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Abstract

Automated assembly lines are subject to unexpected fail-
ures, which can cause costly shutdowns. Generally, the
recovery process is done “on-line” by human experts or auto-
mated error recovery logic controllers embedded in the sys-
tem. However, these controller codes are programmed
based on anticipated error scenarios and, due to the geo-
metrical features of the assembly lines, there may be error
cases that belong to the same anticipated type but are pre-
sent in different positions, each requiring a different way to
recover. Therefore, robustness must be assured in the sense
of having a common recovery algorithm for similar cases dur-
ing the recovery sequence.

The proposed approach is based on three-dimensional
geometric modeling of the assembly line coupled with the
genetic programming and multi-level optimization techniques
to generate robust error recovery logic in an “off-line” man-
ner. The approach uses genetic programming’s flexibility to
generate recovery plans in the robot language itself. An
assembly line is modeled and from the given error cases an
optimum way of error recovery is investigated using multi-
level optimization in a “generate and test” fashion. The
obtained results showed that with the improved convergence
gained by using multi-level optimization, the infrastructure is
capable of finding robust error recovery algorithms. It is
expected that this approach will require less time for the gen-
eration of robust error recovery logic.

Keywords: Automated Assembly Systems, Error Recovery,
Genetic Programming, Multi-Level Optimization

Introduction

An unexpected failure is an unavoidable phenom-
enon, which causes the automated assembly lines to
halt their operation. These failures can bring out
drastic results in economical issues. As indicated in
the results of the EUREKA project,! initiated to
benchmark maintenance in Scandinavian countries
in 1992, approximately 30% of the time spent on
maintenance is used for unforeseen repairs, 20% for
preventive maintenance, and 37% for planned
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repairs. A similar survey in the United States showed
that excessive maintenance costs were approximate-
ly $200 billion in 1990.

The diagnosis and recovery from such failures are
normally handled by on-line investigation of the
assembly line by human experts, which means cost-
ly shutdown of the assembly lines. Another approach
is using controller codes. It is stated in Zhou and
DiCesare? that in automated systems up to 90% of
the control coding effort is based on error recovery
by using programmable logic controller (PLC)
codes. However, these PLC codes are programmed
by humans based on “expected” error scenarios and
are deficient in dealing with “unexpected” scenar-
10s, leaving the recovery process to manual labor
work. A novel approach?® to deal with the unexpect-
ed failures is off-line synthesis of error diagnosis
and recovery logic based on the three-dimensional
geometry-based modeling of an entire assembly
line. Generation of unexpected error cases can be
accomplished by using Monte Carlo simulation of
the assembly process based on the statistical model
of the dimensional and functional errors in sensors,
robots, and products. Once those unexpected cases
are generated, error recovery logic synthesis for
those cases can be studied.

It is stated in Visinsky et al.* that in an assembly
line most errors occur during the part transport and
part mating. However, because the part presentation
errors are mostly dependent on the nature of the
assembly line,’ there may be different ways of recov-
ery. Due to the geometrical nature of the assembly
lines, there can be errors, which have the same error
type (that is, collision) but need to be recovered by
using a procedure different from the anticipated
case. For example, a collision error may occur in
many different ways during an assembly process.
The diagnosis of this failure can reveal the cause of
the error correctly. However, it may not be possible
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to detect the exact location of the collision, which is
very important for the recovery procedure. If the
location is different from the anticipated place, the
implemented recovery logic algorithm may not be
useful. Therefore, robust ways of recovery logic
must be investigated.

The solution of this problem consists of a special
program, which is composed of several commands
and directions for the industrial robot. This program
can be downloaded to the robot controller to per-
form the recovery task. These commands in the
recovery program are chosen from an available set
of commands that makes the problem a discrete
decision-making process.

In this paper, a new approach on generating
robust recovery logic is presented. The proposed
approach uses multi-level optimization to generate
robust recovery algorithms for the given error cases.
The studied error cases are all taken from collision
errors occurred during a part placement process. The
generation of the optimal recovery program is done
by a heuristic search® among the alternative error
recovery programs and is called genetic program-
ming. Genetic programming (GP)’ aspires to induce
a population of computer programs that improve
automatically as they experience the data on which
they are trained.

