Ld Journal of Intelligent Manufacturing, 13, 339-351, 2002
ﬁ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Robust design of flexible manufacturing systems
using, colored Petri net and genetic algorithm

KAZUHIRO SAITOU, SAMIR MALPATHAK and HELGE QVAM

Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan,
48109-2125, USA
E-mail: kazu@umich.edu

Received April and accepted November 2001

A method is presented for the robust design of flexible manufacturing systems (FMS) that undergo
the forecasted product plan variations. The resource allocation and the operation schedule of a FMS
are modeled as a colored Petri net and an associated transition firing sequence. The robust design of
the colored Petri net model is formulated as a multi-objective optimization problem that
simultaneously minimizes the production costs under multiple production plans (batch sizes for
all jobs), and the reconfiguration cost due to production plan changes. A genetic algorithm, coupled
with the shortest imminent operation time (SIO) dispatching rule, is used to simultaneously find the
near-optimal resource allocation and the event-driven schedule of a colored Petri net. The resulting
Petri net is then compared with the Petri nets optimized for a particular production plan in order to
address the effectiveness of the robustness optimization. The simulation results suggest that the
proposed robustness optimization scheme should be considered when the products are moderately
different in their job specifications so that optimizing for a particular production plan creates
inevitably bottlenecks in product flow and/or deadlock under other production plans.

Keywords: Flexible manufacturing systems, robust design, colored Petri nets, genetic algorithms,

part families.

1. Introduction

Flexible manufacturing systems (FMS) are a class of
manufacturing systems that can be quickly configured
to produce multiple types of products (jobs). The
adoption of an FMS, over a dedicated manufacturing
system (DMS), is often motivated by the need of agile
manufacturing that can quickly adopt changes in
production plans (batch sizes for all jobs) due to
market demand fluctuations. While the increased
flexibility of FMS could provide greater overall
productivity under various production scenarios, it
imposes increased complexity in the allocation of
available resources to different operations required in
making each product, and the scheduling of the
sequence of activities to accomplish the best
production efficiency (Lee and DiCeasre, 1994).

In order to quickly adapt to fluctuating market

demands, the resource allocation and the sche-
duling—referred to as configuration in this paper—
of an FMS should not simply be optimized for the
current production plan. Rather, it should ideally be
optimized for robustness against the variation in
production plans, so that the system can deal with the
variation with minimal reconfiguration while
achieving consistently efficient production under all
production plans of interest (Saitou and Malpathak,
1999; Saitou and Quam, 1998)

Assuming the forecasts of production plan varia-
tions are available, let us consider a scenario where an
FMS simultaneously produces two types of products
A and B with various fractions while the total number
of production per unit time (e.g., a day) is kept
constant. When A and B are very similar in their job
specifications, then, it is conjectured that one would
not need to consider robustness optimization since the

340

configuration optimized for the current production
plan is robust enough such that little system
reconfigurations are necessary to deal with production
plan changes (imagine the extreme of this case where
A and B are identical). On the other hand, when
products under simultaneous production are moder-
ately different, a slight change in the production plan
will heavily impact the production efficiency, possibly
due to the creation of bottlenecks in the product flow.
This would necessitate the system reconfiguration in
order to achieve the efficient production under the
new production plan.

The aforementioned conjecture motivated us to
develop a methodology for robustness optimization of
FMS that underwent forecasted product plan varia-
tions, and to study the effectiveness of the
methodology in the simultaneous production of
products with various similarities. Viewing the
demand fluctuation as a uncontrollable factor, the
robustness of FMS design is defined as the ability to
achieve consistently a high production efficiency with
the minimum system reconfiguration, regardless of
the variations in the production plan within a
forecasted range. A configuration of an FMS is
modeled as a colored Petri net and an associated
transition firing sequence. The robustness optimiza-
tion of the colored Petri net model is formulated as a
multi-objective optimization problem that minimizes
the production costs under multiple production plans,
and the reconfiguration cost due to production-plan
changes. A genetic algorithm, coupled with the SIO
(shortest imminent operation time) dispatching rule, is
used to simultaneously find the near-optimal resource
(machine) allocation and the event-driven schedule of
a colored Petri net. The resulting Petri nets are then
compared with the Petri nets optimized for a particular
production plan in order to validate the above
conjecture.

2. Related work

Petri nets (Petri, 1962) have been used for the analysis
and simulation of FMS due to their capability of
modeling the concurrency, synchronization and
sequencing in discrete-event systems (Dubios and
Stecke, 1983; Narahari and Viswanadham; Zhu and
DiCesare). In addition to the use as an analysis tool,
Petri net models are often used for FMS scheduling
problems. Given a job specification (operation

Saitou, Malpathak and Qvam

sequences needed for each job, the machine types
and processing time for each operation), and the
corresponding resource allocation (the number of
machines in each type), one can construct a Petri net
model of an FMS, where the event-driven operation
schedules of the modeled FMS are represented as the
transition firing sequences of the Petri net. Due to the
NP-completeness of the underlying job-shop sche-
duling problem (JSSP) (Garey and Johnson, 1979) a
near-optimal schedule is often found via heuristic
search algorithms such as beam search (Shin and
Sekiguchi, 1991), A* algorithm (Lee and DiCeasre,
1993) and genetic algorithms (Chiu and Fu, 1997),
coupled with the discrete-event simulation of the
operation of the Petri net model.

