;‘ Journal of Intelligent Manufacturing, 15, 679-692, 2004
i“ © 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Off-line error prediction, diagnosis and recovery
using virtual assembly systems

CEM BAYDAR* and KAZUHIRO SAITOUY

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
E-mail: kazu@umich.edu

Received May 2003 and accepted February 2004

Automated assembly systems often stop their operation due to the unexpected failures occurred
during their assembly process. Since these large-scale systems are composed of many parameters, it
is difficult to anticipate all possible types of errors with their likelihood of occurrence. Several
systems were developed in the literature, focussing on on-line diagnosing and recovery of the
assembly process in an intelligent manner based on the predicted error scenarios. However, these
systems do not cover all of the possible errors and they are deficient in dealing with the unexpected
error situations. The proposed approach uses Monte Carlo simulation of the assembly process with
the 3-D model of the assembly line to predict the possible errors in an off-line manner. After that,
these predicted errors are diagnosed and recovered using Bayesian reasoning and genetic algorithms.
Several case studies are performed on single-station and multi-station assembly systems and the
results are discussed. It is expected that with this new approach, errors can be diagnosed and
recovered accurately and costly downtimes of robotic assembly systems will be reduced.

Keywords: Off-line programming, genetic algorithms, robotic assembly systems, virtual factories,

error diagnosis and recovery

1. Introduction

Automation is one of the most unavoidable concepts
nowadays. The developments in the robotics area
have enabled using robots in large-scale assembly
operations for high productivity. However, robotic
assembly systems are very sensitive to perturbations
during their operation and this makes them open to
unexpected failures. As stated in a previous research
article (Luxhoj et al., 1997), these unexpected failures
cost excessive maintenance as much as 200 billion
dollars in the USA in 1990.

The unexpectedness of errors arises from the fact
that most of the errors are unforeseen to human
experts before the operation of the line. This is natural
since these systems are composed of many working

*Currently with Accenture Technology Labs.
+Author for correspondence.

parameters such as dimensional variations of the
products, fixtures, sensor capabilities and robot
repeatability and when these working parameters are
coupled with the 3-D workspace, it is difficult to
anticipate all of the error conditions with their
likelihood of occurrence and 3-D-state in the work-
space (Baydar and Saitou, 2001a). One example for
these serious error conditions is the propagated errors,
which result from the propagation of undetected
errors during the assembly process. According to
Abu-Hamdan and El-Gizawy (1997), error-propaga-
tion is defined as carrying an undetected error from a
previous task and coupling it with another error during
a proceeding task. It is also stated in Cao and
Sanderson (1992) that, when a failure is detected
during an operation, the operation that failed may not
be the source of failure. The source of failure may
have been propagated from earlier operations.
Diagnosis and recovery of this type of failures is a
very complex and a costly task.



680

Previous research on the error diagnosis and
recovery has focussed on either ‘‘on-line’’ investiga-
tion of error followed by a manual recovery when an
error is detected or providing automated intelligent
means (i.e., expert systems) to diagnose and patch the
process. However, these systems are deficient to deal
with most of the errors because of the following
reasons:

o Not all of the error scenarios can be predicted.

e 3-D-states of the possible errors are not included
(Baydar and Saitou, 2001a).

® Most of the systems are deficient in dealing with
multiple error conditions (Sampath et al., 1996).

® Mapping the sensory domain to failure domain
is not easy (Lopes and Camarinho-Matos, 1996).

e [t is not easy to use heuristics for all conditions,
so they are not robust (Lopes and Camarinho-
matos, 1996).

Therefore, the challenge is to predict all possible
error conditions as well as their likelihood of
occurrence and the associated 3-D-state to provide
efficient and robust error recovery means.

The proposed approach looks at the problem from a
different viewpoint, which has not been used so far. It
is called off-line error prediction and recovery
(Baydar and Saitou, 2001b). The method uses a
commercial software package to model the assembly
environment virtually. After that, the possible error
situations and their likelihood of occurrence are
predicted by using Monte Carlo simulation of the
assembly process. Having the sensory symptoms and
their associated failure type and 3-D-state, these
conditions are stored and used for the diagnosis using
Bayesian Reasoning. Next step is using an off-line
error recovery system to generate robust recovery
plans (Baydar and Saitou, 2001c) that can deal with
multiple error conditions of similar nature using
Genetic Programming (Baydar and Saitou, 2001b;
Koza, 1992). Finally, this offline recovery system can
be downloaded to the controller of the robotic system
to patch the process.

It is expected that the usage of this approach will
decrease the lengthy ramp-up time for the testing
process of the assembly systems and will provide
efficient means of error recovery. It is believed that
the outcomes of this approach will have impact on the
industry to reduce costly downtime and maintenance
expenses.

Baydar and Saitou
2. Previous work

Past research on error recovery in automated assembly
lines has focussed on using failure trees, expert
systems or other intelligent reasoning methods.
Among these people, Srinivas (1997) is one of the
earliest researchers who investigated error detection
and recovery strategies. His approach was considering
the tasks as decomposable into a sequence of
transformations from the initial state to a goal state.
Then the next step is building a failure tree and
generating an error recovery plan.

Expert systems are also one of the most popular
tools used in the error diagnosis and recovery in
flexible assembly systems. Several systems were
developed in the literature (Abu-Hamdan and El-
Gizawy, 1997) to provide diagnosis and recovery.
These are knowledge-based systems, which try to
provide recovery plans for possible error conditions
for multi-station assembly systems. However, they
keep the description of the failure at an abstract level
without including the 3-D-state and since they do not
include all possible scenarios, they are deficient in
handling the unexpected error situations.