The difference of this method from the previous-
ly developed robot path planning systems®!? is that
previous methods require an initial error state to
develop a recovery plan and these initial states are
tried to be anticipated. Once a plan is developed
with a planner system, it requires translation of the
generated plan to working controller codes.
However, one of the advantages of the proposed
approach is that it uses genetic programming to gen-
erate efficient recovery plans in the robot language
itself. Therefore, no post-processing is required to
convert the plans into controller codes. Besides, the
approach is coupled with a robotic simulation soft-
ware package, which enables simulation of unex-
pected errors.

The method of evaluating the optimal program is
done in a “generate and test” fashion, and the valid-
ity of the generated programs is tested with a com-
mercial software package!' called Workspace from
Flow Software Inc. The following section contains
information on the previous work done on error
recovery and diagnosis, highlighting the importance
of having robust recovery logic in recovery systems.
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Previous Work

Srinivas' is one of the earliest researchers who
investigated error detection and recovery strategies.
His approach was considering the tasks to be
decomposable into a sequence of transformations
from the initial state to a goal state. Each of the
states between the initial state and the goal state is
monitored. If a state has not been reached, this
means a failure has occurred. The next step is build-
ing a failure tree and generating an error recovery plan.

Expert systems are one of the most popular tools
used in error detection and recovery in flexible
assembly systems. Two different methods are used in
the literature. The first method'® uses an expert sys-
tem to monitor robot operations, and if it detects an
error, the robot stops. The expert system goes into an
error diagnostic mode and analyzes the sensors that
describe the environment. After finding the cause of
the error, the expert system recommends a solution
procedure. The second method™ uses the expert sys-
tem to plan and execute the assembly process. The
user enters a part-oriented description of the assem-
bly. The expert system generates an assembly plan,
and if an error occurs, it revises the plan. Tzafesas
and Stamaou’s approach' is based on using knowl-
edge-based approaches for automated assembly. It is
believed that fuzzy logic and fuzzy reasoning based
techniques are more adequate than the others under
specific circumstances. The assembly system is
trained on-line for the possible errors, and appropri-
ate recovery logic rules are embedded to the system.
Recovery is accomplished by making deductions out
of these rules. Telagi and Soni'® investigated the dif-
ferent control methodologies such as neural net-
works and fuzzy logic in a manufacturing environ-
ment. Evans and Lee'” developed a method to inte-
grate reactive planning for automated error recovery,
while Kao™ discussed the selection of an optimal
error recovery strategy among the given recovery
options using a semi-Markovian model of produc-
tion states during recovery operations.

Several works have also been done on how to
manipulate the PLC code safely with the error
recovery codes generated manually or automatically
without introducing new errors. Zhou and DiCesare?
proposed four argumentation methods of process
control logic code with error recovery codes: input
conditioning, alternate path, feedback error recov-
ery, and feedforward error recovery. Cao and
Sanderson'® proposed a fuzzy Petri net controller as



an integrated representation of process control logic
and error recovery. However, those approaches are
lack of handling geometric features of the assembly
line, which is essential to make predictions of error
scenarios.

The need for robust recovery logic arises after the
error diagnosis stage. Error diagnosis is the key step
before determining the recovery process. Complete
diagnosis must be performed for the efficient error
recovery. The established techniques of failure mode
and effect analysis (FMEA), fault tree analysis
(FTA), and event tree analysis (ETA) have been in
use for many years.?? FMEA is used to examine all
possible component failures and to identify their
first order and final effects on the system. FTA and
ETA may be applied at various levels for examining
the errors and failures in a system. FTA is a top-
down technique for assessing the way in which sev-
eral failures can cause a single outcome or a system
failure. ETA is a forward technique, which may be
used to examine the propagation of an initiating
event (or failure) with the presence of a number of
other events, failures, faults, or conditions.

Abu-Hamdan and EI-Gizawy'" developed a
knowledge-based system for monitoring, diagnosis,
and error recovery for flexible assembly operations.
The control system consists of a distributed network
of intelligent sensing, action, and reasoning agents.
For error diagnosis, an AND/OR type failure tree is
constructed. The error type is the goal node (root of
the tree at the top level). The error causes are the
subgoals of the tree. The facts of the errors (that is,
sensor failure) are represented as the leaves of the
subgoals. The use of fault trees as a database of run-
time fault detection is discussed in Visinsky et al.*
An expert system is embedded to the system to mon-
itor the faults and maintain the probability of failure
for each node within the tree. Two finite state
machines (FSM) are used. The user/executive FSM
handles the interaction between the user and the
robot, while the critic FSM is responsible for the
safety of the robot system. Two other proposed
methods are known as failure reason analysis (FRA)
and multiple outcome analysis (MOA), which are
discussed in Hardy, Barnes, and Lee.*! FRA is based
on finding an explanation of the failure and tries to
derive a plan for recovery by using a failure tree. The
tree contains action nodes and failure nodes. The
data about the type of the error are collected from
the tree and passed to a planner module. In MOA,
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the states of the workcell are in consideration.
Detecting the deviation of the states from the
expected ones reveals the fact of failure. After an
error is detected, available data and gathered data are
used to conclude a predefined recovery strategy.

