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Synthesis for Robust Dimensional
Integrity Based on Screw Theory

This paper presents a three-dimensional (3D) extension of our previous work on the
synthesis of assemblies whose dimensional integrity is insensitive to the dimensional
variations of individual parts. Assuming that assemblies can be built in the reverse
sequence of decomposition, the method recursively decomposes a given product geometry
into two subassemblies until parts become manufacturable. At each recursion, joints are
assigned to the interfaces between two subassemblies to ensure the two criteria for robust
dimensional integrity, in-process dimensional adjustability, and proper part constraints.
Screw theory is utilized as a unified 3D representation of the two criteria. A case study on

an automotive space frame is presented to demonstrate the method.
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1 Introduction

Structural enclosures of modern mechanical products, such as
ship hulls, airplanes, and automotive bodies, typically are made of
hundreds or thousands of parts due to their geometric complexity
and sizes. As the number of parts increases, however, achieving
the dimensional integrity of the final assembly becomes more dif-
ficult due to the inherent variations in manufacturing and assem-
bly operations.

A solution is to adjust critical dimensions during assembly
when parts are located and fully constrained in fixtures. This in-
process dimensional adjustment is typically facilitated by slip
planes, mating surfaces at joints that allow a small amount of
relative motions. For example, Fig. 1 shows two designs of a
rectangular box. In contrast to design in (a) with no in-process
adjustability of the critical dimensions (length between sections 1
and 3), design in (b) provides slip planes such that relative loca-
tion of parts can be adjusted along the critical dimension.

The dimensional integrity of an assembly is also affected by the
postassembly distortion due to the internal stress induced by join-
ing parts with dimensional mismatches. A solution is to ensure
parts to be properly constrained at each assembly step. For ex-
ample, part 1 in Fig. 2(a) is not properly constrained and therefore
the postassembly distortion might occur, if the length of sections 2
and 4 are slightly different due to manufacturing variation. With
two slip planes perpendicular to each other, the design in (b) can
absorb manufacturing variations within section 1 and 2-3-4 pro-
vided that variations in angles are negligible.

In addition to the decomposition of product geometry and the
assignment of joint types at part interfaces, the assembly sequence
also influences the in-process dimensional adjustability and proper
part constraints. In the assembly sequence in Fig. 3(a), the critical
dimension (total length) is not adjustable since there is no slip
plane when the total length is determined with the addition of part
1. On the other hand, the sequence shown in (b) provides the slip
plane at the assembly step where the critical dimension is
achieved, absorbing a variation in length. As another example, the
sequence in Fig. 4(b), where each critical dimension is indepen-
dently adjusted at each step, is more desirable than the sequence
in (@), where both dimensions are adjusted by one step, inevitably
requiring a compromise between two critical dimensions.
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Figure 5 illustrates an effect of the assembly sequence on
proper part constraints. The sequence in (a) causes improper con-
straint of part 1 at the second step, whereas all parts are properly
constrained at all steps in the sequence in (b).

As illustrated so far, the in-process adjustability and proper part
constraints are effective tools for achieving high dimensional in-
tegrity of an assembly without requiring tight part tolerances [3].
The use of these tools in complex assemblies can be a very te-
dious task due to the coupling between the product decomposi-
tion, joint assignments, and assembly sequences. As a remedy, we
have previously designed a correct and complete algorithm to
fully enumerate feasible solutions for any two-dimensional (2D)
enclosure geometry [1]. Assuming that assemblies can be built in
the reverse sequence of decomposition, the algorithm recursively
decomposes a given product geometry into two subassemblies un-
til parts become manufacturable. At each recursion, joints are as-
signed to the interfaces between two subassemblies to ensure in-
process dimensional adjustability and proper part constraints.

This paper presents a three-dimensional (3D) extension of the
algorithm, where the screw theory [4] is utilized as a unified 3D
representation of in-process adjustability and proper part con-
straints. Dissimilar to our previous work that assumes joints with
arbitrary mating angles, they are selected from a library of fea-
sible joints specific to the application domain. A case study on an
automotive space frame is presented to demonstrate the method.

2 Related Works

Previous works related to assembly synthesis in general are
reviewed in Ref. [1]. Due to the space limit, this section focuses
on the works relevant to the 3D extension of the method.

