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ABSTRACT 

Vehicle crashworthiness is an important yet difficult design attribute. It can be argued, that an 
assisting task for the design process would be to pre-compile library databases for the crash 
behavior of elementary structural members. Such databases would guide designers to quickly 
select the appropriate dimensions of structural members once estimates of the load 
requirements are available. Unfortunately, typical structural member cross-sections in the 
automotive body have complex geometrical shapes and no standard sizes. Thus, generating 
crash behavior databases for all possible dimensions of even a single shape is an extremely 
expensive task. A remedy is to generate databases containing relatively few sizes of the 
structural members, then employ meta-models to approximate the behavior of the structural 
members over the complete design domain of the dimensions. This paper investigates various 
meta-modeling techniques for estimating the behavior of structural members subjected to crash 
conditions. The examined meta-modeling techniques are: i) polynomial response surface fits, 
ii) cascaded feed forward neural networks and iii) radial basis neural networks. Results of the 
study show the superiority of the radial basis networks. Furthermore, a design example of a 
vehicle B-pillar subjected to roof crush is presented to demonstrate the advantage of pre-
complied database and meta-model component selection verses direct optimization of a full 
structure. 
 

KEYWORDS 
Vehicle Crashworthiness Optimization, Meta-Models, Surrogate Models, Response Surface 
Methods, Neural Networks, Taboo Search, Genetic Algorithms. 

1. INTRODUCTION 

Vehicle crashworthiness is an important vehicle attribute, which designers strive to improve in 
order to meet governmental regulations and increase market attractiveness. Unfortunately, 
crashworthiness is a difficult attribute to improve because of the complex nonlinear 
interactions between structural members, noisy numerical simulations and the requirement of 
expensive resources for simulating the crash phenomena. A brief review of the general fields of 
crashworthiness design optimization reveals three main research categories: i) topology
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optimization, ii) parametric optimization and iii) development of approximate models for the 
optimization task. Topology optimization may use material homogenization [1, 2]. Material 
homogenization optimizes material removal from non-critical zones by optimizing size of 
microstructure voids. An alternative approach to homogenization is material properties 
interpolation by using a virtual density parameter, which allows a smooth transition between 
strong material zones (reinforced regions) and softer material zones, which are foam-filled or 
voided [3-5]. In general, topology optimization is only useful during the early stages of 
design, that is, during the conceptual design phase, when many of the dimensions and 
parameters are not yet accurately known or finalized. On the other hand, parametric 
optimization is used for obtaining the actual final dimensions, which are to be implemented in 
building the vehicle. Parametric optimization requires prior definition of structural geometry 
and sets of variables that are allowed to change within limits are defined by the designer. 
Then, an optimization algorithm is used to estimate the best values for the variables which 
satisfy pre-set performance targets. Examples of full vehicle parametric optimization are 
presented in [6, 7] while examples of substructure optimization are presented in [8, 9]. The 
main difficulties in crashworthiness parametric optimization are the noisiness of the 
numerical simulation and the requirement of massive computational resources to run the 
detailed nonlinear finite element models (FEM) of the full vehicles or subsystems. For 
example, the case considered by Yang et al. [6] required the use of 512 processors running in 
parallel for 72 hours to perform only two local optimization iterations. Such requirement of 
expensive resources is a challenge that limits the use of full FEM models for optimization. 
 
Due to the massive requirement of computational resources required for crashworthiness 
optimization, a fair amount of research is dedicated to finding approximate models that can be 
used for optimization at a less expensive computational cost. Use of such models helps 
decrease the number of full FEM simulations required to achieve a good design. The most 
widely used type of approximate models is the response surface method [10, 11] (including 
several variations). A possible reason for such dominance is that polynomial response surface 
fits are generally better at providing approximation when few data points are available 
compared to other meta-models. The main limitation of such approach is that the crash of a 
full vehicle structure is a very complicated phenomenon, which seriously limits the trust 
region of virtually any surrogate model [10]. Another, less popular, meta-modeling approach 
is the use of coarse mesh FEM, lumped parameter or lattice models [12-14]. The main 
difficulty associated with such models is the realization of lumped parameters into an actual 
structural design. However, lumped parameter models do provide formalisms for estimating 
the load and stiffness requirements of substructures and in some cases individual structural 
components. More recently, a specialized meta-modeling approach based on the identification 
of the behavior of individual structural components during crash was developed by the 
authors. The new approach seems to have good potential for design purposes, while retaining 
the advantages of lumped parameter models [15]. 
 