In general, the quality of the optimal schedule is
influenced by the quality of the resource allocation
(i.e., the topology of the Petri net model) for a given
job specification. This motivates the simultaneous
optimization of resource allocation and scheduling, a
generalization of JSSP known as generalized
resource-constrained project scheduling problems
(GRCPSP), which is also NP-complete (Garey and
Johnson, 1979). GRCPSP is typically formulated as
discrete programming problems and solved by
heuristic search algorithms (Sprecher, 1994). The
solution provides a near-optimal allocation of a given
resources (i.e., machines) and time-driven operation
schedules. Although event-driven schedules are often
preferred for FMS scheduling due to their robustness
(Lee and Dicesare, 1933), discrete-event-based
models such as Petri nets are rarely used for
GRCPSP due to the computational time for the
model simulation.

Recently, several researchers attempted the use of
robust design methods in flexible manufacturing
systems. Shang applied Taguchi’s signal-to-noise
concept to design material handling systems in
FMS, using the mean time between failure and the
mean time to repair as noise factors. Bulgak et al.
(1999) proposed a similar method for asynchronous
flexible assembly systems subject to stochastic jam
rates and jam clear times. While these work, focus on
the robust resource allocation for a given operation
schedule, other work deals with the problem of the
robust operation of an FMS for a given resource
allocation (Jafari, 1992; Wu, 1999; Stecke and
Raman, 1996). Viewing the demand fluctuation of a
part mix as uncontrollable inputs to an FMS, Askin
et al. (1997) discussed the methodology of flexible

Robust design of flexible manufacturing

cellular manufacturing system design using an
interactive cell formation method. The present work
also assumes the demand variation as an uncontrol-
lable factor, and attempts to achieve robust resource
allocations and operation schedules that minimize
overall production cost including reconfigurations.

3. Problem formulation

3.1. Colored Petri net model of manufacturing
systems

Colored Petri nets (Alla et al., 1985; David and Alla,
1992) are an extension of ordinary Petri nets where a
place can contain multiple tokens distinguished by a
“‘color’’ associated with each token. As an ordinary
Petri net, a colored Petri net is a directed graph
consisting of two types of nodes, places and
transitions. Two nodes are connected by a directed
edge that connects either a place to a transition or a
transition to a place (see Figs 1-3). Colored Petri net is
adopted as a model of FMS since it allows the natural
representations of the following issues critical to the
present work:

e Event-driven schedules as transition firing
sequences.

e Multiple product types as colors of tokens.

o System reconfigurations as topological changes
of graphs.

In a basic form, a colored Petri net R is defined as a
six-tuple:

R = (P,T,pre,post,mg,C) (1)

where P is a set of places, T is a set of transitions and
C is a set of colors. pre and post are the functions of
type PxT xC+— Z/°! and mgy : P— 7/ is the initial
marking, where Z is a set of integers. A place peP is
graphically represented by a circle, and a transition
teT is represented by a bar. A place can contain one
or more tokens (with possibly different colors). The
number and colors of tokens at a place p € P are called
marking of the place denoted as m(p), where m :
P17/, and are represented graphically as colored
dots in a circle. In most literature, however, a token is
represented as (c¢), where ¢ is a symbol representing
the color of the token, as they are not normally printed
in color. Let places p and ¢, and a transition ¢ be
connected by edges (p,) and (¢,q). The place p is

341

t; {<a>.}

P Pz

1) {<a>} fs {}

Fig. 1. Colored Petri net that models a production facility with start
buffer p, two machines p,,; and p,,;, and goal buffer p, with initial
markings at clock =0.

called an input place of the transition ¢, and the place ¢
is called an output place of the transition ¢. The
marking of places change according to the following
rules:

(1) For each input place p of a transition ¢, if
m(p) <pre(p,t,c); for acolor, t is called enabled with
respect to the color c.

(2) Ifatransition ¢ is enabled with respect to a color
¢, it can fire.

(3) If a transition ¢ enabled with respect to a color
¢ fires, m(p) changes to m(p)-pre(p,t,c), and for
each output place ¢ of f, m(q); changes to
mlq) +post(q.t,c).

In addition to the above basic definitions, the
capacities and time associated with places are often
defined in FMS modeling (timed places with
capacities). In this case, an enabled transition ¢ can
fire only if an enabling token has been in the input
place p longer than or equal to a specified time (this
assumes a ‘‘clock’ keeping track of the marking
changes), and the total number of tokens does not
exceed the capacity of the output place ¢ as a result of
marking change. A sequence of the marking changes
in all places of a colored Petri net is called evolution
of marking. The evolution of marking in a colored
Petri net from the initial marking represents the

342

1y {<a>,}

Pl

) {<a>,} i {}

Fig. 2. State of the colored Petri net after firing of 7, with (b) at
clock=1, and ¢, with (a) at clock =2.

sequence of event occurrences in the modeled
discrete-event system.