The advantages of properly constrained assemblies are well
known to practitioners in precision machinery design and several
methods have been proposed in literatures including: kinematic
design [5], minimum constraint design [6], and exact constraint
design [3,7]. These works describe disadvantages of overcon-
straint through examples and provide good practices as well as
analytical methods to compute constraints. In these works, the
most commonly cited merit of properly constrained design is re-
peatability which leads to high precision. Recently, there has been
a trial to analyze and classify key features that enables properly
constrained design [8].

A universal analytical method for motion and constraint analy-
sis dates back to the screw theory, a pioneering work by Ball [4].
Since then, the screw theory has been applied to areas of mecha-
nism, robotics, and machine design. Among others, Waldron [9]
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Fig. 1 Two box designs (a) without and (b) with adjustable
height during assembly (see Ref. [1])

utilized the the screw theory to build a general method which can
determine all relative degrees of freedom (DOF) between any two
rigid bodies making contacts to each other. Recently, Konkar and
Cutkosky [10] have proposed a recursive algorithm which com-
putes motions allowed by mating features within mechanisms.
Adams and Whitney [11] have extended this method by providing
a dual method to compute the state of constraint of parts and
applied it to rigid body assemblies with mating features such as
pin-slot joint.

While these works provide tools for analyzing constraints in a
given assembly and simple design guidelines, they do not address
a systematic synthesis of an assembly with desired constraint
characteristics such as in-process dimensional adjustability and
proper part constraints, as discussed in this paper.

3 Terminology (Previously Defined in Ref. [12])

Since the assembly synthesis approach deals with objects yet to
be decomposed into an assembly of separate parts, related terms
need to be defined to avoid confusion with generic meanings used
in other literatures.

— | S
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(@ 3 (b) 3

Fig. 2 Two box designs (a) without and with (b) proper con-
straints (see Ref. [1])

Fig. 3 Assembly sequences (a) without and (b) with in-
process adjustability (modified from (Ref. [2])

(a) (b)

Fig. 4 Assembly sequences where two dimensions are ad-
justed (a) at one step and (b) independently at two steps (modi-
fied from Ref. [2])
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Fig. 5 Assembly sequences (a) without and (b) with proper
constraints (see Ref. [1])

* A product geometry is a geometric representation of a whole
product as one piece (Fig. 6(a)).

* A member is a section of a product geometry allowed to be
a separate part. A pair of members is connected when they
meet at a certain point in the product geometry.

* A configuration is a group of members which are connected
to at least one member within the group. A product geom-
etry is a configuration, so as a part (as defined later).

e The key characteristics (KCs) are defined by in Ref. [13] as
product features, manufacturing process parameters, and as-
sembly features that significantly affect a product’s perfor-
mance, function and form. In this paper, KC refers to a
critical dimension to be achieved in assemblies.

e A configuration graph (or simply configuration if unambigu-
ous in the context) is a triple

C=(M.E,A) (1)

where M, E, and A are the sets of nodes representing mem-
bers, edges representing connections between two members,
and edges representing KCs, respectively (Fig. 6(b)).

* A decomposition is a transition of a configuration into two
or more subconfigurations by removing connections be-
tween two members.

* A part is a configuration that is not decomposed further
under given criteria, e.g., a minimum part size. A part may
consist of one or more members.

* A joint library is a set of joint types available for a specific
application domain (Fig. 7).

* An (synthesized) assembly is a set of parts and joints that
connect every part in the set to at least one of other parts in
the set.

» Assembly synthesis is a transformation of a product geom-
etry into an assembly.
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Fig. 6 (a) Product geometry of a beam based product and (b)
its configuration graph

Fig. 7 An example of joint library for 3D beam based assem-
blies consisting of lap, butt, and lap-butt
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screw axis

Fig. 8 Representation of a screw using screw coordinates

4 Screw Theory (Summarized From Refs. [4,10,14]
and [15])

In the screw theory, a screw is defined as a pair of a straight line
(screw axis) in a 3D Cartesian space and a scalar (pirch). A screw
is commonly represented by screw coordinates, a pair of two row
vectors %=(s;so) in 3D Cartesian coordinates (see Fig. 8), where
s is a unit vector parallel to the screw axis and

So=r Xs+ps (2)

In the equation, r is the position vector of a point on the screw
axis and p is the pitch, which can be recovered using the follow-
ing equation:

p="—" 3)
s-s

A screw with an infinite pitch does not follow Eq. (2). Instead,
it is denoted by using zero vector for s and having s represent the
unit vector parallel to the screw axis.