Breaking the optimization problem of a full vehicle structure into a set of smaller problems 
using methodologies such as in [12-15] significantly reduces the complexity of the problem. 
However, selecting the dimensions of structural components to meet the target performance 
can become a tedious task when considering the large number of structural components in a 
real vehicle. As such, it can be justified that generating databases that describe the behavior 
during a crash event of different structural cross-sections can make the component selection 
task quicker, and such databases would be re-useable across different vehicles. Unfortunately, 
structural member cross-sections used in the automotive industry have difficult geometrical 
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shapes and no standard sizes, which would make generating databases for all possible sizes of 
even a single shape an extremely expensive task. A remedy is to generate databases 
containing relatively few sizes of the structural members, then employ meta-models to 
approximate the behavior of the structural members over the complete design domain of the 
dimensions. In that case, the behavior of a single component during crash is simpler and 
easier to approximate using meta-models and more importantly single component FEM 
simulation is much more reasonable in terms of computational resources requirement, thereby 
making it possible to generate a reasonably dense set of data points to fit a meta-model upon. 
 
This paper starts with a brief review of vehicle crashworthiness optimization, which 
motivates the development of a quick and reliable method to estimate the force-displacement 
characteristics of automotive structural components. The next section describes the main 
crash loading curve parameters to be identified, followed by a section dedicated to comparing 
the capability of different meta-modeling techniques to perform the approximation task. The 
compared meta-models are: i) polynomial response surface fits, ii) cascaded feed forward 
neural networks and iii) radial basis neural networks. A design example involving the B-pillar 
of a vehicle subjected to roof crush conditions is presented to demonstrate the advantage of 
design approaches using meta-models, then the paper ends with a summary of conclusions. 
 

2. CRASH BEHAVIOR PARAMETERS FOR STRUCTURAL MEMBERS 

In order to select appropriate performance parameters to describe the behavior of thin walled 
structural members during a crash event, several nonlinear FEM simulations are performed 
for different crash conditions and cross-section shapes. The cross-section shapes studied are 
the thin walled box-section (Fig. 1) and the thin walled hat-section (Fig. 2). Those sections 
are often used in the automotive industry. 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 3 and 4 show dimensionless plots of the typical resistance force (or moment) to 
deformation for box and hat sections respectively, when subjected to compressive crushing, 
bending and twisting. The plots were generated by performing nonlinear FEM analyses using 
the commercial code LS-DYNA [16]. The general deformation resistance behavior is 
characterized by: i) an increase in the deformation resistance force (or moment) with increase 
in deformation up till a certain point then ii) a collapse, after which the deformation resistance 
decreases even as the deformation increases and iii) a steady state, in which the resistance 
force does not drop below a certain value. Such results of numerical simulation are in general 
agreement with reported experimental observations [17] as well as with general engineering 
sense, where one expects to see a near linear behavior when the deformation is small, 
followed by an occurrence of buckling then steady plastic deformation. It is noted that the 

Fig. 1. Model of a Typical Box-Section 
 

Fig. 2. Model of a Typical Hat-Section 
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considered models are only for short components so that the effect of secondary buckling of 
long tubes is negligible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Following the approach in [15], the deformation resistance curve (force or moment) is 
approximated by dividing the curve into three main zones (Fig. 5). Zone #1 represents a 
purely linear elastic behavior, while in zone #2, the curve follows a quadratic equation that 
leads up to the peak value, then in zone #3, the curve follows an exponential decay that 
asymptotically approaches a steady value. To avoid discontinuities at the interconnections 
between zones, log-sigmoid functions [18] are used to provide a smooth blend. For the details 
of the equations, the reader is referred to [15]. 
 
For every crash resistance curve, there are three main parameters (Fig. 5), namely the peak 
load (Fp), steady load (Fs) and the location of the peak load (δp). There are also three tuning 
parameters which allow better matching between the approximated and actual crash resistance 
curves. The tuning parameters are: extent of the elastic zone (δe), maximum elastic force (Fe) 
and an exponential parameter (µ) that dictates how rapidly the fitted curve collapses to the 
steady value. 
 
Due to the inherent existence of numerical noise in the FEM crash simulations, prior to the 
identification of the parameters Fp, Fs, δp, δe, Fe and µ, the force or moment curve is filtered 
through a Butterworth digital filter [19] with a cut-off frequency of about 300 Hz. Several 
plots using different dimensions are generated to confirm that those six parameters are 
capable of capturing the overall deformation resistance curve (force-displacement or moment-
rotation) with fairly good accuracy. However, due to space limitations, only one such plot is 
shown in Fig. 6, which gives the bending resistance curves of a hat section. It is noted that the 
bending behavior for unsymmetrical sections such as hat sections depends on the bending 
direction because of the differences in size and location of the compression flanges. 
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For any given structural cross-section, there are six behavior curves, namely; axial 
compression, bending in two directions about two section axes and torsion. Each curve has 
six identifiable parameters. 
 