Figures 1-3 illustrate the evolution of marking in a
simple colored Petri net that models a production
facility consisting of one ‘‘start’” buffer p,, and one
machine p,,; of type M, and one machine p,,, of type
M, . The production facility is to produce two types of
products (a) and (b), both of which need just one
operation to finish. The machines of type M, are
capable of performing this operation on both product
types (a) and (b) with a unit time, while the machines
of type M, can only perform the operation on product
b with a unit time. This job specification is
summarized in Table 1, where the columns indicate
jobs (product types) and the rows indicate operations
(only one for the both jobs in this example). The
numbers in the parentheses adjacent to machine types
M, and M, indicate the process time for the
corresponding operation (all unity in this example).
In this colored Petri net, P = {p;,Pu1,Pm2s Py}
T = {1,063, 14}, C={{a), (B)}, mo(py) = (1,2),
and my(py) = mo(ppa) = mo(pg) = (0,0). It is

Table 1. Example job specification

Saitou, Malpathak and Qvam

t; {<a>})

Pmi

1 {<a=}

Fig. 3. State of the colored Petri net after firing of 7, with (b) at
clock =1, ¢; with (a) at clock =2, #; with (a) at clock =3, 7, with
(b) at clock =4, and t, with (b) at clock =35.

assumed that p; and p, have infinite capacities, and
p.1 and p,, have capacities equal to one (machines
can process one product at a time). Since no products
are either created or deleted during the operation of an
FMS, functions pre and post are simply expressed in
terms of ‘‘shorthand’” functions f,g: C+>C. For
example,

pre(ps, 1y, <a>) :f(<a>) = <a> = (1’0)
post(py, 1y, (@) = g({a)) = (a) = (1,0)

The colors listed next to each transition in Figs 1-3
indicate the enabling colors of the transition, with
which the transition can be enabled if appears in the
input place.

At the start of the production cycle (i.e., clock =0),
the machines are not working and the unfinished
products, one (a) and two (b)s, are located in the
start buffer p,, as given in the initial marking
mo(ps) = (1,2). Since my(py) > pre(p,, 1y, (a)),
pre(ps,ty, (b)) and myq(p,) > pre(p,, 12, (b)), transi-
tion 7, is enabled with both (a¢) and (b), and ¢, is
enabled with (b). Let us assume ¢, fires at the next
clock cycle (clock =1). Then, m(p,) changes from
(1,2) to (1,1) as pre(p,, t,, (b)) = (b) = (0,1), and
hence one of two token (b)s is removed from p;.
Also m(p,,) changes from (0,0) to (0,1) as
post(p,p,ta, (b)) = (b), and hence the token (b)

Robust design of flexible manufacturing

removed form p, appears in p,,. At this point,
transitions #,, #, and #, are enabled. Let us assume ¢,
fires at the next clock cycle (clock = 2). The transition
t; has the choice of firing either (a) or (b). Suppose #,
fires {a). Proceeding similar to the previous firing, the
token (a) is removed from p, and appears in p,,, (Fig.
2). This represents the system state of the machine p,,,
processing the product (a) and the machine p,,
processing the product (b). In fact, p,,, has finished
processing (b) at this point, but the completed (b) has
not yet been transfered to p,.

Although all transitions are enabled at this point,
only #; or t, can fire since firing ¢, and ¢, would result
in exceeding the capacity of places p,,; and p,,,. Let us
assume #5 is fired at the next clock cycle (clock =3)
and this moves (a) in p,,; to p,. This means the
machine p,,, has now finished processing the product
(a) and sent it to the goal buffer p,. Then, ¢, t,, and #,
are enabled but only #, or #, can fire. The subsequent
firing of 7, with (b) at clock =4 followed by the firing
of t4 with (b) at clock =5 would move (b) in p, to
Pmi» and (b) in p, to p, (Fig. 3). This represents the
machine p,,; is now processing product (b) while
machine p,,, has finished processing product (b) and
send it to the goal buffer.

At the next clock cycle (clock = 6), only ¢, can fire,
which would move (b) in p,, to p,. One production
cycle completes at this point since mg(p;) = m(p,),
with the makespan being six clock cycles.

As illustrated above, a sequence of transition firing
of a colored Petri net can be interpreted as an event-
driven schedule of the modeled manufacturing
systems. Therefore, choosing a transition firing
sequence in the above example would result in a
different evolution of markings, i.e., a different
schedule, that would yield a different system
behavior. In general, the topology of a colored Petri
net model is determined by the job specification
(operation sequences needed for each job, the
machine types and processing time for each opera-
tion), and the corresponding resource allocation (the
number of machines in each type).

3.2. Robust design of FMS configurations

We consider a scenario where an FMS simultaneously
produces multiple types of products that share
common resources. It is assumed that the production
plan of the FMS is given as the batch sizes of all jobs,

343

i.e., the numbers of each type of the products to be
produced during a production cycle. Let n be the
number of types of the products. Then, the production
plan can be represented as p € Z". Suppose the total
number of production (sum of the numbers of n
product types) per unit time is kept constant to N, and
hence the production plan changes are only due to the
changes in the fraction of the product types. Let the
fraction be o;, where 0 <o, <1 for i=1,2,...,n
and) ¢, o; = 1, or collectively be an n-dimensional
vector a. Given N, therefore, a production plan can be
uniquely specified as a function of the fraction vector
a, which we shall call p(a).

