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Abstract
We propose an extended finite element-boundary integral method (EFE-BI)
to model the electromagnetic (EM) behavior of RF-MEMS switches over a
wide frequency range from UHF to terahertz. Our new method integrates
EM with finite element heat transfer analysis to extract heat dissipation on
the micrometer-scale switch beam due to the non-uniform radio frequency
(RF) current distribution. The developed EFE-BI technique is an extension
of the standard finite element-boundary integral (FE-BI) method to allow for
accurate characterization of RF-MEMS structures whose entire size is a
small fraction of a wavelength (λ/250 or less) and may contain dimensions
in the order of λ/50 000 or less. Our model predictions exhibit good
agreement with experimental results obtained independent of the current
study.

1. Introduction

RF-MEMS switches have demonstrated low on-state insertion
loss, high off-state isolation and very linear behavior [1–6].
Despite these excellent characteristics, they generally suffer
from low power-handling capability, with most switches
operating well below 1 W [4]. This limitation is due to
the complex interactions among the electromagnetic losses,
heat transfer and mechanical deformations. To better
understand the associated switch failure mechanisms, a
multiphysics model is required to capture the coupling among
electromagnetic, thermal and mechanical domains [7]. As a
step towards this end, this paper presents the development of
an electromagnetic model that allows for accurate modeling
within a small volume surrounding a MEMS switch while
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still addressing a wide range of frequencies from 0.5 and
3000 GHz. The integration of this electromagnetic model
with a heat transfer analysis will allow for the prediction of
the failure mechanisms associated with MEMS switches at
elevated temperature.

We select an inline dc-contact MEMS shunt switch [4]
as illustrated in figure 1 to most effectively demonstrate the
capability of the developed analysis. The device is attached
to an underlying substrate and consists of a fixed–fixed
micromachined beam 100–600 µm long, suspended above
the substrate by a gap of 1–3 µm, typically intended for
frequencies ranging from 1 GHz to several hundred GHz.
The up-state operation of this particular switch design is
expected to suffer most from heat-induced failure mechanisms
among existing RF-MEMS switch designs. An assessment
of the power-handling capability and reliability of the
switch will therefore benefit from the model developed in this
work.
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Figure 1. An RF-MEMS inline shunt switch and its lumped circuit model.

A challenge in our modeling relates to the extremely small
dimensions of the MEMS switch. More specifically, at 2 GHz,
MEMS dimensions correspond to an electrical length of
λ/1500 to λ/250 and a gap of λ/150 000 to λ/50 000. The
total size of the MEMS device is thus many times smaller
than a typical element size used in finite element (FEM) or
finite difference-time domain (FDTD) codes (approximately
λ/20 to λ/10) [8, 9]. Therefore, modeling a switch as part
of its surrounding environment with these methods requires
a very large number of unknowns and hence a very large
computational time. Moreover, existing codes that assume a
typical linear element size of λ/20 to λ/10 may not necessarily
be sufficiently accurate for the MEMS dimensions at hand.
Further, since the beam moves while turning on and off, any
modeling scheme that meshes the volume within and under
the beam, such as FEM or FDTD, requires remeshing of the
system for the up and down states. In particular, FDTD is
poorly suited to model the deflection of the beam in the down
state due to the rectangular grid often used in conjunction with
this method.

For the above reasons, the method of moments (MoM)
is preferred for the beam portion of the MEMS switch
to avoid meshing the region between the beam and the
substrate. However, since the switch is part of a complex
integrated system such as a multi-layer reconfigurable antenna
or part of a frequency-selective surface (FSS), hybrid finite
element-boundary integral (FE-BI) methods are preferred to
model the complex but stationary MEMS geometry comprised
of different materials. Specifically, this paper proposes a
combined FE-BI and MoM formulation to be referred to
as the extended FE-BI (EFE-BI). This method differs from
the conventional hybrid FE-BI formulation [10] since it
includes boundary integrals completely external to the FEM
domain. This allows for greater flexibility in modeling
the deformed 3D surfaces in RF-MEMS switches while
it concurrently decreases the computational expense. An
efficient preconditioner was also developed to accurately solve
the highly ill conditioned matrix system stemming from the
extremely small electrical dimensions of RF MEMS [24].
We remark that the theoretical predictions resulting from the
proposed integrated full-wave electromagnetic/thermal model
are compared with experimental data [25] and found to be in
good agreement.