Several systems were developed for recovery
planning in manufacturing and assembly systems.
Kis and Vancza’s system?? involves combination of
expert systems with genetic programming using
STRIPS operators in manufacturing domain.
Another recent planning tool is developed by Klein,
Jonsson, and Backstrom® for the error recovery
process in assembly systems. The system is com-
posed of a planner using a polynomial time-planning
algorithm and a translator that translates the plans
into GRAFCET charts. However, this system
requires post-processing to compile the recovery
algorithm into a code for a programmable logic con-
troller.

All of the systems discussed above are focused on
the on-line recovery and training of the assembly
lines, which makes the process time and money con-
suming. Another disadvantage is performing diag-
nosis and recovery using expected error cases
because, due to the geometrical nature of the assem-
bly lines, there can be errors that have the same error
type (such as collision) but need to be recovered by
using a procedure different from the anticipated
case. For example, a collision error may occur in
many different ways during an assembly process.
The diagnosis of this failure with the developed sys-
tems discussed above can reveal the cause of the
error correctly. However, it may not be possible to
detect the exact location of the collision, which is
very important for the recovery procedure. If the
location is different from the anticipated place, the
implemented recovery logic algorithm may not be
useful. Therefore, robust ways of recovery logic
must be investigated.

Proposed Method

For robots to execute the programs generated off-
line successfully, the dimensions of the real-world
components need to be modeled accurately.
Otherwise, the difference will lead to positioning
and orientation errors. The method presented here is
based on an accurate three-dimensional geometric
model of the assembly line by using a commercial
software package. This three-dimensional model
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Framework of the Optimizer

provides the framework of testing the generated
error recovery logic off-line in less time than the
conventional on-line methods.

The system® is composed of a software module
and a commercial robotic simulation package. The
software module is responsible from the evolution-
ary computation process. This module enables the
user to generate programs for the problem and after
that evaluate the outputs from the commercial soft-
ware and proceed with the evolution process for the
next generations. The basic working mechanism is
given in Figure 1.

Problem Definition

In this paper, recovery from collision errors is
studied. Therefore, the objective is defined as to
minimize the part placement error between the final
position and its desired position on the fixture. A
distance function between the recovered position
and the desired position is used for the objective
function. Variables x,, y,, and z, are the desired coor-
dinates in 3-D space, while the coordinates obtained
by a recovery program are presented as x, y, and z.
Other constraints such as collisions or the working
envelope of robot are handled internally by the soft-
ware package and cannot be formulated explicitly.
To be conservative, part tolerances are taken as min-
imum clearance during the recovery logic generation
process. Therefore, the problem is a single objective
optimization problem with the objective function:

Minimize \/(x—xo)z+(y—yo)2+(z—zo)2 (1)

During the recovery procedure, tolerances are
allowed for the final position of the workpiece. The
acceptable tolerances are defined as 5 mm in all
dimensions. These tolerances are obtained from the
acceptable assembly tolerance for the workpieces.
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This also means that any local optimum, which is
below 5 mm difference in all coordinates, is accept-
able as the solution of the problem.

lx—x,|<5 )
ly=5,|<5 (3)
z-2,|<5 @)

The problem is handled in two phases:*

* Solving a relaxed problem for » different error
states to reach an intermediate state.

* From the obtained intermediate state, solving
the original problem to reach a desired state.

In the first step, several collision cases are solved
in parallel to find a recovery algorithm, which
enables reaching a common state for all of the cases.
For this step, the same objective function is used, but
the constraints are relaxed from 5 mm to 15 mm. A
feasible working envelope is defined around the fix-
ture for the robot movement. The aim is that multi-
level implementation of a relaxed problem makes
the problem much easier to reach an intermediate
state. Each state is taken individually, and generated
recovery logic is applied one by one to all states.
When a recovery algorithm is found that carries all
of the states to a common point, this step is com-
pleted.