Building a good database of sections typically requires about 1000 to 2000 data points for 
every cross-section shape, which requires many LS-DYNA runs (about 10-15 days run time 
on a 2.4 GHz PC). However, it is a well invested computational cost since the database is re-
useable. 

3. META-MODELS FOR CRASH CURVES PARAMETER ESTIMATION 

Since the number of data points in a generated database is not enough to cover all design 
possibilities, it is important to have an accurate way of estimating the crash behavior for 
dimensions unavailable in the database. In this section, general purpose meta-models (also 
called surrogate models in the literature) are tested for such estimation tasks. The broad 
categories of general purpose meta-models in the literature are: i) Response Surface methods 
[10], ii) Neural Networks [18] and iii) Kriging approaches [20]. 
 
Response surface methods, which are available in many variations generally has have the 
same basic principle [21], which is summarized in the following steps: 
 
1. Assume a symbolic expression that relates outputs to inputs. The functions and variables in 

the expression do not change, but a set of parameters (like for example the coefficients of a 
polynomial) could be tuned. 

2. Perform tuning of the parameters in the expression to minimize an error function (usually 
least squares error) for the set of given data points (also called training points). 

3. Substitute in the symbolic expression to estimate the output due to a given set of inputs. 
 
A key issue for successful implementation of response surface methods is the selection of the 
symbolic expression in step 1. A popular choice is polynomial expressions [21]. While a high 
order polynomial generally gives a good fit at the database data points, it may have poor 
interpolating capability. As such, polynomials beyond the second order are rarely used in 
practice. In this paper both second order and third order polynomials are considered. 
 
Neural networks represent a family of methods inspired by the way the human brain cells 
work [18]. In this paper, feed forward neural networks (FFNN) and radial basis neural 
networks (RBNN) are examined. Other, more sophisticated neural networks (such as neuro-
fuzzy networks) are not considered in this paper because they usually involve much user 
intervention in order to properly tune the network. For the same reason, Kriging models are 
not considered in this paper. 
 
Since the hat-section shape presents sufficient complexity, it is used as a basis for comparison 
between the selected meta-models. The five dimension variables (which represent the inputs 
to a meta-model) are shown in Fig. 7 and the ranges and numbers of data points of every 
variable are given in Table 1. The outputs of a meta-model are the crash curve parameters Fp, 
Fs, δp, δe, Fe and µ for each of the six loading conditions (crushing, twisting and four cases of 
bending). A total of 1500 data points were generated, however 14 points were excluded 
because of failures in their nonlinear FEM simulations. Only 1470 of the data points are used 
for training (or tuning) of the meta-models. The rest of the points are used for performance 
evaluation. The normalized error for comparing the different meta-models is given as: 
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Table 2 presents a comparison of the normalized error value for: second and third order 
polynomial response surface fits, 70 and 120 inner neurons sigmoid-linear FFNN [18] and a 
regular RBNN. The normalized error values in Table 2 are computed using all six crash curve 
parameters for the six loading conditions. Thus a meta-model produces thirty six outputs 
given five inputs (dimension variables). Table 3 provides a similar comparison, but only the 
main outputs Fp, Fs and δp are considered, thus a meta-model produces eighteen outputs. 
Tables 2 and 3 show how well the meta-model fits the original training set, as well as three 
random samples at data points not included in the training set. Due to the computational cost, 
the random sample sizes were fairly small (5 data points per sample). However, the overall 
performance per sample was found to be consistent, therefore larger sample sizes were not 
perused. 
 
 
 
 
 
 
 
 
 
 
 
It is observed from Tables 2 and 3 that the RBNN has less error measure in almost all sample 
tests than polynomial response surface and FFNN. The observation that polynomial response 
surface cannot achieve as good performance as RBNN is the inherent limitation on the 
capability of low order polynomials to fit regions where rapid localized changes occur in the 
fitted data. Increasing the polynomial order gives better chance at fitting such regions but 
incurs other difficulties such as ill-conditioned matrices when performing the least squares fit 
as well as excessive sensitivity to errors in estimating the polynomial constants. 
 