Two types of screws, a twist and a wrench, are utilized in this
paper. A twist is a screw representing a motion of a rigid body
simultaneously rotating around and translating along an axis. Us-
ing screw coordinates, it is denoted as T=(w;v), where  is the
angular velocity and » is the linear velocity of a point on the body
(or its extension) located at the origin of global reference frame. A
wrench is a screw representing a force and a moment along an
axis exerted on a rigid body. Using screw coordinates, it is de-
noted as 1=(f;m), where f is the force and m is the moment that
a point on the body (or its extension) located at the origin of
global reference frame should resist.

Two screws, 2,=(s1;5¢;) and 2,=(s,;8¢,), are reciprocal to
each other, if and only if they satisty

$1°So2+801°5,=0 (4)

If a twist T is a reciprocal of wrench  (or vice versa), () does
no “work” to a rigid body moving according to 7.

When a body undergoes linear combination of several screws
(either twist or wrench), this set of screws are typically repre-
sented as a matrix where each screw in the set forms a row vector
of the matrix. This matrix is called a screw matrix. As its row
space is the screw space, the rank of a screw matrix is equal to the
dimension of the screw space.

The function reciprocal (S) returns a screw matrix, of which
row space includes all reciprocal screws to screws contained in S.
It can be obtained by exchanging the former three columns and
the letter three columns of the null space of S.

The union of screw matrices represents the sum of screw spaces

Journal of Mechanical Design

( (b@

Fig. 9 Lap (a) and lap-butt joint (b) of a beam based model and
the local coordinate frames for twists

/M

and it can be obtained by simply “stacking” them on top of one
another

S
n S2
us,=| . (5)
i=1 :

S
The intersection of screw matrices is the set of screws common

to the screw matrices, and it can be computed through double
reciprocals

n

n n

N S; = reciprocal(U reciprocal(S;)) (6)
i=1 i=1

Since a twist and a wrench are also screws, the definitions of
reciprocal, union, and intersection hold.

Woo and Freudenstein [16] present kinematic properties of
various joint types in screw coordinates, which are borrowed to
build twist matrices of beam joint types.

Figure 9(a) shows a typical lap joint found in beam-based struc-
tures. When it is attached to another beam, the tab allows planar
motion parallel to x-y plane. Also, if we assume that the tab is
very short compared to the beam, it can be treated as line contact
along y axis, thus allowing rotation about y axis. Therefore, a lap
joint at its local coordinate frame can be modeled as a twist matrix

0100O0O0

T 001000 -
1o 00100

000O0T10

Similarly, a butt joint in Fig. 9(b) allows motion parallel to
y-z plane, and it can be modeled as

1000
Tye=[0 0 0 0
0000

In twist matrices in Eq. (7) and (8), each row represents an
independent motion, and each nonzero number represents rotation
or translation along a corresponding axis—a,, wy, @, vy, vy, OF
v,. For example, the first row in Eq. (7) has 1 at the second
column, which means the lap joint allows rotational motion about
y axis. In the third row, it has 1 at the fourth column, meaning
translation along the x axis. As these matrices are used only to
give information on which DOFs are constrained for a joint type,
amplitude of each twist (row) of these twist matrices, in this pa-
per, does not have significant meaning.

Once a twist matrix is obtained for a joint type, the reciprocal
wrench matrix can be computed as described earlier, and the
wrench matrices corresponding to twist matrices in (7) and (8) are

00
10 (8)
01

. 001000

W,,, = reciprocal (T),,) = 000100 ©)
100000

W = reciprocal (T, ) ={0 0 0 0 1 0 (10
000O0O0°11
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cut-set

Fig. 10 A binary decomposition in product geometry (left) and
configuration graph (right)

Each nonzero number now represents force or moment along a
corresponding axis—fy, fy, f, m,, my, or m—that the joint can
constrain. For example, the first row in Eq. (9) has 1 at the third
column, which means the lap joint can support a force along z
axis.