Let p(ay) be the current production plan. We
assume a forecast on the production plan changes
within the timeframe of interest is available as a
sequence of m production plans p(a;),p(a,),...,
p(a,,). Our objective is to optimize the robustness of
the current configuration (resource allocation and
schedule) of the FMS against the given variation in
production plans. Namely, we want to minimize the
reconfiguration while achieving consistently efficient
production under all m production plans. Let x,, be the
current configuration of the FMS, and x,X,,...,X,,
be the future configurations corresponding to the
forecasted m production plans. Then, the problem can
be formulated as the simultaneous minimization of the
following 2m + 2 functions:

makespan(x;, p(a;)) j=0,1,....m (2)

facility-cost(xg, Xy, - - ., X,,) (3)

reconfig-cost(X;, X; ;1) j=0,1,....m—1 (4)
where makespan(x;, p(a;)) is the makespan of the
FMS with configuration x; under production plan
p(a;), facility-cost(X, Xy, - . . , X,,) is the total facility
cost for configurations Xgy,X;,...,X,, and
reconfig-cost(X;,X; ;1) is the reconfiguration cost
from configuration Xx; to configuration x; ;.

Given configuration x; and production plan p(a;),
makespan(x;, p(a;)) can be evaluated using a discrete-
event simulation based on a colored Petri net model of
an FMS. The facility cost is estimated simply as the
total cost of the machines utilized in m+ 1 config-
urations Xg, Xy, . . ., X,

facility-cost(Xg, Xy, . . ., X,,) = Z ¢ - max{n(x;)}
% / '

(5)

344

where ¢, is the cost of the machine of type &, and n; (x)
is the number of the machines of type k used in
configuration X.

Reconfiguration cost from one configuration to the
another is estimated as the number of rerouting
required to accomplish the new configuration, i.e., the
number of routings (connection between two places)
in the colored Petri net that need to be changed due to
the change in the resource allocation. The reconfi-
guration cost associated with the change in the
schedules is not considered here since, as discussed
in the following sections, the dynamic scheduling
with dispatching rules adopted in this work achieves
the schedule change with virtually no expenses,
namely:

reconfig-cost(x;, X;) =

number of routing differences from x; to x; (6)

For instance, the reconfiguration cost from the
colored Petri net in Fig. 4 to the one in Fig. 5 is 4 since
two routings between p; and p, must be removed and
added due to the removal of one machine p,,, of the
type M, (which can only process (b)), and the addition
of second machine g,,, of the type M, (which can
process {(a) and (b)).

1 [<a>.} ryl}

P

P

i {<a>} 1 {}

Fig. 4. A FMS before reconfiguration.

Saitou, Malpathak and Qvam

1y {<a>.) 1, {<a>)

Fig. 5. A FMS after reconfiguration.

3.3. Optimization using a genetic algorithm and
dispatching rules

The robustness optimization of FMS configurations
discussed in the previous section requires the
simultaneous optimization of resource allocation and
scheduling. Due to the high complexity of the
underlying optimization problem (GRCPSP), a
hybrid scheme is adopted where a genetic algorithm
is used for resource allocation, and dispatching rules
are used for dynamic scheduling of the colored Petri
net models. Although the resulting configuration is
not guaranteed to be optimal, this hybrid scheme
allows very fast evaluation of a large number of
feasible configurations. With the dynamic scheduling,
however, even a small change in the resource
allocation might cause a large change in scheduling,
resulting in a large change in the production cost. This
type of behavior often gives difficulty in optimization
algorithms that rely on the local landscape of the
objective function, which necessitates the use of an
intelligent ‘‘generate-and-test’” type of algorithms
such as a genetic algorithm.

Genetic algorithms (GAs) are an optimization
technique in which the points in design space are
analogous to the organisms subject to a process of
natural selection, or ‘‘survival of the fittest’’
(Goldberg, 1989; Holland, 1975). At an iteration

Robust design of flexible manufacturing

(often called generation in GA), the quality of a
chromosome, a bit string representation of a point in
the design space, is measured based on a fitness
function, and highly-fit chromosomes have higher
chances to be selected for reproduction. Two
““parent’” chromosomes selected for reproduction
are mated through genetic crossover, resulting in
two offsprings that are likely to inherit good ‘‘genes’’
from their parents. Many generations of such selection
and mating will produce a highly-fit population of
chromosomes, i.e., better designs.

Dispatching rules are the local rules that specify
priorities in the dispatching of products to machines
while production is in progress. Dispatching rules
have been traditionally used for scheduling, due to
their simplicity and reliability. A number of dis-
patching rules such as First-In-First-Out (FIFO), SIO,
and shortest remaining processing time (SRPT) has
been successfully applied to FMS scheduling (Choi
and Malstrom, 1988). Although the schedules created
by off-line algorithms often outperform the ones by
dispatching rules, they allow very fast and dynamic
creation of near-optimal schedules. Also, the sche-
dules created by dispatching rules tend to be robust
against the sudden change in the resource allocation
(e.g. machine breakdown), since the schedules are
dynamically created during the operation, rather than
determined off-line. In this work, the SIO rule is used
for dynamic scheduling of a colored Petri net, whose
resource allocation is specified by a ‘‘chromosome,”’
of a genetic algorithm.

4. Simulation results

This section describes the case studies of the examples
with n=2 and m=1. In other words, two product
types A and B are to be produced, and only one
forecast on the production plan is available.

4.1. Assumptions

The job specification that characterizes a product type
is specified as the numbers of operations needed to
complete the product, the machine types capable of
performing each operation, and their process times. In
the following examples, the job specifications of two
product types are represented as a table (Table 2)
similar to Table 1. It is assumed that all machine

345

types have a capacity of one, i.e., a machine can
process only one product at a time.