2. Theory and formulation

2.1. Extended FE-BI

FE-BI is adopted herewith to model the cavity substrate portion
of the switch (volume V1 enclosed by the surface S1 in figure 2),

MoM (BI-II) Domain (S2)--Beam 
FE-BI-I Domain 
(V1+S1) Substrate

GND 

Figure 2. RF-MEMS inline shunt switch model.

whereas MoM is used to treat the MEMS beam (surface S2 in
figure 2). In the latter case, the resistive sheet model [8]
is incorporated to account for the beam’s conductivity and
thickness. A challenge is to formulate the connectivity of the
non-conformal BI surface (on the beam) with the BI bounding
the FEM region. Assuming some excitation currents (

⇀

J i,
⇀

Mi),
the weak form of the FE-BI [8] for the fixed portion of the
switch surface S1 (enclosing the volume of V1) is given by∫ ∫ ∫

V1

{(
1

µr
∇ × ⇀

E

)
· (∇ × ⇀

T ) − k2
0εr

⇀
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∫∫

(
⇀

HS1 +
⇀

HS2) × n̂ · ⇀

T ds

= −
∫ ∫ ∫

V1

{
jk0Z0

⇀

J i + ∇ ×
(

1

µr

⇀

Mi

)}
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2k0
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⇀
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⇀
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⇀
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⇀

r ′) ds ′, (1a)
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⇀
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⇀
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The various parameters mentioned in the above FE-BI
equations are as follows:

• ⇀

MS1 : magnetic current density on S1 (substrate surface);

• ⇀

J S2 : electric current density on S2 (MEMS beam);
• ⇀

r ′
i : image point of the source point at

⇀

r ′;
• k0: wavelength number;
• Z0: free-space impedance;

• ⇀

M(
⇀

r) = ⇀

E(
⇀

r) × n̂: equivalent magnetic current density;

• ⇀

J (
⇀

r) = n̂ × ⇀
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⇀

r): equivalent electric current density;

•
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r ′) = (⇀⇀
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k2

0
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Green function;

•
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I − 1
k2

0
∇∇′)(G0(
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i ))

+ 2ẑẑG0(
⇀

r,
⇀
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i ): half-space dyadic Green function;

• G0(
⇀

r,
⇀

r ′): free-space Green’s function; for k0R � 0.01,
with its quasi-static approximation obtained by replacing
e−jk0R with 1.

158



Full-wave electromagnetic and thermal modeling for the prediction of heat-dissipation-induced RF-MEMS switch failure

To solve (1) for
⇀

MS1 and
⇀

J S2 , an additional set of equations
is required. These equations are generated here by enforcing
the boundary conditions on S2 (the MEMS beam). Doing so,
we get

n̂ × [
n̂ × [⇀

ES2
(⇀

J S2

)
+

⇀

ES1
( ⇀

MS1

)]] = −R
⇀

JS2 , (2)
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ES1 = −
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in which

R = − iZ0

k0d(ε̃r − 1)
, ε̃r = εr − j

σ

ωε0
, (2c)

with d and σ denoting the beam’s thickness and conductivity,
respectively.