5 3D Assembly Synthesis

5.1 Binary Decomposition. The assembly synthesis algo-
rithm [1] adopted in this paper assumes every assembly step com-
bines two subassemblies. Conversely, the algorithm decomposes a
configuration into two (sub)configurations, by removing some
connections, which is equivalent to finding a cut-set (In a configu-
ration graph, edges representing KCs are not counted to a cut-set.)
[17] of the configuration graph. In the following, CS, and KC,
denote the cut-set and the set of KCs broken by a decomposition
d, respectively. For the decomposition shown in Fig. 10, CS,
={(1,2),(3,4)} and KC;={kc1,kc2}.

Any configuration C,=(M,,E,,A,) decomposed to two sub-
configurations, C,=(M,,E;,A,) and C.=(M_,E,,A.), must sat-
isfy the following conditions:

l. My#QandM,# D

2. (M,E,), (M,E,) and (M,E,) are connected
3. M,=M,UM,

4 M,NM.=Q (11)

The first condition states subconfigurations should be non-
empty. The second condition states the configurations must be
connected before and after decomposition. The third and fourth
conditions specify two subconfigurations should not share any
members.

A joint is assigned to each connection broken by a binary de-
composition, which can be represented as a mapping
v,:CSy—~>JL, where JL is a joint library. With the joint assign-
ment, a (binary) decomposition d can be uniquely specified as d
=(M,,v;,(M;,,M,)). See Fig. 11 for an example. Note that fea-
sible joint types for a particular joint location may depend on the
local geometry at the joint location. For example, feasible joint
types between two perpendicular beams would be different from
that for two coaxial beams.

5.2 The First Decomposition Rule for In-Process Dimen-
sional Adjustability. Let us consider how to assign appropriate
joint types for those decompositions that have at least one broken
KC. Recall Fig. 3, which has a slip plane between parts 2 and 3
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Fig. 11 Joint types assigned to the subconfigurations in Fig.
10. The “L—" represents a lap joint from a lower-index node to
a higher-index node.

such that the KC can be delivered. The assembly sequence in Fig.
3(b) shows that it is desirable that a slip plane is provided at the
very assembly operation where KC is realized, no matter how
subassemblies are assembled before. This can be stated in the
reverse course as follows: no matter how a subconfiguration is
decomposed further, when KCs are broken by a decomposition,
joints assigned to the cut-set, in combination, should allow mo-
tions compatible with the KCs. This statement has been referred to
as the first decomposition rule for in-process dimensional adjust-
ability [1].

A KC, in this paper, is assumed to be a critical dimension be-
tween parts only achieved by adjustment during assembly of the
parts. Thus the dimension noted as a KC will be constrained by a
fixture, according to which parts being assembled will be ad-
justed. In this context, a KC constrains relative DOFs between
two parts; hence, it is natural to model a KC as a wrench matrix.
The approach taking tolerance relations as constraints can be
found in the area of computer-based tolerance modeling, and a
recent study by Wu et al. [18] shows the number and the type of
DOFs constrained for each tolerance relation in standard tolerance
classes. In this paper, we consider only distance and angularity
between lines (beams’ axes). The distance between lines con-
strains only one translational DOF between two points where the
KC is anchored, thus it is modeled as a wrench whose axis passes
these points. The angularity between lines constrains only one
rotational DOF between two lines and it is modeled as a wrench
with infinite pitch whose axis is the vector product of the two
lines’ direction vectors.

The first decomposition rule for in-process dimensional adjust-
ability, in other words, states that the DOFs constrained by KCs
should not be constrained by the joints, thus avoiding conflicts.
Once wrench matrices are associated to joints and KCs broken by
a decomposition, this rule can be stated in the screw theory’s
terminology: for a decomposition, the wrenches representing
joints and KCs should not constrain the same DOF, thus satisfying

( p ng(y))l( AU Wu) =0
elCS, alKC,

(12)

Since the rank of the intersection of the joint and KC matrices
should be zero as shown in Eq. (12), by the theorem from linear
algebra, it is obvious that the rank in Eq. (12) should be merely
summation of ranks of joint and KC matrices

rank(( UWwW

elCS,

JU( U W,))=rank( U W

alKCy elCS,

) + rank( U w,)

alkC,
(13)