Since n =2, faction vector a has dimension 2, and
hence can be expressed using one parameter o as (o,
1 — o), where 0 <o < 1. Unless otherwise specified,
the total number of production per cycle N =20, the
current production plans is «=0.9 (i.e., 18 As and 2
Bs), and the forecasted production plan is 2 = 0.1 (i.e.,
2 As and 18 Bs). The 2m+ 2 functions as defined
above with m =1 are aggregated as a weighted sum:

F(x0,X,) =w,, - {makespan(xy, p(a))
+ makespan(xy, p(e1))}
+ wy facility-cost(Xo, X;)
+ w, * reconfig-cost(xg,x;) (7)

where x, and x; are the configurations for current
production plan p(«) and forecasted production plan
p(a;), and w,, w, and w, are the weights of the
makespan, the facility cost and the reconfiguration
cost, respectively.

In order to study the effectiveness of the robustness
optimization, in each example the resulting optimal
configuration pair (xg,x}) is compared with two
configurations: the one optimized only for the current
production plan, and the one optimized only for the
forecasted production plan. We shall refer to these two
configurations as X, and X;, respectively. The
comparison is done by plotting the values of the
following three functions representing the production
cost of each configuration, evaluated with o varying
between oo =0 (only A produced) and « =1 (only B
produced):

w,, * min{makespan(x; , p(a)); makespan(x; , p())}

+wy - facility-cost(x , X}) (8)

w,, - makespan(Xy, p(a0)) + Wy * Z (X)) (9)
3

W, * makespan(X,, p(a)) + wy * ch “m(xy) (10)
3

We shall refer to this plot as the production cost—alpha
plot. In the production cost—alpha plot, the production
cost of the optimal configuration pair (x,x}) is
denoted as Petri net 3, and the production costs of X,
and Xx; are denoted as Petri net 1 and Petri net 2,
respectively. Note that Petri net 3 actually consists of
two Petri nets defined by x; and x;—the minimum

346

production cost of these two Petri nets is plotted in the
production cost—alpha plot.

The results in the following examples are obtained
by a steady-state GA with the population size 100, the
number of generations 50, the probability of crossover
0.9 and the probability of mutation 0.05. The discrete-
event simulation code is written in C ++ , and GALIib
from MIT CADLAB with some in-house enhance-
ments is used as an optimizer. The optimization runs
took at most five minutes with a 300-MHz Sun
UltraSPARC 10 Workstation.

4.2 Example 1

The first example is on the production scenario where
both jobs J(, and J, require two operations, and
there are three machine types M,, M,, and M,
available, as shown in Table 2. The job specification
indicates that the machine type 2 is the only resource
shared between two jobs. This can be more clearly
seen by observing the topology of the colored Petri net
model in the case when there exists only one machine
for all machine types, which we shall refer to as the
basic Petri net.

Figure 6 shows the basic Petri net of this job
specifications, where p, is a buffer (with an infinite
capacity) that stores both product types after the
completion of the first operation. During the optimi-
zation process, the Petri net corresponding to a
particular resource allocation is constructed by
adding or removing machines of each type in this
basic Petri net. It is assumed that the total number of
the machines is four, consisting of no more than three
machines per each machine type. During optimiza-
tion, a penalty is imposed to the objective function (7)
proportional to the amount of violation of these
bounds. In addition, the costs of all machine types are
assumed to be one.

Table 3 shows the optimal resource allocations
for different weights w = (w,,w;,w,), where
n(x) = (ny(x),n,(x),n3(x)) denotes the vector of
the numbers of machine types M, M, and M5 in the

Table 2. Job specification for Example 1

Jia) Jiv)

1 M,(9)/M;(3)
M;(4) M;(7)

Saitou, Malpathak and Qvam

{<u>,}

Fig. 6. Basic Petri net of the job specifications in Table 2. During
the optimization process, the Petri net corresponding to a particular
resource allocation is constructed by adding or removing machines
of each type in this basic Petri net.

configuration x. For comparison, n(X,) = (0, 1,3) and
n(x,) = (0,3, 1). Since they are quite different each
other (reconfig-cost(X,,X,) = 16), the robustness
optimization cannot simply converge to x;i = X, and
x; =X, even with w, =1, and forced to find
‘‘compromised’’ solutions, as shown in the second
row of Table 3. It is also observed that n(x;) and
n(x}) become closer as w, increases. For w, = 5 (the
bottom row of Table 3), in fact, n(x}) and n(x})
converged to an identical value (reconfig-cost=0),
which is quite different from both X, and X;.

Figures 7-9 show the production cost—alpha plot
for the cases corresponding to each row of Table 3,
ie,w=(1,1,1), (1,1,3) and (1,1,5), respectively.
The “‘switch’’ between x; and xj occurs at o= 0.7
and o =0.5 in Figs 7 and 8, respectively. Since for
w, = 1 the optimizer is not strongly forced to find x;f

Table 3. Resource allocation result for Example 1. For
comparison, n(X,) = (0,1,3) and n(x,) = (0,3,1)

w n(xg) n(x}) reconfig-cost
(1, 1,1) (0,1,3) (1,2,1) 14
(1,1,3) (0,2,2) (1,2,1) 6
(1,1,5) (0,2,2) (0,2,2) 0

Robust design of flexible manufacturing

350

300 1%

250 A

200 4

150

Production-cost

100

50

S p] | L] A
L e e e L L
Alpha
[~ Petri net | -8 Petri net 2

—&— Petri net 3 |

Fig. 7. Production cost-alpha plot for Example 1 with w, = 1. Petri
net 1: n(X,) = (0, 1,3), Petri net 2: n(X,) = (0,3, 1), Petri net 3:
n(x5) = (0,1,3) and n(x7) = (1,2, 1).

and x; that are close to each other, x; tends to be
close to X, (in fact equal in this case), and XT tends to
be close to X;. This results in the production cost of
Petri net 3 over the range of 0 <a <1 being quite
similar to the minimum of the ones of Petri net 1 and
Petri net 2, as shown in Fig. 7.

