLSV method proposed
by Chen et al. [53] enables the single loop calculation while
avoiding the need to calculate the reliability index during the op-
timization process. The SFA proposed by Wu and Wang [210]
introduced the concept of safety-factor in reliability design prob-
lems into optimization problems, and used approximately equiva-
lent deterministic constraints. Du and Chen [211] proposed the
SORA method that transforms a probabilistic design problem to
an equivalent deterministic optimization problem using an inverse
reliability assessment for checking the constraint feasibility. In the
SFA and SORA methods, the design optimization process and the
reliability analysis can be strictly partitioned and conducted in
reduced calculation time [212].

Robust optimization methods aim to ensure that the objective
function is insensitive to variations in design variables. Taguchi
methods in experiments using orthogonal arrays representing vari-
ous combinations of control factor magnitudes can obtain condi-
tions, where the effect of uncertain noise is minimized, to evaluate
the robustness of the objective function, based on a signal to noise
(S/N) Ratio [213]. Uncertain variations can also be handled using
Fuzzy sets. Arakawa et al. represented the design variable varia-
tions using Fuzzy sets and provided a robust optimal solution that
considers the correlations of design variables [214]. Furthermore,
fuzzy sets can be used in multiobjective problems to represent
designers’ preferences [215,216]. In multidisciplinary design, un-
certainties in different disciplines often show interrelationships
where unwanted effects are a factor and may be compounded. Gu
et al. introduced robust optimization concepts into multidisci-
plinary hierarchical optimization systems to evaluate interdiscipli-
nary uncertainty propagations [217].

5.4 Other Methods. Cellular automaton approaches [71-74],
evolutionary optimization methods [69,70], and metamorphic de-
velopment approaches [75,76] are heuristic methods that can ob-
tain structural optima using only simple local rules. These meth-
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ods can provide very similar solution to mathematical
programming methods with a lower computational cost. These
methods are expected to be more widely used in practical design
cases if complex structural optimization problems such as large-
scale, multiphysics problems can be solved using simple local
rules.

6 Integration With NonstructruaL Issues

6.1 Cost. In most structural optimization work, the product
weight is often assumed as an implicit representation of product
cost. This assumption is valid when the material cost in the struc-
ture accounts for a majority of the total cost of a product. When
manufacturing and assembly costs depend much on product ge-
ometry specified by design variable x, however, the minimization
of product weight does not necessarily imply the minimization of
product cost. Therefore, the explicit inclusion of cost is of a prac-
tical importance from a product development viewpoint.

Cost is typically incorporated as an only objective, subject to
the constraints on weight and structural responses [218,219], or as
one of multiple objectives in addition to weight and structural
responses [220-222]. While the single-objective formulation is
simple, the multiobjective formulation is attractive when the ex-
amination of multiple pareto-optimal designs for cost-
performance trade-off is of interest, e.g., during conceptual de-
sign.

6.2 Manufacturing and Assembly. Despite the recognition
of its potential, the use of structural optimization in practice has
been limited by the lack of manufacturing considerations. As a
result, the “optimized” design must usually go through significant
(manual) design changes since they are initially not economically
manufacturable. With the recent emphasis on concurrent engineer-
ing [223], attempts have been made on the integration of struc-
tural optimization with design for manufacturing (DFM). Primal
approaches have been the utilization of feature-based variational
geometry representations in sizing and shape optimizations
[7,224,225]. More recently, Zhou et al. [18,226] developed a
simple mathematical constraint for ensuring the manufacturability
of topology optimization results via casting processes. José et al.
[227] presented topology optimization of components manufac-
tured by fused deposition processes.

Since complex product geometry is often realized by assem-
bling multiple components with simpler geometries, the optimiza-
tion of multicomponent structural products based on product-level
design objectives is of a significant engineering interest. Some
research addressed this problem as the single-objective optimiza-
tion of component topologies within the predefined component
boundaries [228-231], while others addressed as the multiobjec-
tive optimization of component boundaries (i.e., joint locations)
and joint attributes in a given product geometry, with the consid-
eration of the manufacturability and assemblablity of each com-
ponent [232,233]. These approaches are later relaxed to allow
variable component sizing [234,235], and variable product topolo-
gies [236]. Figure 7 shows representative Pareto optimal multi-
component topologies of a simplified automotive floor frame, op-
timized for stiffness against multiple loading conditions and the
manufacturability and assembleability of each component [236].