Furthermore, as the proper constraint design in its rigorous defi-
nition avoids underconstraints as well as over-constraints, the
combined constraints from joints and KCs should cover six DOFs,
such that no DOF could be left unconstrained when two parts are
being assembled. In other words, the dimension of the combined
wrench space, i.e., the rank of the union of joint and KC wrench

Kd((f) Kd(ff)
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matrices, should be equal to six. Combined with Eq. (13), we can
now conclude the first rule of decomposition for in-process di-
mensional adjustability with

rank(( U W, (,)U( U W,)) =rank( U ng(e))+rank( U w,
elcs, alkC, elcs, alkC,

la’d(t’)

=6 (14)

Consider the product geometry decomposed in Fig. 10 and joint
assignment shown in Fig. 11, which has two lap joints, j1 and j2
for edges cut by the decomposition. Suppose the location of j1
and j2 in global reference frame X-Y-Z are (3, 0, 0) and (0, 4, 0).
Then, based on the local coordinate frame of lap joint shown in
Fig. 9 and orientation of j1 and j2, Wy, (Eq. (9)) can be trans-
formed to j1 and j2 in global reference frame. Then the union of
joint wrench matrices can be computed

001000
U W,0=W UW,~ 000100 (15)
et 000010

(The result has been reduced to the row reduced echelon form for
easy interpretation.)

The wrench matrix in (15) has 1 at the third, fourth, and fifth
column, meaning that it supports force along Z axis, moments
about X and Y axis, respectively. On the other hand, the decom-
position in Fig. 10 has broken two KCs, kc1 and kc2. The union of
these KCs is

U W W, LW (010001.5> 16
exc, “ FTT TR 0 000 0 0 1

Note that Wy,; (upper row) represents the distance KC between
member 1 and 3 (translation along Y axis) and W, (lower row)
represents the angularity KC between member 1 and 2 (rotation
about Z axis).

The union of the joint twist matrix (Eq. (15)) and KC twist
matrix (Eq. (16)) is

010000
001000
(U W, )U(U W)~|000100]|. (7
eeCS, aeKCy 000010
00O0O0O01

It shows that the parts are not constrained in X axis by either
joints or KCs. Although it does not satisfy Eq. (14), it does satisfy
Eq. (13), which implies that, at least, there is no conflict between
joints and KCs. As this decomposition does not satisfy Eq. (14),
the assembly synthesis process will discard it.

5.3 The Second Decomposition Rule for in-Process Dimen-
sional Adjustability. As discussed in Fig. 4, when multiple KCs
in the same direction are realized at an assembly step, the adjust-
ment of one KC will affect the dimension of the other KCs. View-
ing KCs as constraints, this happens when two or more KCs con-
strain the same DOF of a subassembly at an assembly step.
However, for complex assemblies, detecting overconstrained tol-
erance relationship is not straightforward from the engineering
drawings because tolerances are specified on parts, not subassem-
blies, which are defined by assembly sequences. Therefore,
clumsy assembly planning might cause a subassembly’s DOF to
be constrained by several KCs. In order to avoid this situation,
one should plan assembly steps such that, in every assembly step,
subassemblies being assembled are free of overconstraining KCs.

Accordingly, the second decomposition rule for in-process di-
mensional adjustability in Ref. [1] states a decomposition can
break only KCs independent to each other. (In 2D cases in the
previous works, only KCs perpendicular to each other were al-
lowed to be stricter.) In other words, KCs broken by a decompo-
sition, i.e., the KCs in KC,, should not constrain the same DOF
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more than once. In such cases, the intersection of the wrench
matrix corresponding to any subset of KC, and the wrench matrix
of its complement set must result in the zero matrix

"KIKC,(UWOI( U W,) =0 (18)
alk alKCAK
which is also equivalent to
rank( U W,)= a rank(W,). (19)

alKC, alKCy

The two KCs shown in Fig. 10, each with single wrench make
the KC matrix of rank 2 as shown in Eq. (16), thus satisfying Eq.
(19).