Manipulating PLC codes is another approach. Zhou
and DiCesare (1989), proposed four argumentation
methods of process control logic code with error
recovery codes: input conditioning, alternate path,
feedback error recovery and feed-forward error
recovery. Fuzzy reasoning was also used in conjunc-
tion with the Fuzzy Petri-Nets (Cao and Sanderson,
1992; Jing et al., 1996) or with expert systems (Kang
and Wenhan, 1993; Tzafestas and Stamou, 1997) to
provide probabilistic reasoning on the error diagnos-
tics.

However, those approaches are deficient in hand-
ling geometric features of the assembly line, which is
essential to make predictions of error scenarios. Since
those 3-D error states are missing, robustness of the
generated recovery plans is questionable since some
unanticipated error states for the same error type (i.e.,
collision) may require a different plan for recovery.

The need for a robust plan was first discussed in
Jennings et al. (1989) and an automated compliant
motion planner based on geometric theory of error
detection and recovery was developed. However,
although the model is capable of modeling the
configuration space with all of the properties such as
kinematics, motion planning of the robots and 3-D
positional change of the products, it is limited to one-



Off-line error prediction, diagnosis and recovery

[9]

A
Knowledge-based
. Abstract approaches
3 (1,6,10,11,19,21)
=
g Proposed y
_-C"'; approach p «
“ Geometric
=]
3 theory approach -
4
&

Concrete

>

One-station Multi-station

System scale

Fig. 1. Station level and system level approach.

station only. Consequently, a gap has formed between
this type of concrete approach (i.e., prediction of the
3-D error states) and the abstract approach that was
followed by the expert systems.

The following illustration in Fig. 1 shows the
mapping of the two approaches and this gap between
these two approaches. A different approach is needed
to fill this gap and combine the two different types of
approaches discussed above in order to provide
efficient means of error recovery. The proposed
method aims to fulfill this need by combining
latest developments in the robotics simulation
technology with the intelligent reasoning and
recovery planning.

3. Proposed method

Recent developments in the computer aided robotic
simulation field revealed a concept called off-line
programming. In off-line programming, any robotic
system can be modeled virtually in 3-D workspace
and the performance of the system can be evaluated
accurately from the simulations. The proposed
method takes the advantage of off-line programming
to predict the possible error scenarios with their 3-D-
geometric states. The first step is the 3-D geometry-
based modeling of an entire assembly line using a
commercial modeling software package (Workspace 5
User Manual, 2000). After the system is modeled
virtually, possible error scenarios are predicted using
Monte Carlo simulation of assembly processes, based
on the statistical model of the dimensional and
functional errors in sensors, actuators, products and

681

fixtures. Then, the next step is the off-line logic
synthesis for error diagnosis and recovery from the
predicted error scenarios. At this step, Bayesian
reasoning is used for identifying the most probable
failure while genetic algorithms (GAs) are used to
generate recovery logic as discussed in our previous
work in detail (Baydar and Saitou, 2001a). The reason
for using genetic algorithms of genetic programming
arises from the fact that most of the time same error
can occur in numerous configurations in the work-
space (i.e., part jamming). Genetic algorithms (or
genetic programming) could help us exploit various
alternatives to come up with a robust recovery code
for all these configurations for the same type of error
where a commonly used ‘‘manual coding’’ approach
would be time consuming. The final step is building a
library of recovery logic and implementing this
library to the robot controller in the assembly
system to patch the process against unexpected error
situations. The following sections give information on
the details of the each step. Figure 2 summarizes the
logic of the proposed approach (Baydar and Saitou,
2001b).

Statistical
distributions of
assembly model
parameters

3-D model

N\

Monte Carlo
simulation

Probable failures and
symptoms with 3-D states

Bayesian
reasoning

Failure/symptom
probability

Failure
classification

Failure types

Recovery logic
generation using GA

Robust recovery logic

Fig. 2. Working mechanism of the proposed approach.



682

3.1. Prediction of error scenarios

A widely used technique for simulating the errors is
applying statistical methods to the tolerance analysis
of mechanical assemblies. At this step, Monte Carlo
simulation is used to predict the possible errors.
Process parameters are sampled from the appropriate
distributions and simulations are performed. The main
drawback of this method is that, to get accurate
estimates it is necessary to generate very large
samples, which is computationally expensive. Other
methods such as the quadrature and Taguchi are more
systematic in their strategies for generating samples
and widely used but their main drawback is that they
are based on normal distribution. However, in an
assembly system distributions of working parameters
can be different from normal distribution. Therefore,
the application of Monte Carlo method is easy and
preferred because sampling from other types of
distributions is applicable.

For each simulated error with relatively high
likelihood of occurrence, error diagnosis logic is
synthesized for effective error recovery from the
error. Fundamental difference from the diagnosis in
on-line cases is that a complete sequence of the
events, which caused the detected error, is readily
available in terms of the sampled parameters.