In the second step, after the intermediate state is
obtained, a new problem of recovery procedure is
defined by taking this intermediate state as the ini-
tial state and the desired state as the goal state.
Constraint values are also restored to 5 mm. The
cubical working envelope is reduced to half size and
investigation on a second error recovery algorithm is
done. Finally, two error recovery algorithms are con-
catenated to obtain robust recovery logic for n dif-
ferent number of error cases. The complete proce-
dure is summarized in Figure 2.

The advantages of using a multi-level optimiza-
tion procedure are as follows:

* Trying to solve a relaxed problem will eventual-
ly result in fewer iterations than the single-step
optimization case because an intermediate state
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Figure 2
Multi-Level Optimization Procedure

is defined; there would be a fewer number of
function evaluations.

* The recovery algorithms, which are obtained for
reaching the final state from the intermediate
state, can be stored as subroutines and may be
used for the recovery of similar error conditions
later.

A fitness function is defined individually for all
error cases. These functions are taken as the inverse
of the objective function as indicated through Egs.
(5) and (6), where n is the number of error cases.
Therefore, the problem is converted into a maxi-
mization problem. The reason for this type of
change is that generally in the usage of genetic algo-
rithms it is preferred to have large fitness values for
better members; by changing the formulation to
maximization, this preference is assured.

i=1,2,. 5)

)

1

Je-x)+0,-9,) +G-2.)

The overall fitness function of a recovery pro-
gram 1is defined as its average fitness minus the
deviation between this average value and the mini-
mum fitness value among the » cases, as is shown in
Eq. (7). The variables w; and w, determine the
weight of each term. In case studies, these are taken
as (1,1). The purpose of defining this type of fitness

Ji ™

(6)
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function is to penalize the performance variance of
the recovery program for each error case. More
specifically, if a recovery algorithm performs in the
same way for all error cases, its deviation is zero and
the robustness is assured.

=w ‘E—wz-(&—minﬁ) (7)
n n

There can be cases where the maximum variance
occurs between the average fitness and the maxi-
mum fitness. However, those types of cases are not
penalized in order to keep the better solutions in the
search space.

The first step of optimization is completed when
a robust recovery algorithm is found. This recovery
algorithm makes all of the cases reach the interme-
diate state. After that, the problem is renewed. The
obtained intermediate state is defined as the only
error case to be recovered, and the final state is taken
as the goal state. At this stage, one fitness function
is defined as in Eq. (8).

1

f=
Ja-x Y +(-y, ) +G -2,y

®)

The same procedure is applied for the second part
of the problem. The obtained recovery algorithm for
the second part is combined with the one obtained in
the first part and robust recovery logic is obtained.

Genetic Programming Processor

In this study, during the generation of the error
recovery logic genetic programming is used. The
term “‘genetic programming” was first introduced by
Koza® in 1992, and it addresses the problem of auto-
matic programming, namely, the problem of how to
enable a computer to do useful things by automatic
programming.” Genetic programming uses the
working principles of genetic algorithms (GAs).

Genetic algorithms were first introduced by
Holland® in 1975. In GAs, design variables are
coded onto fixed-length or variable-length strings
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that are analogous to chromosomes in biological
systems.?® Strings are composed of characters,
which are analogous to genes. Each string represents
a solution point in the search space. An objective
function is defined within the problem, and the GA
tries to maximize the fitness of a solution point
based on a fitness function related with the objec-
tive. In GA, two basic operators are applied to the
selected pairs. The first operator is called
“crossover” in which the strings of two members are
cut and recombined from a random point, producing
two new members. The second operator is called
“mutation” and is applied by selecting a place in the
string randomly and changing its value. Mutation
has the advantage of introducing some diversity into
the search, while crossover uses the properties of the
current population to combine and produce better
results.

In genetic programming, each member in the
population is a computer program for the solution of
the problem. The reason of selecting GP as an opti-
mization method in this work is its power of dealing
with discrete design optimization problems as well
as the ease of its implementation in this case.
Because an optimal recovery program is being
searched, genetic programming is a perfect choice to
be used in such a problem.