5.4 The Decomposition Rule for in-Process Proper
Constraint. In Fig. 5, it has been shown that joints should be
perpendicular to each other to have subassemblies being as-
sembled properly constrained. Similarly to drawing the first and
second decomposition rule for in-process dimensional adjustment,
this assembly rule has been inversed to the decomposition rule for
nonforced fit in our previous work [1], which allows only mutu-
ally perpendicular joints to be broken by a decomposition. This
rule is simplified and limited to two-dimensional space, assuming
overconstraints in rotation are minimal.

The idea of this rule is that there should be no overconstraint at
each assembly step, hence, the decomosition rule (renamed as the
decomposition rule for in-process proper constraint) should not
allow any combination of joints yielding overconstraint of parts.
In other words, joints placed for connections broken by a decom-
position, i.e., the joints corresponding to CS,, should not constrain
the same DOF more than once. Except that joints serve as con-
straints, instead of KCs, this rule is identical to the second rule of
in-process dimensional adjustability, thus satisfying

"CICS; (UW, ()I( U W, ())=0 (20)
elC elcs \C
which is also equivalent to
rank ( U ng(e))= Aé rank(ng(g>). (21)

elCS, elCS,

For the decomposition depicted in Fig. 11, each of the two
joints j1 and j2 has rank 2 (Eq. (9)). However, the union of
corresponding wrench matrices has rank 3, which does not satisfy
Eq. (21). In order to check what DOFs are overconstrained, we
can intersect the wrench matrices

W;; N W, = recip(recip(W;;) U recip(W,)) = recip(T;; U T,)
=[0014-30]#0 1)

The results states that the joints overconstrain the translational
DOF along Z axis, which yields locked moment about X axis with
unit of 4 and moment about Y axis with unit of —3. It occurs
because j1 itself constrains parts both in translation along Z axis
and the moment about X axis at the same time j2 combined with
j1 constrain the moment about X axis again. And j2 and j1 coop-
erate in the same way to result in the locked moment about Y axis.

5.5 Unified Decomposition Rule for in-Process Proper
Constraints. According to Eq. (19), the set of KCs related to a
decomposition should be linearly independent. Similarly, the set
of joints assigned for broken connections should be linearly inde-
pendent according to Eq. (21). Further, as these sets should be
linearly independent to each other and of full rank when unionized
by Eq. (14), these three equations in combination requires the
independency of constraints, regardless of whether they are KCs
or joints, and full rank when unionized. Thus, combining Egs.
(14), (19), and (21), we can unify three decomposition rules into
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M,

X

-~

"1 T2 T3

_|7

My M:

=

decompose

I

Fig. 12 A partial AND/OR graph of the 2D rectangular box in
Fig. 1

s|quesse

rank(( U ng(e))U( U W,)= a rank(W
eICs), alKC, elcs,,

=6 (22)

Finally, a predicate of a decomposition d=(M,y,,(M,,M.))
for complying the all three rules is given as de:2M0X (2E0—JL)
X (2Mox 2Mo) > {true, false} where de(M,,, v,,(M,,,M)) is true if
and only if conditions in (11) and Eq. (22) are satisfied. However,
it is often the case that a underconstraints are unavoidable during
assembly synthesis due to the limited choice of joints, Eq. (22)
may be relaxed to abandon the full rank.

)+ a rank(W,)
alKC,

gd(@)

5.6 Part Manufacturability. The decomposition stops when
the resulting subconfigurations become manufacturable by a cho-
sen manufacturing process. In the following case study on frame
structures, components are assumed to be extruded and bent.
Therefore, a predicate of a configuration M, for stopping decom-
position is given as stop_de:2Mo—>{true,false}, where
stop_de(M,) is false (i.e., decomposition continues) if and only if
any of the following conditions are satisfied:

* M, has a KC (assuming KCs cannot be achieved by the
tolerances of extrusion and bending)

* M, has a closed loop (cannot extrude such parts)

* M, has a connection point where three or more members
meet (cannot extrude such parts)

* M, has members liec on more than one plane (difficult to
handle/fixture)

The product geometry shown in Fig. 6 has two KCs and a
closed loop, thus stop_de returns false, subject to further decom-
position.