3.2. Error diagnosis

Since only providing error recovery logic is not
adequate for the complete recovery process, a
diagnosis system is necessary to identify the correct
source(s) of error. Error diagnosis is implemented in
the following way: First, from the simulation results
conditional probability of each error situation is
obtained for the sampled parameters. Since Monte
Carlo simulation is being used, complete sequence of
the events that caused an error and likelihood of each
event are readily available. A reasoning engine is
developed based on the symptoms (outputs from the
sensory values) and the probable error conditions as it
is suggested in Lopes and Camarinho-Matos (1996).
This engine processes each possibility of failure and
come up with most probable one (or multiple) of the
five error classifications. The belief value of each type
of failure is calculated by Bayesian reasoning using
the following formula:

Baydar and Saitou

Table 1. Failure array

Failure array=1{d, e, f, g, h}
d = grasping error

e = collision error

f=sensor failure

g = misplacement error
h=flawed parts

2w P(Y,\F)) = P(F))

In the above formula, Y, indicates the given
symptoms from the sensor array. F is the type of
failure from the following failure array given in Table
1 below. The formula indicates that the belief value
for a failure is the ratio of this failure with the given
symptoms to the sum of all other possible failures,
which can occur under the same conditions. The
number of elements in the failure array depends on the
number of components of the assembly system.

3.3. Error recovery

The proposed approach provides the generation of
the error recovery logic using a method called
genetic programming (GP). The term genetic pro-
gramming was first introduced by Koza (1992) and it
uses the working principles of GAs. In GP, each
member in the population is a computer program for
the solution of the problem. Using an error situation
obtained with the sampled parameters, a fitness
function based on the allowed recovery criteria can
be defined. After the definition of this fitness function,
GP can be used to explore an efficient recovery
algorithm.

Error recovery controller codes are robotic pro-
grams; therefore by using GP, these codes can be
generated automatically. The performance of the error
recovery logic is tested in a generate and test fashion
(Baydar and Saitou, 2001a) such that, several
recovery logic algorithms are generated with the GP
engine and tested with the commercial software
package. Then, the results of this evaluation are
supplied to the GP engine and improved recovery
logic is generated based on the obtained results
(Baydar and Saitou, 2001b, 2001c). The overall
algorithm is shown in Fig. 3.

In our previous work (Baydar and Saitou, 2001a), a
GP module was developed because the previous



Off-line error prediction, diagnosis and recovery

Generate initial
recovery programs

Test the programs by a
commercial software
package

v

Evaluate the results
and write them to text
files

\

Read outputs from the
developed program

\r

Crossover

\

Mutation

A

Write new generated
recovery programs

Fig. 3. Algorithm to generate recovery programs.

version of the software package (Workspace 4 User-
Manual, 1998) was not capable of translating collision
recovery path to controller codes. However, in this
study, rather than GP, GAs are used to create a path for
collision error recovery by representing the sequence
of reference points given to the robot controller. The
reason is that the recent version of the software
package (Workspace 5 User Manual, 2000) has an
internal engine to generate controller codes from
given teach points. Therefore, a path for collision
recovery is obtained first by using Genetic
Algorithms. After all the points in the recovery path
are obtained, Workspace is used to generate the
recovery code using its internal code generation
engine.

A GA engine is developed to find a common path
for all collision states. The following chromosome
structure is defined as shown in Fig. 4. This structure
represents a position in 3-D space with three
orientations. First three genes are the x, y, z
coordinates while 0, 0, and 05 are the orientations
of the workpiece in 3-D space.

The problem is formulated as a multi-level
optimization problem. In the first level, the aim is

683

Fig. 4. Chromosome structure.

finding a common point in 3D space, which enables
the workpiece to be transported from all collision
states. After that, second level is initialized by taking
this common point as the initial state and finding a
path to the desired position. Figure 5 shows the outline
of the approach. By applying this type of a multi-level
approach, the number of function evaluations is
decreased since in a single-level approach all of the
initial collision states must be evaluated by all
members in the population. However, in this case
after the intermediate state has been determined, only
one state (the common point) has to be evaluated.
The objective function is defined as minimizing the
Euclidian distance between the desired position (in
case studies; nominal position of the peg in the hole)
and the common position obtained by using the GA.
Then for each state i, by taking the inverse of the
objective function, the fitness function is defined as:

(V& =)+ 0 = Yo) + @ —2,) + O = 0,,) + (0 — O,) + (0,3 — 03,))

(2)
The overall fitness function is defined as the

summation of all individual fitness functions, eval-
uated for each collision error state:

Initial states

Intermediate
state

Neighborhood of
the desired state

Final (desired)
state

Fig. 5. Multi-level optimization approach.



684

Table 2. Error recovery strategies

Error type Strategy

Grasping error
Collision error
Sensor failure
Misplacement error
Flawed parts

Try to grasp or release again
Robust collision recovery

Call maintenance

Pickup the workpiece and replace
Dispose the part

f=>1 (3)

In the second level since there is only one state (i.e.,
i=1), Equation 2 is only used to calculate the fitness
value of each member in the population. After the
points in the error recovery path are obtained,
Workspace generates a recovery code in the specified
robot language. The following error recovery
strategies are used for all types of errors as shown in
Table 2.

4. Implementation of the approach

Avirtual factory, which is composed of four modules,
was developed. The main module is the virtual
assembly software package, which is responsible for
simulating the complete assembly process. The
second module is the virtual detection module,
which is used for detecting the component failures
(gripper failures, sensor failures, etc.). Third module
is the virtual diagnosis module for diagnosing errors.
Fourth module is the virtual recovery module for
applying the generated recovery codes. The factory
structure is given in Fig. 6 and the detailed
explanation of each module is as follows:

Virtual assembly
software

Virtual
recovery
system

Fig. 6. Layout of the developed virtual factory.