The commands used for this study are taken from
KAREL?2 language."" These commands enable the
robot arm to approach the specified point (taking the
reference as the robot base and the destination point
as the tool center point) or to move relative to a pre-
defined coordinate point. The commands used in
this study are Move To, Move Away, Move Near, and
Move Relative. However, to represent a blank line in
the program, the Null command is also used. This
command is not in the structure of the KAREL2
language, but it is implemented here to present a
variable number of lines in a recovery program. The
command variables are coded into a discrete set of
variables, such as:

0 = Null

1 = Move To

2 = Move Away
3 = Move Near

4 = Move Relative

Each program command requires a formal way of
combination with the variables of tool center point
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Table 1
Use of the Commands
COMMAND SUFFIX
Move To <TCP>
Move Away <Offset>
Move Near <TCP> By <Offset>
Move Relative <Vector>

(TCP) and/or a relative movement in the negative z-
direction (offset). Table I shows the appropriate lex-
ical representation for each command.

The TCP variable is composed of six variables.
These variables are the three points in the robot
frame and the three orientations of the toolholder
arm. A vector is composed of three offset variables
in the space. This variable coupled with the Move
Relative command enables the robot to move its arm
relatively from its current position in three-dimen-
sional space.

A chromosome structure is defined for each line
of a program and is composed of five genes.”
Therefore, each program is coded into a multiple
chromosome structure. The first gene in the chro-
mosome structure is for the command value from
the specified set. The second gene is the tool center
point value, and it can be active depending on the
command type. From the third to fifth genes, the oft-
set values are defined. In case a vector value is need-
ed, all of the genes from three to five are active. If
the command seeks an offset value, only gene num-
ber three is active. Figure 3 shows the chromosome
structure.

The maximum number of lines for the recovery
program is limited to 10. Command number 0 (Null
command) represents a blank line in the program so
a variable length of DNA structure is defined within
the computer programs. For each chromosome, the
values of the variables are taken from a set, which is
randomly generated in the beginning. These values
are stored in one main matrix and several submatri-
ces in order to be retrieved and processed during the
evolution process.

At first, a TCP matrix is defined and filled with
the randomly generated values within the con-
straints. This matrix has the size of 1000 x 6. Each
row represents a TCP with its position and orienta-
tion values. The maximum number of rows, 1000, is
taken the multiplication of the number of programs
in a population with the maximum number of lines
in each program. After that, an offset value matrix is
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defined with the size of 1000 x 1. Each row repre-
sents an offset value.

The main matrix is a three-dimensional matrix
composed of all commands, teach points, and offset
values and has the size of 100 x 10 x 5. Each row in
the first dimension represents one computer pro-
gram in the population. The second dimension is
used for each line in a computer program, while the
third dimension is used for the chromosome struc-
ture of each line. This matrix holds the index values
from the teach points and offset matrices. These
index values are combined randomly in the begin-
ning of the optimization process and are changed
according to the evolutionary rules during the
process.

Evolution Procedure

In each generation, all of the members of the pop-
ulation are evaluated with respect to the desired fit-
ness function. Both nondeterministic and determin-
istic types of crossover are implemented. In nonde-
terministic crossover, the probability is taken as 0.9.
Weighted roulette wheel selection is used during the
study. The probability for a member to be in the
mate pool is given as:

p =2 ©

X,

where f; is the fitness value of the individual. After
two parents are selected, the crossover operation
takes place. The first step in the crossover process is
locating the crossover line point between the pro-
grams. Each program has a different number of lines
(that 1s, a variable number of DNA strands).
However, due to the structure of the program, it is
possible to not have all the lines “active”. If a colli-
sion has occurred during the execution of the pro-
gram and automatic recovery from this collision is
not achievable by using the rest of the command
lines, the rest of the program becomes “inactive”.
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Figure 5
Chromosome Structures After Crossover

These inactive lines are not pruned because they
may become active after the mutation. Therefore, a
variable, which keeps the number of working lines
for each program, is stored. When crossover takes
place, the random crossover point selection is cho-
sen from the active lines. Figure 4 depicts the action.

After the crossover line is determined, the next
step is locating the crossover point on the chromo-
some structure. A point on the chromosome is
selected randomly, and two children are generated in
the next generation by exchanging the genes after
the crossover point. Figure 5 shows the crossover
operation.

The second type of crossover uses deterministic
rules. At first, each member is ranked based on its
performance for each error state. After that, the inac-
tive lines of each program are pruned and their
active lines are combined, suggesting that this kind
of elitism produces better results. For n different
states, this operation produces e number of pro-
grams given with the following equation. The (n,k)
function represents the combination of # in k differ-
ent ways:
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Deterministic Crossover Procedure

Figure 6 demonstrates the overall operation. It is
observed that this type of elitism improves the evo-
lution process.