The substrate is meshed using brick elements to reduce
the number of unknowns, with triangular surface elements
employed to model the MEMS beam for an accurate
representation of the possibly deformed surface. The solution
of (1) and (2) then proceeds by expanding the volume and
surface tangential electric fields as well as the beam current
density using sub-domain basis functions, e.g.,

⇀
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Here,
⇀

We
i ,

⇀

Qe
i and

⇀

Se
i represent the basis functions in their

respective regions of representation [8]. To enforce current
continuity, the surface field basis functions in the FEM domain
and the current density basis function (RWG) in the MOM
domain [11] are equated at the junction of the BI domain
(beam) with the FE-BI domain (substrate). On applying
Galerkin’s method, the resulting matrix system is of the form


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where [AV V ], [AV S1 ], [AS1V ] and [AS1S1 ] represent the FE-
BI sub-system for the fixed volume enclosed by S1, as shown in
figure 2. Typically, [AV V ], [AV S1 ] and [AS1V ] are very sparse
but [AS1S1 ] is dense. Similarly, [AS1S2 ] and [AS2S1 ] are the
sub-matrices representing the interaction between the beam
and the BI enclosing the substrate. They are dense and so is
[AS2S2 ], a sub-matrix representing the discrete MoM system.
The elements for each sub-matrix are given by
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2.2. Thermal modeling

Once the current densities are obtained via the EFE-BI
analysis, heating in the beam can be estimated using the steady-
state heat equation

−∇(κ∇T ) = J 2ρ, (6)

where κ is the thermal conductivity, T is the temperature, J

is the RMS current density through the beam and ρ is the
electrical resistivity. The steady-state heat equation is adopted
since the signal/current frequency is much higher than that of
the thermal response (typically on the order of kHz).

To obtain the temperature rise in the beam, we adapted
a two-dimensional FEM solution of (6) [7] to calculate the
temperature distribution in the x–y plane, as shown in figure 3.
In our model, we assumed a constant temperature across the
beam thickness. Also, we ignored effects due to radiative and
convective heat transfer (since they are rather insignificant).
However, our model did include the conduction of heat through
the thin air gap under the beam. In the following, we discuss
how the heat model is integrated with the EFE-BI for a
complete EM-heat analysis of MEMS switches.
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Figure 4. Flowchart for calculating switch temperature rise.

2.3. Integration of thermal and EM models

As is well known, heat dissipation that dictates temperature
rise scales with the electrical resistivity of the beam, a function
of temperature. An iterative procedure (see figure 4) was
employed to reach temperature convergence. While this
procedure is quite simple, we also found that one to three
iterations are sufficient (in most cases) to reach convergence
to within 1%.

3. Integral accuracy

Because RF-MEMS switches are electrically very small at
radio frequency (RF) bands (typically, L to X bands), the
accuracy of the matrix elements in (4) must be carefully
computed, particularly for those in the boundary integral sub-
matrices. This is a unique issue for MEMS modeling and
must be addressed for a reliable analysis. In this paper, we
combined both quasi-static as well as known full-wave integral
evaluation to generate accurate matrix entries (figure 5).

For the matrix elements inAS1S1 , analytical expressions are
given in [8]. Also the elements of the coupling matrices AS1S2

and AS2S1 can be readily integrated numerically since they
have no singularities. However, accuracy becomes a serious
issue for the self-cell entries and the quasi-static approximated
non-self-cell elements in AS2S2 . Unless the accuracy of these
elements is carefully controlled, the highly ill conditioned

0.02λ 0.1λ

Quasi-static re Full-wave 
region 

Hybrid 
region 

Beam’s size

Figure 5. Employed approximation versus beam dimension.

Table 1. Self-cell integral formulation modification [14].

Iiip

Semi-analytical results [13]
Node no Analytical results [14] (number of integration points)

i = 1 Before 14.901 2854 14.410 755 (5)
After 14.338 9690 14.346 337 (9)

14.339 979 (15)

i = 2 Before 14.444 2568 14.381 827 (5)
After 14.310 0099 14.317 372 (9)

14.311 019 (15)

i = 3 Before 11.890 7294 12.588 863 (5)
After 12.587 2927 12.587 479 (9)