5.7 AND/OR Graph of Assembly Synthesis. The AND/OR
graph [19] is adopted to facilitate the assembly synthesis, in which
multiple trees share common nodes. Although the AND/OR has
been previously used to enumerate assembly sequences for a
given assembly design [20], it is augmented in this paper in order
to embody joint assignments. Figure 12 shows a partial AND/OR
graph of assembly synthesis [1] for the 2D rectangular box shown
in Fig. 1. Each node in white background contains a subset of
members (M,C M) and each node in black background contains
joint assignment 7;: CS;—JL. A set of three lines which connects
a configuration M,, joint assignment 7;, and two subconfigura-
tions (M,,M,) is a hyperedge, represented as (M, y;,(M},,M.))
which is also the representation of a decomposition defined ear-
lier. The AND/OR graph of assembly synthesis is then represented
as a triple

AO=(S,J,F) (23)

where S is a set of nodes representing configurations, J is a set of
nodes representing joint assignments, and F is a set of hyperedges
(M, v;,(M,,M,)) satisfying the following necessary conditions:
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Fig. 13 A frame structure with eight KCs

1. stop_de(M,) = false

2. de(M,,y;,(My,M,.)) = true (24)
Then AO=(S,J,F) is recursively defined as:
. If stop_de(M,) =false, My e S

2. For VM, e S, if 3y,M,,M, such that
f=(M,,v,(M,,M,)) satisfies necessary conditions
(24), then y; € J,M;,M. € Sand f € F

3. Noelementisin S, J and F, unless it can be
obtained by using rules 1 and 2 (25)

The recursive definition in Eq. (25) can be easily transformed to
an algorithm build_ AO that generates AO from initial configura-
tion Cy=(My,Ey,Ap) and joint library JL by recursively decom-
posing a configuration into two subconfigurations, whose details
are omitted due to space limitation. Using stop_de and de as de-
fined earlier, one can run build_ AO with any 3D configurations to
enumerate all possible assemblies (decompositions and joint as-
signments) and accompanying assembly sequence that satisfy the
rules for in-process dimensional adjustability and proper part con-
straint.

6 Case Study

A frame structure in Fig. 13 is decomposed using the joint types
in Fig. 14. As initial attempt according to Eq. (22) and definitions
in (24) and (25) yields no assembly synthesis without undercon-
straints, Eq. (22) is relaxed to allow underconstraints. The reason
for this is that the choice of decomposition and joints is limited.
While a decomposition can break KCs, of which summed DOFs
will vary, the joint types constraining a small number of DOFs of
various kinds are not available to fill the unconstrained DOFs in
various situations (see Fig. 14). And because every joint type in
Fig. 14 constrains at least three DOFs, decompositions cutting
more than two points will certainly results in overconstrained
DOF(s). While a large joint library with joint types constraining
various DOFs would be able to obtain exactly constrained solu-
tions, we will stay with the joint types in Fig. 14, as these are the

]
]

Fig. 14 (Top) Joint types for frame sturcture and (bottom)
their graphical representation

S
1]

\

AN

A
%
0

A
A
b

Transactions of the ASME



Table 1 Nondominated cost vector and the number of corre-
sponding nondominated solution trees for the frame structure
shown in Fig. 14

Objectives

No. of nondominated

No. of parts No. of under-constraints solution trees

7 2 48
Total number of solution trees ~6.6X%10°

most typical joints found in beam structures. As allowing under-
constraints would certainly increase the number of solutions,
among joint assignments with underconstraints for a given decom-
position, those with minimum underconstraints are included in the
AND/OR graph.

The relaxed rule produced the AND/OR graph of assembly syn-
thesis with 524 nodes representing configurations and 6762 hyper-
edges, which contains around seven billion trees. Building the
AND/OR graph took 36.4 s with a 3.2 GHz Pentium IV personal
computer (PC). When there are too many solutions as in this case
study, we can search the AND/OR graph to identify optimum
solutions. While there would be many other potential objectives in
designing assemblies, we have chosen the number of parts and

Fig. 15 Half of optimal AND/OR graph of assembly synthesis
for the product geometry in Fig. 13
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Fig. 16 All assembly designs existing in the optimal AND/OR
graph shown in Fig. 15, where corresponding assembly se-
quences can be found

total underconstraints as objectives, which form a two-element
cost vector. Using brute search starting from multiple terminal
nodes satisfying stop_de, we have found only 48 trees are non-
dominated, (If no element in the cost vector of a solution tree T
is smaller than the corresponding element in the cost vector of a
solution tree 75, then 7, is dominated by 75, in a minimization
problem. If a solution tree is not dominated by any other solution