Baydar and Saitou
4.1. Structure of virtual factory

4.1.1. Virtual assembly software module

This module is the commercial robotic simulation
package and it includes the 3-D model of the assembly
system and assembly process codes. It also contains
the realistic models of assembly robots, fixtures and
products to simulate the process accurately. It is also
possible to detect collision errors during the assembly
process since this is an implemented feature of the
package.

4.1.2. Virtual detection module

Virtual detection module is used for detecting the
errors occurred during the assembly process. In
assembly systems, there are two different monitoring
types. The first type is called continuous monitoring,
which a parameter is monitored continuously through-
out the complete assembly process. As an example,
torque/force sensors are checked continuously for
collision detection. The second type is called discrete
monitoring, which a parameter is monitored at certain
steps of the assembly process. For example grasping
sensors are checked during the part picking or
releasing steps to ensure the process is completed
successfully. Both types of monitoring were imple-
mented in this module. A sensor array is defined and it
contains information about each sensor’s state. When
an error is detected, current condition of the sensor
array is passed to the diagnosis module to analyze the
detected error.

4.1.3. Virtual diagnosis module

This module uses the state of the sensor array to infer
the most possible reason for the failure. However, in
order to prevent incorrect automated recovery a
threshold level for belief value is defined. If the
diagnosed situation’s belief value is greater than this
threshold, system proceeds with automated recovery.
If it is less than the threshold, system asks for user
maintenance and the most possible failures are written
into a log file.

When the system asks for user maintenance, an
interactive reinforced diagnosis system is initialized.
It enables the user to input further data based on the
manual diagnosis by entering the identified working
and non-working components during the manual
inspection process. Based on this additional data, the
situation can be re-diagnosed.



Off-line error prediction, diagnosis and recovery

4.1.4. Virtual recovery module

This module is used for applying the recovery logic
for the diagnosed failure. The outputs of the virtual
diagnosis module are passed to this module and based
on the failure type a strategy is followed for the
recovery as discussed in Table 2.

Each strategy contains one or more recovery codes.
The use of the appropriate code depends on the point
where the error has been detected. Some failure types
are dominant when multiple errors occurred (i.e.,
when a grasping failure occurred due to a flawed part
and grasping, the system uses the recovery code to
dispose the flawed part). Two rules were implemented
to the system to recover from this type of possible
scenarios. These rules are from common industry
practice during the maintenance phase of combined
sensor failures and flawed parts (i.e., if there is a
sensor failure detected, maintenance should be
patched to replace the sensor(s)).

Rule 1: TIF {sensor failure} AND {any other failure}
THEN (call maintenance)

Rule 2: IF {flawed parts} AND {any other failure but
NOT sensor failure} THEN (replace part)

5. Experimental results

5.1. Single-station assembly system

A single-station assembly system was modeled and
the performance of the approach on predicting the
process capability, error diagnosis and recovery logic
generation was tested. The system is composed of an
IRB type robot with an inspection camera and sensors.
The assembly task is inserting a peg into a hole. The
sampled parameters are the statistical variations in the
dimensions of peg and hole, robot repeatability (both
translational ability and wrist repeatability effect),
grasping ability and sensor reliability for the grasping
sensor in the gripper and the position sensor located
above the peg. The system was modeled using the
software package as shown in Fig. 7.

The assembly process is as follows: First, a peg is
grasped from the table. During this process, a camera is
examining the position of peg, detecting whether it was
grasped correctly or not. A sensor in the gripper is also
detecting whether the peg is in the gripper or not. After
the peg has been grasped, it is inserted into the hole.

685

Fig. 7. Error prediction and diagnosis of a peg-in-hole problem.

During this insertion process, torque/force sensors
monitor whether a collision occurred or not. In
addition, during the releasing step of the peg, gripper
sensor detects whether the peg is released correctly or
not. The sketch of the system is given in Fig. 8.

5.1.1. Prediction of the failures

The first step is analyzing the process capability by
predicting the possible failures. In this step, as it is
suggested in a previous work (ElMaraghy et al.,
1988), normal distribution was assumed for the
diameters of peg and hole and the parameter of
robot repeatability. The parameters and tolerances are
shown in Table 3. Part tolerances are taken as Class

D <+— Camera
Robot arm

Torque/force —
sensor
Peg Gripper

e sensor
Hole

I —

Fig. 8. Sketch of the components.



686

Table 3. Tolerances of the sampled parameters

Baydar and Saitou

Table 5. Failure types and percentages

Sampled parameter Value Failure type Percentage
Hole diameter 50.3 + 0.0508 mm Collision error 36.6
Peg diameter 49.92 + 0.03175 mm Grasping error (picking) 27.44
Robot repeatability 0.2mm Grasping error (releasing) 27.1
Wrist angle 0.006 deg Misplacement error 0
Repeatability Sensor failure 0
Flawed parts 0
Collision + sensor failure 5.397
Gripper + sensor failure 3.45

LC, (ElMaraghy et al., 1988), having tolerance of the
peg as hg and tolerance of the hole as H,.

For calculating the mean and standard deviation of
the normal distribution, the tolerances were taken in
3o-range. The distribution values of the sampled
parameters are given in Table 4 below:

The number of simulations was taken as 1000 and
the process capability was investigated. Out of 1000
simulations 317 errors occurred. Table 5 shows the
prediction of the possible failures:

It was found out that the process capability is 69%
based on the 317 errors occurred out of 1000
simulations.