12.587 321 (15)

matrix leads to large inaccuracies within the solution of the
current densities or fields [24]. In this work, the non-self-
cell integrals are evaluated using a semi-analytical approach
[13] to increase speed and accuracy. For the same reason, the
self-cell integrals are evaluated analytically following [14].
However, prior to using the expressions in [14], two misprints
were corrected. In (26) of [14], the two terms without a
logarithm in the numerator should carry a coefficient of 60
rather than 120 in their denominators. Namely, the integration
of Iiip = ∫

A

∫
A

N ′
iNi

1

|⇀r −⇀
r ′| da da′, where N ′

i and Ni (i = 1, 2,

3) are the simplex coordinates on the source and observation
triangles, must be corrected to read

1

4A2
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iNi

1

|⇀r − ⇀

r ′|
da da′

=
ln
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√

ac

b−c+
√

c
√
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√
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√
c
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√
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√
c

+

√
a
√
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c
√

a − 2b + c

60(a − 2b + c)1.5
+

(2a − 5b + 3c)

120(a − 2b + c)1.5

× ln

(
(a − b +

√
a
√

a − 2b + c)(c − b +
√

c
√

a − 2b + c)

(b − a +
√

a
√

a − 2b + c)(b − c +
√

c
√

a − 2b + c)

)

+
−√

a
√

c +
√

a
√

a − 2b + c

60(a)1.5
+

(2a + b)

120(a)1.5
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(
(a − b +

√
a
√

a − 2b + c)(b +
√

c
√

a)

(b − a +
√

a
√

a − 2b + c)(−b +
√

c
√

a)

)
. (7)

Table 1 shows a comparison among the analytical form in
[14] (before and after correcting the misprints) and the semi-
analytical formulation [13]. These results clearly show that
our new expression (7) is indeed the correct one. We note that
the integration triangle used here has nodes at P1 (62.5, 25, 0),
P2 (62.5, 25, 2) and P3 (62.5, 37.5, 0).

The data reported in figure 6 show that the integration
of
∫
A

∫
A

1

|⇀r −⇀
r ′ | da da′ for disjoint triangles based on the semi-

analytical formulae in [13] gives much higher accuracy by
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Table 2. Comparison cases.

Frequency Compared
Case (GHz) Beam size (µm) with

a 3 10 000 × 5000 (λ/10 × λ/20) AMFIA
b 300 75 × 50 (3λ/40 × λ/20) HFSS
c 3000 75 × 50 (3λ/4 × λ/2) HFSS
d 20 75 × 50 (λ/200 × λ/300) Static (dc)

using fewer integration points as compared to direct Gaussian
integration [15]. In addition, the semi-analytical integral forms
take much less time to evaluate since one of the integrals is
given in analytical form [13]. We remark that the relative error
given in figure 6 was referenced to an adaptive integration
approach.

4. Validation examples

4.1. Validation using commercial codes

A computer code using the preceding EFE-BI formulation
was developed to determine the current distribution on the
RF-MEMS switch structures. At different frequencies, the
results are compared with the code AMFIA developed in [12]
as well as the commercial software HFSS v9.2 and a static
(dc) approximation.

The comparisons are made for the four cases shown
in table 2. Due to difficulties in the convergence of the
conventional FE-BI and FEM for electrically small MEMS
structures, the frequency and beam size are selected such that
their electrical length is large (approximately between λ/50
and λ), resulting in a rather unrealistically large beam size for
case (a) as depicted in table 2. The same is true for cases (b)
and (c) in table 2. This is done because in realistic beam sizes
and frequencies, the electrical length is on the order of λ/100,
i.e. too small for conventional methods to converge and lead to
unreliable answers. Thus, to qualitatively assess the accuracy
of our method for such very small electrical lengths, a static
(dc) approximation was used. This evaluation refers to case
(d) in table 2 and employs realistic dimensions at typical RF
frequencies. We remark that the junction between the beam
and the substrate is ignored in case (a) due to the limitation of
the FE-BI formulation used in the AMFIA software. That is,
the ‘beam’ is an ‘RF strip’ floating above the substrate with
no electrical connection to the substrate.