Fig. 17 Passenger area of an automotive space frame

Table 2 Nondominated cost vectors and the number of corre-
sponding nondominated solution trees for the automotive
space frame structure shown in Fig. 17

Objectives

No. of nondominated

No. of parts No. of under-constraints solution trees
15 14 13,602,816
16 13 1,843,200
Total 15,446,016
No. of solution trees ~4.0X%10'8
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Fig. 18 Three optimal assembly designs synthesized for the
automotive frame in Fig. 17

tree, it is called a nondominated solution tree, and its cost vector is
called a nondominated cost vector.) and all these trees have seven
parts and two underconstraints throughout their assembly se-
quences. The results is summarized in Table 1. Due to the space
limit, 12 among 48 trees that have the are depicted in Fig. 15 in
the form of AND/OR graph. In Fig. 15, white nodes are parts and
grey nodes are subassemblies. Joint assignments are represented
as black nodes with numbers, which represent the number of un-
derconstraints related to the assembly step.

Figure 16 shows all assembly designs in Fig. 15. While the

250 / Vol. 128, JANUARY 2006

Fig. 19 A partial optimal AND/OR graph of assembly synthesis
for the automotive space frame in Fig. 17

AND/OR graph has 12 trees, Fig. 16 shows only one way of part
decomposition with four variations in joint assignments, which is
because there are three different assembly sequences for each as-
sembly design in Fig. 16. For example, the assembly design at top
left in Fig. 16 has three assembly sequences, which are thick lined
in Fig. 15. One of these assembly sequences is as follows:

1. Assemble E and G to achieve kc2 and kc8. Undercon-
strained in Y translation and Y rotation.

2. Assemble D and E-G to achieve kc1 and kc¢7. Properly con-
strained.

Transactions of the ASME



3. Assemble F and D-E-G to achieve kc3. Properly con-
strained.

4. Assemble C and D-E-F-G without achieving any KC. Prop-
erly constrained.

5. Assemble B and C-D-E-F-G to achieve kc5 and kc6. Prop-
erly constrained.

6. Assemble A and B-C-D-E-F-G to achieve kc4. Properly
constrained.

Figure 17 shows the passenger area of an automotive space
frame with 18 KCs (KCs at the far side of X-Z plane are sym-
metrical and omitted). Each horizontal beam at side (shaded area)
has an intersection with a vertical beam in the middle, however,
we have not allowed them to part, in other to reflect practices and
reduce the size of solution. With the same relaxed rule permitting
underconstraints, the AND/OR graph contains 4726 nodes repre-
senting configurations and 67,099 hyperedges, which contains
around 4.0 X 10'8 solution trees. It took 209.5 min with a 3.2 GHz
Pentium IV PC to build the AND/OR graph. Based on the two
objectives, 1,5446,016 trees are found to be nondominated. Asso-
ciated cost vectors for these nondominated solution trees are listed
in Table 2. Three of these optimal assembly designs are shown in
Fig. 18 and the corresponding AND/OR graph of assembly syn-
thesis is shown in Fig. 19. The first assembly design consists of 16
parts and has two different assembly sequences in the AND/OR
graph shown, which yield 13 underconstraints during assembly
steps. The other designs have 15 parts and each has one assembly
sequence in the graph, yielding 14 underconstraints.

7 Summary and Discussion

This paper presented a 3D assembly synthesis method for in-
process dimensional adjustability and proper part constraint based
on the screw theory. The method has been successfully applied to
beam based structures with predefined joint library and optimal
solutions have been identified using graph search. While this pa-
per focuses only on in-process adjustability and proper part con-
straints and suggests ideal designs for these criteria, other criteria,
such as part symmetry and structural stiffness, also drive assembly
synthesis in practice and narrow down the solutions. When there
are too many nondominated solution trees as in the second case
study, it would be unpractical for a human designer to choose one.
The present method, therefore, would most effectively be inte-
grated in the design process if it is applied to subassemblies of a
product first decomposed by a human designer based on the cur-
rent practice.
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