5.1.2. Error diagnosis system

An error diagnosis system was built for the assembly
system. It uses the symptoms obtained from the
assembly system and calculates the likelihood of each
possible failure based on these symptoms, coming up
with most probable failure type(s). The sensor and
failure arrays are given in Table 6.

The sensor values can get values of O or 1
depending on their activeness. For example if
(0,1,0) is received from the sensor array, this
means that torque/force sensor has detected a
collision. Similarly, if (0,0,1) is received, this
means that the inspection camera has detected a

Table 4. Distribution values of the sampled parameters

Sampled parameter Distribution type

Peg Normal (0,0.0106 mm)
Hole Normal (0,0169 mm)
Robot repeatability Normal (0,067 mm)
Wrist angle Normal (0, 0.002 deg)

repeatability
Grasping ability
Position sensor
Gripper sensor

Uniform (0.9 probability)
Uniform (0.95 probability)
Uniform (0.95 probability)

Table 6. Sensor and failure arrays

Sensor array {a,b,c} Failure array {d,e,f,g,h}

a = gripper sensor
b = torque/force sensor
¢ =camera

d = grasping error

e = collision error
f=sensor failure

g = misplacement error
H =flawed parts

missing part in the assembly. The values for the sensor
and failure arrays are given in Table 7 below:

Using the results of Monte-Carlo simulation
obtained in the previous step, a belief value was
calculated for each failure type. For each probable
symptom (sensory input), the most probable failure
type and its probability (belief value) are given in
Table 8.

Table 7. Sensor array codes failure types and associated
values

Values

Sensor type

Gripper sensor 0-none, 1-no part in the gripper

Torque/force 0-none, 1-collision detected
sensor
Camera 0-none, 1-incomplete assembly

Failure type
Grasping error
Collision error
Sensor failure

0-none, 1-picking, 2-releasing

0-none, 1-collision

0-none 1-gripper sens., 2-camera,
3-both

Misplacement 0-none, 1-misplacement

error

Flawed parts 0-none, 1-flawed part




Off-line error prediction, diagnosis and recovery

Table 8. Results of the diagnosis process

Symptom Failure typelprobability
(1,0,0) (2,0,0,0,0)/0.996
(0,1,0) (0,1,0,0,0)/0.989
(0,0,1) (1,0,0,1,0)/1

(1,0,1) (1,0,0,0,0)/1

5.1.3. Recovery code generation system

A recovery code generation system was developed
and generation of recovery logic for collision errors
occurred between peg and hole was experimented.
During the simulation of assembly process, 133
collision states have been identified between peg
and hole. In this step, the aim is to generate one robust
recovery code which can be used for all of these
collision states. In the first level of optimization, these
states were taken as starting points. The aim is to find
a common point (an intermediate state) in the 3-D
space, which the robot arm can reach from any
collision point. Population size was taken as 100,
while crossover and mutation probabilities were
defined as 0.9 and 0.05 respectively. After nine
generations, a common point (intermediate state)
was found. The configuration of this point in 3-D-
space was obtained as (1553.09, 533, 770.321, 0,
78, 0). The history of optimization is given in
Fig. 9.

Now taking the intermediate state as the starting
point, second level optimization was initiated (Fig.
10). This time the objective is finding a path to the
reach the desired position from the point obtained in
the first step. After five generations, the system was
able to find a point which is close to the desired

0.00016

0.00014 »
» 0.00012 v
3 0.0001 ,/o/’ 1|
£ 0.00008 7 /|| —m— Average
E 0.00006 ‘/ ,‘ —&— Worst
= 0.00004 .”/

0.00002 -

0 Lt

123456789
Generation number

Fig. 9. Optimization history of the first level.

687

// —&— Best

—— Average

—&— Worst

Function value
(=]
o
N\

0.1
0.05 44://./
A——aA
5

2 3 4
Generation number

Fig. 10. Optimization history of the second level.

position. This final state was identified as (1553.79,
530.89, 722.5, 0, 90, 0).

Therefore, the overall path is composed of two
points and they are the intermediate state (1553.09,
533, 770.321, 0, 78, 0) and the final state (1553.79,
530.89, 722.5, 0, 90, 0) respectively. Note that the
desired point in the configuration space is (1553.89,
531, 718, 0, 90, 0) and the final state is very close to
the desired position.

After obtaining the path points, recovery code for
collision error was generated in RAPID language
using Workspace v.5’s translation tools. The fol-
lowing shows the generated collision recovery code.
The strategy for the recovery was identified as
retracting the robot arm to the common point, then
inserting the peg into the hole.

5.1.4. Case study—diagnosis and recovery of a
collision error

The performance of the system was tested with a
collision error scenario occurred between peg and
hole. Figure 11 shows a collision instance experienced
during the assembly process.