4cm

2cm

1cm
.5cm x

.7cm

Current Source

Figure 7. RF strip floating on a substrate for comparison with case
(a) in table 2.

Figure 7 shows the dimensions of the ‘RF strip’ along
with the substrate for case (a) in table 2. The excitation is
a vertical (to the beam) current dipole operating at 3 GHz
and placed at the center of the substrate. Figure 8 shows the
current distribution along the strip length (values at the middle
of the strip) using the full-wave formulation based on our
EFE-BI code versus the conventional FE-BI (AMFIA). The
comparisons demonstrate good agreement between the two
methods. As compared to the conventional FE-BI, we remark
that EFE-BI uses much fewer unknowns and less computation
time, since the gap between the beam and the substrate is not
meshed.

Figure 9 shows an RF-MEMS switch for the comparison
of the cases (b)–(d) depicted in table 2. As shown, the
excitation is represented by a five-probe feed (impressed
electrical current) [8]. For our EFE-BI analysis, a quasi-static
approximation and a half-triangle basis function were used
to model the junction between the two domains. Figure 10
shows a comparison of the current density distribution along
the beam length for cases (b) and (c). Again, good agreement
between the two methods is obtained. Moreover, as in case
(a), the convergence of our EFE-BI analysis is significantly
faster than that of the conventional FE-BI technique. In case
(b), for instance, HFSS required 122 834 tetrahedral elements
and 17.5 h to converge, whereas EFE-BI used only 821
unknowns and 24 min to solve. While our EFE-BI converges
quickly even for much lower frequencies, such a comparison
at low frequencies was not made since HFSS could not
converge.

Figure 11 shows a comparison of the current distribution
along the width for case (d). The results again agree quite
well, even though minor edge effects are observed at both
sides of the beam in the EFE-BI solution. This indicates that
at frequencies lower than 20 GHz, the static approximation
is a reasonable way to evaluate the current distribution for
RF-MEMS switches below 100 µm in size. For the 20–
100 GHz frequency range, the static approximation is no
longer accurate due to significant edge effects. In this
range, the conventional numerical codes such as ANSYS that
employs quasi-static approximations could also not converge
since the beam’s dimensions are outside their validity range.
Hence, the EFE-BI solution with combined quasi-static and
full-wave integral evaluation (figure 5) is a necessary approach.

4.2. Experimental validation

Recently, we also performed experimental studies on the self-
heating of surface-micromachined gold RF-MEMS structures
suspended on a substrate, shown in figure 12. The

161



Z Wang et al

3

4

5

6

7

8

9

10

11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Comparison of EFE-BI to Conventional FE-BI

AMFIA
EFE-BI curve

C
ur

re
nt

 D
en

si
ty

Coordinate along length of beam (cm)

y = 0.1875

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AMFIA
EFE-BI curve

C
ur

re
n

t D
en

si
ty

Coordinate along length of beam (cm)

y = 0.0625

Figure 8. Current distribution at the center along the length of the RF strip in figure 7 (gap = 0.7 cm).
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experimental data refer to a device subjected to an RF signal
and can be used to validate our model predictions for the self-
heating of an RF-MEMS switch in its ‘up’ state. The details
of the design, fabrication and RF/thermal characterization of
the testing device can be found in [25]. In brief, we measured
the spatially averaged temperature increase in a MEMS RF
structure at various frequencies and RF input power using

Figure 12. SEM image of a surface-micromachined RF-MEMS
inline switch.

Figure 13. Model predictions and experimental data of the spatially
averaged temperature rise in a test device simulating the up-state of
an RF-MEMS switch. Comparisons are shown as a function of
input power at three different frequencies (2 GHz, 13.5 GHz and
18 GHz). The experimental data are from [25].

a dc electrical resistance thermometry technique, specially
developed for an RF setup. Figure 13 compares our model
predictions and experimental data, clearly demonstrating that
our numerical predictions are in good agreement to the
experimental data.
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Figure 14. (a) Switch model and (b) predicted onset of buckling
and creep.