Mutation is not applied to this part of the
crossover. After programs are combined in this man-
ner, they are directly inserted to the next generation.
The rest of the members for the next generation are
obtained from the probabilistic crossover part.

Mutation takes place after the probabilistic
crossover operation to prevent premature conver-
gence. By applying mutation, a small portion of new
members is introduced to the population. In this
study, variable mutation probability is implemented.
The bias of mutation is focused on the active lines
but not limited to inactive ones. This type of muta-
tion may turn the inactive lines in the chromosome
structure to become active. During the operation, a
mutation line is selected first randomly. After that, in
this line a mutation point is determined again ran-
domly.

After the evolution step, the new generation of the
programs is stored in the main matrix structure. This
encoded structure is decoded into working programs
in KAREL?2 language. These programs are tested in
Workspace and their outputs are written into text
files. After that, these outputs are processed with the
developed program and the next evolutionary step
takes place according to these outputs. The summa-
ry of the developed system is given in Figure 7.

The implemented system is tested on several case
studies. The results demonstrated that the system’s
overall performance is efficient to find robust recov-
ery logic. These experimental results are given in the
next section.

Case Studies

A model assembly line is constructed by using
Workspace simulation software, and the details are

62

Generate initial
recovery programs

Test the programs by a
commercial software package

l
Evaluate the results and write them to
text files

N
Read outputs from the
developed program

1
Crossover
1
Mutation
J
Write new generated
recovery programs

Figure 7
Working Mechanism of Developed Framework

given in Baydar and Saitou.*** An IRB6000 type
industrial robot is used for the part placement pro-
cedure during the assembly process.

In the following case studies, at first only one col-
lision case, which is between the workpiece and the
fixture, is considered to recover. Then multi-level
optimization of three different collision points is
presented. In the case studies, the assumption is
made that the part is held in the gripper after the col-
lision and that repositioning can be detected proper-
ly. Figure 8 shows the model of the assembly line and
the desired position of the workpiece on the fixture.

Case Study 1

The first case study is taken from a collision state
occurring between the workpiece and the fixture, as
shown in Figure 9. Because this problem includes
only one state to recover, multi-level optimization
and deterministic crossover features are not used.
Several runs are carried out with the developed
infrastructure. A cubical space for the robot move-
ment is defined as the working envelope, which has
the size of 400 x 400 x 400 mm3. As is observed
from the outputs (Zable 2), an error reduction of
65% is gained in the replacement of the workpiece
after the initial generation. In generation 11, an opti-
mal result is found. This is a local optimum; however,
it is acceptable because it is in the tolerance limits.

The best program obtained after the 11th genera-
tion is composed of the lines stated below. The last
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Figure 8
Modeled Assembly Line with Workpiece at Desired Position

Figure 9
Collision Case Between Workpiece and Fixture

command line is added automatically by the system
to restore the desired final orientation.

‘ Best Program of Case Study 1:

ROUTINE GPCode26

BEGIN

Move To POS (-710, -684, -982, 90, 80, 0,RUFB’)
Move Relative (9,8,10)

Move To POS (-701 -692, -992, 90, 90, 0,RUFB’)
END GPCode26

During the recovery process, it is observed that
the algorithm is composed of three lines only
between the ‘BEGIN’ and ‘END” commands. The
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Table 2
Outputs from Case Study 1

Generation Objective Function
1 24.535
2 31.968
3 14.866
4 14.866
5 14.212
6 13.967
7 12.180
8 12.180
9 11.682
10 9.708
11 8.66
Table 3
Placement Errors
Coordinate Error (mm)
X 5
Y 5
V4 5

maximum lines is limited to 10, and this result
shows that recovery is accomplished in a signifi-
cantly small number of steps. The resulting place-
ment errors are given in 7able 3.

The history of the optimization is given in Figure
10. Tt is observed that both the fitness values of the
best and the worst recovery programs are increasing
as the evolution takes place. It should be noted that
the fitness function (to be maximized) is the inverse
of the objective function (to be minimized).

Case Study 2

Three collision points are studied in this case to
find a robust recovery algorithm. The first error
state is taken from the previous case study. Figures
11 and 12 show the other collision points. Because
there are multiple error states to recover, multi-level
optimization and deterministic crossover features
are used in this case. At first, the first level of opti-
mization is accomplished. This is completed in 10
generations (counting the initial random generation
as the first generation).

The positional errors after the 10th generation at
the intermediate state are given in Table 4. Note that
these values are obtained with the relaxed con-
straints.