After this collision is detected, system enters into
the diagnostic mode. An automatic recovery threshold
value was defined as 0.85, meaning that diagnosed
belief values, which are greater than this threshold,
will be automatically recovered. If the diagnosed
belief value is less than this threshold, the system asks
for human maintenance. Based on the given symptom
from the torque/force sensor, the diagnosis system
identified the error as a collision error with a belief
value of 0.989. After that, system proceeds with error
recovery procedure by applying the collision recovery
code generated in the previous section. It was
validated that the generated recovery logic is



688

Baydar and Saitou

MODULE collision recovery

CONST robtarget NewGP0O5 := [[1553.09, 533, 770.321], [0.707107,8.65927E — 017,
0.707107, 8.65927E — 017], [0, 0,1, O], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9||;

CONST robtarget NewGP006 := [[1553.79, 530.89, 722.5], [0.707107,8.65927E — 017,
0.707107, 8.65927E — 017], [0, 0,1, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9||;

PERS tooldata t_Gripper := [ TRUE, [[0, 2.27777E — 014, 93], [1, 0, 0, 0]],

[0.01, [0.01, 0.01, 0.01], [1, O, O, O], 0, 0, 0]];

PERS tooldata tNil := [TRUE, [[0, O, 0], [1, O, O, O]], [0.01, [0.01, 0.01, 0.01],

[1, 0, 0, 0], O, O, O]];
PERS wobjdata w.Nil
[1, 0, 0, Of]];

PROC Pathi()

MoveJ NewGP005, v1000, z1, t_Gripper;
MoveJ NewGP006, v1000, z1, t_Gripper;

!- ThisDocument.RunBehavior "Gripper”, ” OpenGripper”, ” ”

:= [FALSE, TRUE, " " [[0, 0, 0], [1, 0, O, 0]], [[0, O, O],

|- ThisDocument.RunBehavior "Gripper”, ” UnGrasp”, " ”

ENDPROC
PROC main()
Pathi;
ENDPROC
ENDMODULE

Fig. 11. Collision error case.

successful to recover the collision error. The
recovered position is shown in Fig. 12.

This case study demonstrated the performance of
the proposed approach for single-station systems. The
sensory information is mapped on the failure domain
efficiently, to predict the probable failures and their 3-
D state. Another advantage is that the generation of the

-

Fig. 12. Assembly system after applying the recovery algorithm.

recovery code using the virtual assembly system saves
time on finding a robust recovery logic algorithm.

5.2. Multi-station assembly system

A multi-station assembly system, which is responsible
for mounting and welding workpieces together, was
modeled using Workspace (Workspace 4 User-
Manual, 1998) and shown in Fig. 13.

The system is composed of three IRB 6400-type



Off-line error prediction, diagnosis and recovery

Rob-B Rob-A

il

Fixture

Fig. 13. Collision error case.

industrial robots. The assembly process is as follows:
At first, Rob-A picks up the cylindrical piece from the
conveyor and inserts it into the hole of the second
piece on the second station. Then, the welding robot
(Rob-B) approaches the two assembled pieces and
welds those pieces together. After that, Rob-C picks
up the welded piece and places it on the fixture and all
parts are welded together by Rob-B. Finally the
complete assembly is transferred on the conveyor by
Rob-C. During the assembly operation, two inspection
cameras are used for the verification process. These
cameras were placed over the first station where Rob-
A picks up the cylindrical piece and over the fixture
respectively.

The elements in the modeled sensor array and their

Table 11. Failure codes

689

Table 9. Parameters for sensor array

Sensor array={A, B, C, D, E, F}

A = gripper sensor of Rob-A

B =torque/force sensor of Rob-A
C = camera over Station 1

D = gripper sensor of Rob-B

E = torque/force sensor of Rob-B
F =camera over the fixture

Table 10. Camera codes

1 =workpiece not grasped or released
2 =incomplete assembly

3 =no parts

4 = part jamming

signal codes are given in Tables 9 and 10. Each sensor
parameter, except the cameras, gets O or 1 depending
on the signal feedback from the sensors. If there is a
signal indicating an abnormal situation, then the
associated parameter gets 1. For the inspection
cameras the following codes were implemented as
shown in Table 12.

The failure array was designed to provide informa-
tion on the possible failure types as discussed in Table
1. As shown in Table 11, all of the possible failure
types of grasping and sensor failures were imple-
mented to the model. In grasping, failure code 6 is
different from 7 in the sequence of failures.

Since sequence of failures is also important for the

Grasping failure codes Sensor failure codes Collision failure codes

1: Rob-A gripper picking 1: Camera 1 1: Collision at Station 1
2: Rob-A gripper releasing 2: Gripper A 2: Collision at Station 2
3: Rob-C gripper picking 3: Camera 2 3: Collision at fixture
4: Rob-C gripper releasing 4: Gripper B
5: (Rob-A + Rob-C) picking 5: Cam.1, Grip.A
6: Rob-A pick 4+ Rob-C release 6: Cam.1, Cam.2
7: Rob-C release + Rob-A pick 7: Cam.1, Grip.B
8: (Rob-C + Rob-A) release 8: Grip.A, Cam.2

9: Grip.A, Grip.B

10: Cam.2, Grip.B

11: Cam.1, Cam.2, Grip.A

12: Cam.1, Grip.A, Grip.B

13: Cam.1, Cam.2, Grip.B

14: Grip.A, Grip.B, Cam.2

—
W

. All of the sensors




690

Table 12. Sampled parameters and values

Parameter Nominal valuel/Distribution
Robot 0.02mm/Normal (0,0.067 mm)
Repeatability

Uniform (0.9)
Uniform (0.99)

Grasping ability
Gripper sensor

Inspection Uniform (0.99)

Camera

Peg 49.92 mm/Normal (0,0.0106)
Hole 50.3 mm/Normal (0,0169)

appropriate recovery, these two codes are different
from each other.