As w, increases, x; and X} are forced to be closer.
This results in the solutions whose production costs
are not as good as X, and X; at «=0.9 and 2 =0.1,
respectively, but consistently low (in other words,

150

Production-cost

100 1

50 1

[e e e B L
Q

~ ~ N
N N N N NN
Alpha
|+ Petrinet | —3- Petri net 2

—&— Petri net 3]

Fig. 8. Production cost—alpha plot for Example 1 with w, = 3. Petri

net 1: n(Xy) = (0,1, 3), Petri net 2: n(X;) = (0,3, 1), Petri net 3:
* *

n(xy) = (0,2,2) and n(x;) = (1,2, 1).

347

Production-cost

50 A

{1 o e e e p e S S B S S

n [: b "y
S N N N S N
Alpha

[~e—Petri net | @ Petri net 2

—&— Petri net 3 |

Fig. 9. Production cost—alpha plot for Example 1 with w, = 5. Petri
net 1: n(X,) = (0,1, 3), Petri net 2: n(X;) = (0,3, 1), Petri net 3:
n(x5) = (0,2,2) and n(x7) = (0,2,2).

robust) over a wide range of «. This trend is clearly
shown in the case of w, = 3 (Fig. 8) and w, = 5 (Fig.
9). Although converged to one configuration, the
overall production cost of Petri net 3 for w. =5 is
higher than the production cost of the one for w, = 3,
especially for 0 <o <0.5. In other words, x; = x]' is
achieved with the price of higher production costs.

As seen in the above results, the robustness
optimization was quite effective in this example. It
is observed that the limited resource sharing in the job
specifications causes X, and X, to be quite different.
Since they are quite different, the production flow
bottlenecks are quickly created when running X, with
o < 0.9 or running X; with o > 0.1, which causes the
significant increase in makespan. This is more evident
in Petri net 1 that has to rely on only one M, to process
J) which is quite slow. In such cases, the robustness
optimization seems effectively find the configuration
pair that exhibits the robust performances over a range
of «.

4.3. Example 2

The second example is taken from Example 2 of the
work by Lee and DiCesare. This example is similar to
Example 1 with more extensive resource sharing
among jobs. The job specification shown in Table 4
indicates all machine types M, M, and M; are shared
between two jobs J) and J). This extensive resource
sharing creates complex routings among machines

348

Table 4. Job specification for Example 2

_
5
-
—
=
~
S
=N
-
=

Table 5. Resource allocation result for Example 2. For
comparison, n(X,) = (1,0,3) and n(X;) = (2,0,2)

w n(xy) n(x}) reconfig-cost
(1,1,1) (1,0,3) (2,0,2) 8
(1,1,3) (2,0,2) (2,0,2) 0

and a buffer, as illustrated in the basic Petri net shown
in Fig. 10. In the figure, p, is a buffer (with an infinite
capacity) that stores both product types after the
completion of the first operation. As in Example 1, the
total number of the machines is bounded to four, and
no more than three machines are allowed for each
machine type. The costs of all machine types are
assumed to be one.

Table 5 shows the optimal resource allocations for
different weights w = (w,,, ws,w,). For comparison,
n(X,) = (1,0,3) and n(X;) = (2,0, 2). Since they are
fairly close, (reconfig-cost(Xy,X;) = 8), the robust-
ness optimization can converge to Xx; =X, and
X; =X, with w, = 1. For w, = 3, both x{ and x{
converged to X;.

Figure 11 show the production cost—alpha plot for

Py

o e

[<a>}

{<a>)

{<a=} {<a=,<b=} {<a=)

{<a>}

Fig. 10. Basic Petri net of the job specifications in Table 4.

Saitou, Malpathak and Qvam

300
250 1+ \\—‘—‘\
200

1504

Production-cost

100 4

504

Alpha
[—@—Petri net | ~8- Petri net 2

—&— Petri net 3 !

Fig. 11. Production cost-alpha plot for Example 2 with w, = 1.
Petri net 1: n(X,) = (1,0, 3), Petri net 2: n(X,) = (2,0, 2), Petri net
3:n(x§) = (1,0,3) and n(x}) = (2,0,2).

the cases for the second row of Table 5, i.e.,
w=(1,1,1). Since xj = X, and x| = X;, the produc-
tion cost of Petri net 3 over the range of 0 <o <1 is
exactly equal to the minimum of the ones of Petri net 1
and Petri net 2 where the ‘‘switch’* between x; and x;
occurs at o = 0.8. Since Petri net 2 exhibits consist-
ently low production cost without robustness optim-
ization, increasing w,. further just forces Petri net 3 to
be identical to Petri net 2, as seen in the bottom row of
Table 5.