After reaching the intermediate state, the second
level of optimization is started by regenerating the
population. After the seventh generation, a local
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Optimization History of Case Study 1 Coordinate Error (mm)
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Y 11
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Table 5
Positional Errors at the Final State
Coordinate Error (mm)
X 5
Y 3
Z 3

Collision point

Figure 11
Second Collision Point in Case Study 2

optimum is found. Table 5 shows the final place-
ment errors for the final state. Note that in this case
original constraint values are restored.

In total, 17 generations are needed to reach the
robust recovery algorithm, and it is composed of six
lines between the BEGIN and END command. For
the first stage of the optimization, the recovery algo-
rithm contains two lines of code. In the second stage,
four additional lines are added to the code. The
recovery algorithm is given below.

ROUTINE RecoveryCase2

BEGIN

— This portion of the code below belongs to the first level
Move To POS( -798, -794, -1029, 50, 50, 0, RUFB”)

Move To POS( -704, -708, -970, 50, 80, 0, RUFB’)

—This portion of the code below belongs to the second level
Move To POS( -718, -661, -1028, 40, 10, 0, RUFB’)
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Move Away -51

Move To POS( -718, -661, -1028, 40, 10, 0, RUFB”)
Move To POS( -711, -694, -990, 90, 90, 0,’ RUFB’)
End RecoveryCase2

Table 6 gives the history of the objective function.
It 1s observed that a fluctuation occurred between
the 10th and 11th generations. The reason is that the
second stage of the optimization is initiated at the
11th generation with a new generation of popula-
tion. This can be seen from Figure 13 also. Note that
the fitness function is inversely proportional with
the objective function; therefore, it is increasing
throughout the study.

The performance of the robust recovery algorithm
is tested on each error case individually, and it is
found that the procedure is working properly. The
obtained recovery code of the first case study is also
tested in this case study, but the results are not found
to be acceptable.

As experienced in the second case study for three
states, it took 17 generations to reach an acceptable
optimum within the acceptable tolerance limits;
however, in the first case study for one state, it took



Table 6
Change in the Objective Function

Generation Objective Function
1 56.311
2 37.23
3 37.23
4 36.959
5 36.969
6 33.030
7 33.030
8 32.465
9 32.465
10 20.346
11 24.39
12 15.78
13 15.556
14 15.556
15 15.556
16 15.556
17 6.556
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Figure 13
Optimization Progress of Case Study 2

11 generations. Besides, the final positioning of the
second case study is better than the one in the first
case study. It is experimented that the deterministic
crossover and multi-level optimization procedures
improved the convergence. It is also observed that
the length of the recovery program is dependent on
the initial number of states and their positions in the
space.

Case Study 3

A different set of three points is selected at this
time to test the performance of the system. These
three collision positions are given in Figures 14-16.
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This time it took seven generations to reach the
intermediate state. The positional error in each
dimension at the intermediate state is given in 7able
7 below.

After this point, second level of optimization is
initiated. The second state reaches the limits of the
final state in four generations. The final placement
errors are given in Table §.

In total, 11 generations are required to gather the
robust recovery code. Two recovery algorithms are
combined, and a robust recovery for these three
cases is obtained. The final algorithm is composed
of five lines between the BEGIN and END com-
mands, as given below. The first two lines are from
initial state to intermediate state, while the rest of
the lines are for the recovery from intermediate state
to final state. The change in the objective function is
given in Table 9.

ROUTINE Recovery2

BEGIN

— This portion of the code below belongs to the first level
Move Relative VEC (0, -70, -8)

Move Near POS (-702, -655, -1006, 50, 10, 0,’ RUFB’) By -43
—This portion of the code below belongs to the second level
Move Near POS (-733, -730, -1005, 80, 20, 0,RUFB’) By -74
Move Near POS (-713, -688, -991, 70, 20, 0, RUFB’) By -15
Move To POS (-711, -702, -986, 90, 90, 0, RUFB’)

END Recovery?2

The change in the objective function from inter-
mediate state to final state is smooth in this case.
However, as can be seen from Figure 17, the average
fitness of the members dropped at the eighth gener-
ation because a new population is generated for the
second-level optimization process. It is realized that
the average value increased between the eighth and
10th generations and this helped the best fitness
increase in the 11th generation.

It is noted that the second level of optimization
converged in four generations in this case. During
the case studies, three error states are considered for
each case study. However, the number of cases in the
initial set can be increased to obtain robust recovery
logic for n number of cases.