Several parameters were sampled from the
assembly process. These parameters include robot
repeatability for each robot, gripper reliability, gripper
sensors reliability, sensor reliability for the inspection
cameras and dimensional tolerances of each piece.
Each parameter and its distribution type are given in
Table 12. The values in the parenthesis indicate the
mean and the standard values of the associated
parameter.

Complete assembly process was simulated off-line
50,000 times. The threshold level of the belief value
for automated recovery was taken as 0.8. During this
simulation process several types of error-propagation
were observed (Baydar and Saitou, 2001c). One
example is discussed below.

5.2.1. Propagation error resulted in part jamming at
Station-1

In this case, a jamming error is detected at Station-1
by the torque/force sensor of Rob-A in the form of a
sensory array input (0,1,0,0,0,0). The reason for
this failure is that Rob-A did not release the piece in its
gripper and Camera-1 and Rob-A’s gripper sensor
were both malfunctioning to detect this initial error.
Furthermore, this error has been propagated to the
next stage of the assembly process and coupled with
the Camera-2 failure to detect the incomplete
assembly. When the next cycle has started, the next
workpiece collided with the previous part still held in
Rob-A’s gripper. The failure situation is given in Fig.
14.

Information from the sensor array was diagnosed
by the Virtual Diagnosis module as shown in Fig. 15.
The diagnosed failure reason and its belief value are
as follows (Table 13).

Fig. 14. Part jamming at the 1st station.

X
Symptoms Failure Reason
v 2
[ Gripper Sensor 1 W (Grasping
¥ Torque/Force Sensor 1 ¥ Coflision 1
[ Camera on the Peg l_ I et
™ Gripper Sensor 2
1
[ Torque/Force Sensor 2 IV Sereor Falive L
I Camera on the Fixture l_ ™ Flaved Parts
Camera Codes Belief value: 0.964
1. not grasped or released
2. incomplete assembly Gensoriodes
Camera Codes
2iteparts 1. Gripper 1 Pick 1. Camt
4. part jamming 2. Gripper 1 Release 2. Gripper1
3. Gripper 2 Pick. 3. Camz
4, Gripper 2 Release 4, Gripper2
?;mﬁnﬁuz 0.8 5. Gri 1 Pick, Gri 2 Pick 5. Caml, Gripper 1
6. Gri 1 Pick, Gri 2 Rel 6. Caml, Cam2
7. Gri 1 Rel, Gri 2 Pick 7. Caml, Gripper2
8. Gri 1 Rel, Gri 2 Rel 8. Gripperl, Cam2
11. Cam!l, Gripperl, CamZ
12. Caml, Gripperl, Gripper2
13, Cami, Cam2, Gripper2
14, Gripper1, Cam2, Gripper2
15, Al

Baydar and Saitou

Fig. 15. Virtual diagnosis output.

Table 13. Output of virtual diagnosis module (symptom

array (0,1,0,0,0,0))

Diagnosed failure

Belief value

Grasping failure

Sensor failures

0.984

Rob-A gripper release failure
Cam.1, Rob-A gripper, Cam.2




Off-line error prediction, diagnosis and recovery

The proposed failure reason’s belief value is greater
than the threshold so the system proceeds with
automated recovery. The suggested failure recovery
strategy is calling the maintenance person to replace
the malfunctioning sensors and components.
Therefore, at this point the system dispatches a
maintenance expert and supplies the information
about the sensory components to be replaced.

This case study revealed the fact that although
propagated errors occur in less likelihood, they cannot
be avoided. The modeled system is composed of
relatively less number of components when compared
to the large-scale auto-body or consumer electronics
assembly lines; however it is still difficult to analyze
the system. Therefore, the developed Virtual Factory
aids on prediction, diagnosis and recovery of the
complex errors, which may propagate during the
assembly process.

6. Conclusions

A new approach on the investigation of error
prediction, diagnosis and recovery was discussed in
this paper. The diagnosis and recovery tasks of
assembly errors are complex since they cannot be
predicted easily prior to the operation of the assembly
line. Several methods have been used in the literature
to predict the possible propagation of undetected
errors using failure propagation trees, failure mode
and effect analysis or using fuzzy logic. However,
they are deficient in anticipating all errors and they
leave the 3-D-states of the possible errors out of
consideration, which makes the generated recovery
codes non-robust. Because of these facts, the need was
identified as to predict all possible error conditions as
well as their likelihood of occurrence and the
associated 3-D-states to provide efficient and robust
eITor Tecovery means.

The discussed approach uses a commercial soft-
ware package for robotic simulation for the
prediction, diagnosis and recovery of the possible
failures in four steps:

(1) Modeling of the assembly system using a
commercial off-line robotic software package.

(2) Monte Carlo simulation of assembly processes
to predict the possible error conditions and their
likelihood of occurrences.

691

(3) Logic synthesis for error diagnosis and
recovery from the predicted error scenarios
based on the three-dimensional model using
Bayesian Reasoning and Genetic Algorithms.

(4) Downloading the developed recovery codes to
the robotic controller to patch the assembly
process against the unexpected errors.

A case study was conducted by modeling a single-
station assembly system, which is composed of a peg-
in-hole assembly process. The obtained results
showed that, the system is capable of identifying the
possible failures and their 3-D geometrical states.
Based on these failure scenarios, the system is also
capable of generating robust recovery codes as
discussed in our previous work (Baitou and Saitou,
2001a). A second case study was completed focussing
on a multi-station assembly process for diagnosing
propagated errors. The obtained results showed that
the method is capable of predicting propagated errors
and it is efficient to diagnose even the failure case is
too complex to solve for a human expert.