5. Failure mechanisms for RF-MEMS switches

The integrated electrothermal model using the EFE-BI method
presented in section 2 will now be used to predict the failure
of an RF-MEMS switch due to creep and bucking at elevated
device temperatures. The results are compared with those
in our previous work [16] which employed an approximate
electromagnetic model.

Creep is a time-dependent plastic deformation of the metal
under stresses well below their yield strength. It is observed
when the beam’s metal is subjected to temperatures above
one-half of its melting point [17]. Hence, a gold switch with
a melting point of 1340 K is likely to fail over time if the
temperature exceeds 670 K, or 392 ◦C.

On the other hand, buckling occurs when compressive
stresses in the beam introduce instability while deflecting,
causing erratic and unpredictable switch behavior. Buckling
due to thermal stresses is predicted via the Euler buckling
formula [7]

εcr = Cπ2t2

12l2
, (8)

where εcr is the critical buckling strain in the beam, t is the
beam thickness, l is the beam length and C is 4 for a fixed–
fixed beam. Hence, for a beam with l = 400 µm and t = 2 µm,

the critical buckling strain is 8.22×10−5. Buckling will occur
when εth = εcr, where the thermal strain εth in the beam is
given by

εth = 1

l

∫ l

0
α
T dx, (9)

where α is the thermal expansion coefficient (13.8×10−6 ◦C−1

for gold) and 
T is the change in temperature.
Figure 14(a) displays a MEMS switch with a glass

(εr = 4) substrate 1000 × 100 × 2 µm3 and a gold beam
400 × 50 × 2 µm3. Figure 12(b) gives the corresponding
comparisons of the two failure mechanisms using full-wave
(with EFE-BI) and approximate modeling [16]. For this
geometry, buckling is the dominant failure mechanism at all
frequencies and power levels. It is observed that the EFE-
BI full-wave model consistently predicts lower temperatures
than the approximate model [21], and this is likely due to the
current approximations near the edges of the beam used in the
approximate model. Nevertheless, the trend remains the same:
failure is more likely as either power or frequency increases
(power having the stronger influence). That is, at typical RF
frequencies (X band and beyond), failure due to buckling can
occur with very little power as compared to the case when the
same switch is operated near dc. In fact, the buckling and
yielding failure phenomena were observed during and after
the RF self-heating, and refer to the device operating below
19 GHz and with an RF power near 0.5 W [25]. Such failure
phenomena could be suppressed by designing a switch having
wider, shorter and thicker beam and by controlling device
processing condition to introduce tensile residual stress within
the beam.

6. Conclusion

We developed an extended FE-BI (EFE-BI) formulation for
the calculation of the current density distribution on the beam
of inline shunt RF-MEMS switches. A key aspect of the
EFE-BI is the use of accurate matrix element approximations
which combined semi-analytical integral formulae to address
the small dimensions associated with RF-MEMS switches,
especially at UHF to X-band frequencies. This allowed for
practical RF-MEMS modeling where the other methods failed
due to highly ill conditioned matrix systems [24] caused
by the small dimensions. Validation examples showed that
the accuracy and efficiency of our method compared quite
well to the conventional FE-BI, commercial HFSS, static
approximations (when appropriate) and measurements. Also,
the EFE-BI method generated accurate results much faster and
at lower frequencies than previous methodologies. Because
the air around the MEMS switch is not meshed, significant
savings in computer time and memory were observed.
Integration of this rigorous full-wave EM mythology with
2D FEM thermal analysis was used to predict the failure
mechanisms for a practical MEMS switch and obtain good
matching result. We remark that although the focus was
on an inline and up-state shunt switch, the method is
equally applicable to other type of switches, possibly coupled
with future design optimization tools aimed at maximizing
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the power-handling capability and reliability of RF-MEMS
switches.
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