The robustness optimization is not at all effective in
this example. Due to the extensive resource sharing in
this job specifications, X;, an optimal configuration for
o =0.1 also performs quite well for & =0.9. In such
cases, the robustness optimizations seem not to find a
configuration pair that are any better than X, and X .

4.4. Example 3

The third example is the production scenario
involving three machines and one robot conducting
three operations of two jobs, as shown in Table 6.

Table 6. Job specifications for Example 3

Jia) I i)
1 M, (10)R(3) /M, (12)R(3) M, (7)
2 M;(5) M, (5)R(2)/M;(10)
3 M;(5)R(3)/M(8) M;(12)

Robust design of flexible manufacturing

Fig. 12. Basic Petri net of the job specifications in Table 6.

Although all resources M, M,, M5, and R are shared
between two jobs J, and J;, some operations can
only be performed by one machine type. In the job
specification in Table 6, the entry of the type
M;(t;)R(t,) means that the corresponding operations
is done by the following sequence:

(1) A robot of type R carries the product to a
machine of type M; (this takes 7,).

(2) A machine of type M; performs the operation
(this takes ;).

(3) Arobot of type R takes the product away from a
machine of type M; (this takes 7,).

Figure 12 shows the basic Petri net of the job
specifications in Table 6. In the figure, p;,; and p,, are
buffers (with an infinite capacity) that store both
product types after the completion of the first and the
second operations, respectively. The close examina-
tion of the basic Petri net reveals there is a potential of
deadlock among the R, M, and M,, depending on the
sequence of transition firing. The total number of the
machines is bounded to 10, and no more than three
machines are allowed for each machine type. For the
purpose of resource allocation, the robots are treated
as a type of machines. In order to discourage the use of
many machines, the machine costs of all types are
assumed to be 20.

Table 7 shows the optimal resource allocations for
different weights w = (w,,, ws,w,). For comparison,
n(X,) = (1,1,3,1) and n(x,) =(2,1,2,2). Since

349

500
450

Production-cost
(%] %
4
ind

’r—r—T—r """+

SN D, 5 o s 9

N N N N N N N A T
Alpha

I—0— Petri net 1 —@— Petri net 2

—&—Petrinet 3|

Fig. 13. Production cost-alpha plot for Example 3 with w, = 10.
Petrinet 1: n(X,) = (1, 1,3, 1), Petrinet 2: n(X,) = (2, 1,2,2), Petri
net 3: n(x5) = (1,1,3,2) and n(x}) = (2,1,3,2).

they are very different from each other
(reconfig-cost(Xy,X;) = 17), the robustness optimiza-
tion cannot simply be converged to x; =X, and
X; =X, even with w, = 10, and forced to find a
‘‘compromised’’ solution, as shown in the second row
of Table 7. For w, = 30, both x; and X} converged to
one configuration, which is quite different from both
X, and X;.

Figures 13 and 14 show the production cost—alpha
plot for the cases corresponding to each row in Table
5, ie., w=(1,1,10) and (1,1,30). The missing
points in these figures indicate production cost is
infinity due to the deadlock occurred during the
simulation. In the case of w, = 10 shown in Fig. 13,
Petri net 1 and Petri net 2 experience deadlock at
almost all values of o, except for the small
neighborhood of the values they are optimized for.
Petri net 3, on the other hand, exhibits consistently
low production costs over 0 <o <1, although out-
performed by Petri net 1 and Petri net 2 near « =0.9
and o=0.1, respectively. Since the same SIO
dispatching rule is used for all cases, this indicates

Table 7. Resource allocation result for Example 3. For
comparision, n(Xy) = (1,1,3,1) and n(x,) = (2,1,2,2)

w n(x3) n(x}) reconfig-cost

350

600
F 'y 'Y
500 A
400—H A
g *
-2 3004
3
Z
£ 200
100 4
Q\)\ NN RS R
Alpha

|+ Petri net 1 —8 Petri net 2 —&— Petri net 3 |

Fig. 14. Production cost—alpha plot for Example 3 with w, = 60.
Petri net 1 n(Xy) = (1, 1,3, 1), Petri net 2: n(X,) = (2,1,2,2), Petri
net 3: n(xj)) = (3,3,3,1) and n(x}) = (3,3,3,1).

Petri net 3 avoids deadlock simply by resource
allocation and by ‘‘switching”” between x; and x,
which in this case occurs at « =0.2 and oo =0.8. In the
case of w, =30 shown in Fig. 14 however, the
optimizer forces the solution to be an identical
configuration. The resulting configurations are iden-
tical, but the performances became very low with
deadlock occurring almost everywhere.

This example has the degree of resource sharing
between Example 1 and Example 2, with an additional
complexity of the potential deadlock. The robustness
optimization seems to perform effectively in
achieving consistently low production cost by
avoiding deadlock situation. However, forcing
Xg = X; by high wy value degrades the quality of
the solution. This is observed to some extent in
Example 1, but it showed in extreme (i.e., occurrence
of deadlock) in this example.