One of the major disadvantages of the discussed
approach is that the costly computational time of
performing Monte-Carlo simulations. Also, a high
threshold value should be selected for automatic
recovery in order to prevent error recovery
problems originated from misdiagnosis. We believe
that another possible implication may be the
calibration of the virtual factory with the actual
system but this disadvantage can be overcome with
the aid of developments in the virtual assembly
software area.

Although the proposed approach has not been
implemented into an actual system yet, the future
work includes testing it with a real assembly system
and validating the accuracy of the results. It is
expected that the usage of this approach will decrease
the lengthy ramp-up time for the testing process of the
assembly systems and will provide efficient means of
error recovery. We believe that the outcomes of this
approach will have impact on the industry to reduce
costly downtime and maintenance expenses.

Acknowledgments

The authors are grateful for the technical support of
Flow Software Inc. for the Workspace® software. We
also acknowledge Rackham Graduate School of



692

Studies at The University of Michigan for supporting
this work.

References

Abu-Hamdan, M. G. and El-Gizawy, A. S. (1997) Computer
aided monitoring system for flexible assembly opera-
tion. Computers in Industry, 34, 1-10.

Baydar, C. and Saitou, K. (2001a) Automated generation of
error recovery logic in assembly systems using genetic
programming. Journal of Manufacturing Systems,
20(1), 55-68.

Baydar, C. and Saitou, K. (2001b) Off-line error prediction,
diagnosis and recovery using virtual assembly systems.
Proceedings of the 2001 IEEE International
Conference on Robotics and Automation.

Baydar, C. and Saitou, K. (2001c) Prediction and diagnosis
of propagated failures in assembly systems using
virtual  factories.  Proceedings ~ASME  Design
Engineering Technical Conferences—Computers in
Engineering.

Cao, T. C. and Sanderson, A. C. (1992) Sensor-based error
recovery for robotic task sequences using fuzzy petri-
nets. Proceedings of the 1992 IEEE International
Conference on Robotics and Automation, 2, 1063—
1069.

Chang, S. J., DiCesare, F. and Goldbogen, G. (1991) Failure
propagation trees for diagnosis in manufacturing
systems. [EEE Transactions on System Man
Cybernetics, 21(4), 767-776.

ElMaraghy, H. A., EIMaraghy, W. H. and Knoll, L. (1988)
Design specification of parts dimensional tolerance for
robotic assembly. Computers in Industry, 10, 47-59.

Evans, E. Z. and Lee, S. G. (1994) Automatic generation of
error recovery knowledge through learned activity.
Proceedings of the 1994 [IEEE International
Conference on Robotics and Automation, 4, 2915—
2920.

Jennings, J., Donald, B. and Campbell, D. (1989) Towards
experimental verification of an automated compliant
motion planner based on a geometric theory of error
detection and recovery. Proceedings of the IEEE
International ~ Conference  on  Robotics  and
Automation, 632—-637.

Baydar and Saitou

Jing, Q., Xisen, W., Zhihua, P. and Youngcheng, X. (1996) A
research on fault diagnostic expert system based on
fuzzy petri nets for FMS machining cell. Proceedings
IEEE  International  Conference on Industrial
Technology, 122—-125.

Kang, L. and Wenhan, Q. (1993) Fuzzy expert system in
robotic assembly workcell. Proceedings IEEE
TENCON, 738-741.

Koza, J. R. (1992) Genetic Programming: On the
Programming of Computers by Natural Selection,
MIT Press, Cambridge, MA.

Lam, R. K., Pollard, N. S. and Desai, R. S. (1990) Studies in
knowledge-based diagnosis of failures in robotic
assembly. Proceedings of the IEEE Conference on
Robotics and Automation, 60-65.

Lopes, L. S. and Camarinho-Matos, L. M. (1996) Towards
intelligent execution supervision for flexible assembly
systems. Proceedings of the IEEE International
Conference on Robotics and Automation, 1225-1230.

Lunze, J. and Schiller, E (1999) An example of fault
diagnosis by means of probabilistic logic reasoning.
Control Engineering Practice, 7, 271-278.

Luxhoj, J. T., Riis, J. O. and Thorsteinsson, U. (1997) Trends
and perspectives in industrial maintenance manage-
ment. Journal of Manufacturing Systems, 16(6).

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen,
K. and Teneketzis, C. (1996) Failure diagnosis using
discrete-event models. /IEEE Transactions on Control
Systems Technology, 4(2), 105-124.

Srinivas, S. (1997) Error Recovery in Robot Systems. Ph.D.
Thesis, California Institute of Technology.

Tzafestas, S. and Stamou, G. B. (1997) Concerning
automated assembly: knowledge-based issues and a
fuzzy system for assembly under uncertainty.
Computer Integrated Manufacturing Systems, 10(3),
183-192.

Visinsky, M. L., Cavallaro, J. R. and Walker, 1. D. (1994)
Expert system framework for fault detection and fault
tolerance in robotics. Computers in Electrical
Engineering, 20(5), 421-435.

Workspace 5 User-Manual. (2000) Flow Software, Inc.

Workspace 4 User-Manual. (1998) Flow Software, Inc.

Zhou, M. C. and DiCesare, F. (1989) Adaptive design of
petri-net controllers for error recovery in automated
manufacturing systems. [EEE Transactions on
Systems, Man and Cybernetics, 19(5), 963-973.