Collision detection between the objects is handled
internally by the software package. This detection
consumes minimal time during the iterative solu-
tion-finding process and is dependent on the CPU
used. Evaluation of each generation takes around
three minutes on a PIII-450 CPU during the case
studies.
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Collision
point

Figure 14
First Collision Point in Case Study 3
Table 7
Positional Errors at the Intermediate State
Coordinate Error (mm)
X 9
Y 9
Z 8

Figure 15
Second Collision Point in Case Study 3

Collision
point

Table 8
Positional Errors at Final State
Coordinate Error (mm)
X 5
Y 5
V4 1

Table 9
Change in the Objective Function

Generation Objective Function

38.105
24.35

24.35

18.815
18.815
16.301
15.033
12.083
12.083
12.083
7.1414
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Discussion and Conclusions

Automated assembly lines are subject to unex-
pected failures during their normal operation. Such
failures may lead to costly shutdowns and generally
require on-line diagnosis and recovery by human
experts to restore their normal operation. Previous
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Figure 16
Third Collision Point in Case Study 3

methods for automated recovery are focused on the
on-line recovery and training of the assembly lines
using planners based on expert systems. However,
these planner systems are aimed at developing a
plan for the anticipated error scenarios and, after
that, converting the generated plan to an understand-
able controller code. However, this type of approach
requires the post-processing of the plan and is based
on expected error situations.

In this paper, a different approach, which uses
three-dimensionally modeled systems, is proposed.
A computer program is developed and coupled with
a commercial software package to work off-line on
the robust error recovery logic generation by using
genetic programming. The proposed approach uses a
three-dimensional model of the assembly system to
generate and test robust recovery logic for the given
error conditions. The use of genetic programming
enables recovery code to be produced in the con-
troller language itself. Therefore, the need for post-
processing is eliminated. Besides, the system is cou-
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Optimization History of Case Study 3

pled with 3-D robotic simulation software to gener-
ate unexpected error states, which previous
approaches are deficient to fulfill. The system uses
deterministic and nondeterministic crossover and
variable mutation schemes with the implementation
of a multi-level optimization procedure to improve
the performance.

Because part misplacement errors widely occur
during the assembly process, recovery for collision
errors is studied. However, the system is not limited
to the collision errors only, and other error types can
be studied to recover in the future. The recovery
logic generation procedure accomplishes the multi-
level optimization process in two steps. In the first
step, several error states are studied in parallel to
find a common recovery algorithm for the relaxed
program. After that, in the second stage the solution
of the relaxed problem is taken as the only state to be
recovered for the original problem. Finally, the
recovery algorithms for both stages are combined to
get a robust recovery algorithm. It is observed that
this procedure:

+ Simplifies the problem of solving different error
states. Trying to solve a relaxed problem will
eventually result in fewer iterations than the sin-
gle-step optimization case. Therefore, the com-
putation speed would be increased.

* Leads to a robust error recovery algorithm that
can be used for different error states (that is, col-
lision errors occurred at different points in an
assembly line).

Although three states are considered in case stud-
ies, this procedure can be applied to a larger number
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of states. Due to its geometrical features, each
assembly line has different number of critical states
to be considered. Therefore, error sampling by using
the statistical model of the dimensional and func-
tional errors must be investigated for each line to
find robust recovery algorithms for each error case.
Future studies are aimed at this type of error case
analysis by using the Monte Carlo method.

Several limitations are identified within this
methodology. Currently, a recovery logic code con-
taining commands for one robot is being generated.
However, in some cases multi-actuator commands
(that is, controlling a turntable along with a robot)
may be necessary to use more than one agent for the
recovery process. Also, because of the software lim-
itations the dynamics of the parts (part slippage after
collision, part deflection, and so on) was not imple-
mented. However, possible part slippages or deflec-
tions can be obtained and used as the initial error
states by using a more capable software package that
realistically simulates dynamics. After performing
statistical process capability, the possible slippage
and deflection states can be obtained and a robust
recovery with the proposed approach can be found
no matter how the slippage occurs.

Performance of the system is evaluated with the
simulations, and the results showed that the deter-
ministic crossover and multi-level optimization fea-
tures improved the progress and that the system is
efficient to solve recovery problems and capable of
generating robust recovery plans for multiple differ-
ent error states. It is expected that this approach will
require less time for the generation of error recovery
logic.
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