5. Concluding remarks

This paper presented a new method for designing
robust flexible manufacturing systems that achieve
consistently high production efficiency with
minimum system reconfiguration, regardless of the
changes in production plan variations within a
forecasted range. The robust design of the colored
Petri net model is formulated as a multi-objective

Saitou, Malpathak and Qvam

optimization problem that simultaneously minimizes
the production costs under multiple production plans
(batch sizes for all jobs), and the reconfiguration cost
due to production plan changes. A genetic algorithm,
coupled with the SIO dispatching rule, is used to
simultaneously find a near-optimal resource alloca-
tion and event-driven schedule of the colored Petri net
model of an FMS. Although the resulting configuration
is not guaranteed to be optimal, this hybrid scheme
allows very fast evaluation of large number of feasible
configurations, essential for the robust FMS design.

The simulation results suggest that the proposed
method should be considered when the products are
moderately different in their job specifications so that
optimizing for a particular production plan creates
inevitably bottlenecks in product flow and/or dead-
lock under other production plans. As a next step, we
plan to investigate the classes of job specifications
where this type of robustness optimization scheme is
effective or non-effective. The definition of such
classes would be a valuable tool for the design for
manufacturing (DFM) of product families. Since a
product family is typically manufactured simulta-
neously in a production facility, designing product
families, not only for functional variety but also for
manufacturing agility, would have high economical
impact.

Acknowledgment

This work was carried out using computational
facilities at the Design Laboratory, Department of
Mechanical Engineering, the University of Michigan.
This source of support is gratefully acknowledged.

References

Alla, H., Ladet, P., Martinex, J. and Silva-Suarez, M. (1985)
Modeling and validation of complex systems by
colored Petri nets: Application to a flexible manufac-
turing systems. Lecture Notes in Computer Science,
188, 1-14.

Askin, R. G., Selim, H. M. and Vakharia, A. J. (1997) A
methodology for designing flexible cellular manufac-
turing systems. I/E Transactions, 29, 559—-610.

Bulgak, A. A., Tarakci, Y. and Verter, V. (1999) Robust
design of asynchronous flexible assembly systems.
International Journal of Production Research, 37(14),
3169-3184.

Robust design of flexible manufacturing

Chiu, Y.-F. and Fu, L.-C. (1997) A GA embedded dynamic
search algorithm over a Petri net model for an fms
scheduling, in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 513-518.

Choi, R. and Malstrom, M. (1988) Evaluation of traditional
work scheduling rules in a flexible manufacturing
system with a physical simulator. Journal of
Manufacturing Systems, 7(1), 27-45.

David, R. and Alla, H. (1992) Petri Net and Grafcet: Tools
for Modeling Discrete Event Systems, Prentice Hall.

Dubois, D. and Stecke, E. (1983) Using petri nets to
represent production processes, in Proceedings of the
22nd IEEE Conference on Decision and Control, San
Antonio, TX, pp. 1062-1067.

Garey, M. R. and Johnson, D. S. (1979) Computer and
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company.

Goldberg, D. E. (1989) Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley.

Holland, J. H. (1975) Adaptation in Natural and Artificial
Systems. The University of Michigan Press, Ann Arbor,
MI, USA.

Jafari, M. A. (1992) An architecture for a shop-floor
controller using colored Petri nets. Journal of
Manufacturing Systems, 4(4), 159-181.

Lee, D. and DiCesare, E (1994) Scheduling flexible
manufacturing systems using Petri nets and heuristic
search. IEEE Transaction on Robotics and Automation,
10, 123-132.

Lee, D. Y. and DiCesare, F (1993) Scheduling flexible
manufacturing systems with the consideration of setup
times, in Proceedings of the 1993 IEEE Conference on
Decision and Control, San Antonio, Texas, pp. 3264—
3269.

Narahari, Y. and Viswanadham, N. (1985) A Petri net
approach to the modeling and analysis of flexible

351

manufacturing systems. Annals of Operations
Research, 3, 449-472.

Petri, C. (1962) Kommunikation mit Automaten. PhD thesis,
Universitat Bonn, Bonn, West Germany.

Saitou, K. and Malpathak, S. (1999) Robustness optimiza-
tion of fms under production plan variations: the case
of cyclic production, in Proceedings of the 1999 ASME
Computers in Engineering Conference, Las Vegas,
Nevada, September, pp. DETC99/CIE-9127.

Saitou, K. and Qvam, H. (1988) Robustness optimization of
FMS under production plan variations: preliminary
results, in Proceedings of the 1998 ASME Design
Engineering Technical Conferences, Atlanta, Georgia,
September, pp. DETC98/CIE-5691.

Shang, J. S. (1995) Robust design and optimization of
material handling in an fms. International Journal
Production Research, 33(9), 2437-2454.

Shih, H. and Sekiguchi, T. (1991) A timed petri net and
beam search based on-line fms scheduling system with
routing flexibility, in Proceedings of the 1991 IEEE
International Conference on Robotics and Automation,
pp. 2548-2553.

Sprecher, A. (1994) Resource-Constrained Project
Scheduling, Springer-Verlag.

Stecke, K. E. and Raman, N. (1996) Production planning
decisions in flexible manufacturing systems with
random material flows. IIE Transactions, 26(5), 2—-17.

Wu, N. Q. (1999) Necessary and sufficient conditions for
deadlock-free operation in flexible manufacturing
systems using a colored Petri net model. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C, 29(2), 182-204.

Zhou, M.-C. and DiCesare, F. (1996) Petri net modeling of
buffers in automated manufacturing systems. [EEE
Transactions on Systems, Man, Cybernetics, Part B:
Cybernetics, 26(1), 157-164.