As an extension of [235], Fig. 8 shows one of the pareto opti-
mal solutions in [237], where the space frame structure of an
automotive body is optimally decomposed for the overall struc-
tural stiffness, the manufacturability of each component, and the
adjustability of desired dimensions (indicated as KC: key charac-
teristics) during the assembly process [Fig. 8(a)], and the corre-
sponding assembly sequence to realize the adjustability [Fig.
8(b)].

With the increasing emphasis on “front loading” in product de-
velopment processes, the integration of structural optimization
with design for manufacturing and assembly (and design for X in
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Fig. 7 Pareto-optimal multicomponent topologies of a simpli-
fied automotive floor frame subject to multiple loading condi-
tions, considering stiffness, manufacturability, and as-
sembleability [236]

general) became a key issue for enhancing its use in concept gen-
eration, and will continue to be an active research area.

6.3 Product Platform. The recent adoption of platform archi-
tectures in automotive industry motivated the integration of struc-
tural optimization with product platform design, based on the
quantification of the trade-off between cost gain and performance
loss by sharing a platform among multiple vehicle designs. Fellini
et al. [238] presented a sensitivity-based method for identifying
potentially sharable design variables among multiple optimization
problems with mild differences, and applied the method to the
platform identification in a family of automotive body structures.
Cetin and Saitou [239-241] developed a method for optimally
decomposing multiple structures to maximize sharable compo-
nents while maximizing structural stiffness and minimizing manu-
facturing and assembly costs.

Since structural products such as automotive bodies are often
homogeneous, the identification of a potential platform(s) requires
the determination of the location of platform boundaries in each
structure and the design of the joints common to all structures,
which prevents the direct application of generic platform design
methods. Although these works demonstrated the potential of
optimization-based product platform design to structural products,
much needs to be done to improve its practical applicability. Due
to its potential impact on cost reduction, the optimal structural
platform design will keep drawing much attention from industry.

(a) {b)

Fig. 8 (a) Automotive space frame optimally decomposed for
overall stiffness, component manufacturability, and the adjust-
ability of dimensions K1-K5 during assembly process, and (b)
the corresponding assembly sequence to realize the adjustabil-
ity [237]
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7 Future Trends

This paper attempted to provide a bird-eye survey of the struc-
tural optimization, with a special emphasis on its relation to prod-
uct development. The past literatures are categorized based on
their major research focuses: geometry parameterizations, ap-
proximation methods, optimization methods, and the integration
with nonstructural issues. While the structural optimization is one
of the most extensively researched areas in optimization, its use in
product development is relatively new and seems yet to gain a
mainstream popularity in industry.

Figure 9 shows the number of conference and journal papers
(written in English) appeared in Compendex between 1980 and
2004 with classification code 6, and containing “structural opti-
mization” and “product development” in subject, title or abstract.
The classification code 6" includes areas such as mechanical,
aerospace, automotive, and marine engineering. It can be seen that
the number has been rising rapidly since 2000, indicating the in-
creasing interests in the topic. This trend is likely to continue, and
will contribute to more industry acceptance of structural optimi-
zation in product development.

The future research in this area will continue to address some or
all of open research issues discussed in the earlier sections, which
are summarized as:

(1) Technologies for structural optimization in conceptual
design: method for generating innovative design concepts
through optimization, reduced order modeling of multido-
main, multiphysics analyses for rapid concept evaluation,
and integration to design-for-X.

(2) Technologies for large-scale structural optimization: ef-
ficient approximation methods for large-scale, nonlinear,
and robust/reliability optimization problems, accurate and
stable coordination schemes for multidisciplinary optimiza-
tion problems, and efficient global optimization algorithms
to these problems.

While not covered in this paper, the CAD/FEA integration is also
an important area of research. Due to the limited interoperability
between commercial CAD and FEA/Optimization software, de-
sign iterations involving large geometry changes are currently
very difficult to automate as an optimization process. Therefore,
research and development are highly desired to realize seamless
integration of initial geometry creation with CAD software, de-
sign optimization with FEA/Optimization software, and further
design detailing with CAD software including the generation of
manufacturing data.

In addition to the advancements in the above areas, the educa-
tion of engineers knowledgeable in all of structural analyses, op-
timization, and product development would be essential for fur-
ther industry acceptance of structural optimization.
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