The slightly surprising observation that FFNN show worse performance than polynomial 
response surface can be attributed to the large number of required outputs. Such a large 
number of outputs automatically increase the number of inner weights inside the FFNN. For 
the considered problem, FFNN used to generate Table 2 had approximately 2520 weights (70 
inner neurons) to 4320 weights (120 inner neurons), and 1260 to 2160 weights for the 
networks used to generate Table 3. Such a large number of tunable weights present a difficult 
task for the network training algorithms. Another observation is that both the 70-inner 
neurons and 120-inner neurons are exhibiting exactly the same performance, which implies 
that saturation in terms of performance has been reached. Reaching saturation makes adding 
more neurons to the FFNN ineffective in improving its performance. RBNN on the other hand 
are insensitive to the number of required outputs, and they retain the local zone adaptability of 
neural networks, and therefore it is no surprise that their performance is observed as superior. 
 

tb 

b 

ho 
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hh 

Fig. 7. Hat-Section Dimension Variables  

Table 1. Hat Section Variable Ranges 
Ranges* 

Variable Minimum Maximum 
# of steps 

in DB 
ho 60.0 100.0 5
b 70.0 160.0 4
hh 10.0 50.0 5
th 2.4 3.2 5
tb 0.8 1.2 3

* All dimensions are in mm 
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Good fitting of the crash curve parameters is a key step towards the use of pre-compiled 
cross-section databases and meta-models for crashworthiness design, as required in strategies 
in [15]. Moreover, such databases and meta-models can be used for preliminary design 
purposes, as demonstrated in the next section. 
 

Table 2. Normalized Error in Meta-Models – 36 Outputs Considered 
Test Data Samples 

Not within Training Set Within 
Training Set Meta-Model 

Sample #1 – 
at Corners 

Sample #2 – 
at Edges 

Sample #3 – 
Inner Points  Whole Set 

Polynomial 2nd Order 0.2011 0.1126 0.2291 0.0522
Polynomial 3rd Order 0.1698 0.1287 0.1031 0.0557
FFNN – 70 Inner Neurons 0.6428 0.3967 0.7885 0.1472
FFNN – 120 Inner Neurons 0.6428 0.3967 0.7885 0.1472
RBNN 0.1172 0.0805 0.1031 0.0022

 
Table 3. Normalized Error in Meta-Models – 18 Outputs Considered 

Test Data Samples 

Not within Training Set Within 
Training Set Meta-Model 

Sample #1 – at 
Corners 

Sample #2 – 
at Edges 

Sample #3 – 
Inner Points  Whole Set 

Polynomial 2nd Order 0.0936 0.1031 0.2660 0.0266
Polynomial 3rd Order 0.1057 0.1293 0.2578 0.0288
FFNN – 70 Inner Neurons 0.9152 0.4863 1.2577 0.1462
FFNN – 120 Inner Neurons 0.9152 0.4863 1.2577 0.1462
RBNN 0.0968 0.0784 0.0978 0.0014

4. DESIGN EXAMPLE: VEHICLE B-PILLAR SUBJECTED TO ROOF CRUSH 

4.1. Problem Description 

In the automotive industry, the term B-pillar refers to the vertical member on the side of the 
vehicle, which is located to the rear of the front passenger door (Fig. 8). The B-pillar plays 
essential roles in protecting the vehicle occupant during i) side crash and ii) roof crush if the 
vehicle gets overturned. Where side crash requirements usually dictate special reinforcements 
of the lower part of the B-pillar, such reinforcements rarely extend till the top portion of the 
B-pillar. Thus by assuming that additional reinforcements in the lower zone of the B-pillar 
would take care of the side crash requirement, selection of the all-through cross-section of the 
B-pillar can be done based on roof crush requirements alone. It is noted that an actual B-pillar 
is usually slightly tapered. However, in the current problem, which is intended for earlier 
design stages, the taper is ignored. 
 
The roof crush safety is tested by crushing the structure from the roof (Fig. 9), while 
recording the crush resistance. A vehicle passes the roof crush test if the recorded crush 
resistance force exceeds 1.5 times the weight of the vehicle (which is a good indication that 
the vehicle can get overturned without sever roof collapsing). In accordance with such safety 
requirement, the load carrying capacity requirement for the B-pillar model in this paper is set 
at a value of 39.2 kN. (or 4000 kg) according to load sharing estimates. Although the force 
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value and dimensions are not those of a particular vehicle model, these values are typical for a 
compact sized car. The design problem of the hat-section B-pillar is summarized as: 
 

Minimize: f = PillarMass (2)
Subject To: MaxCrushForce > 39240 (3)
Continuous Variables:  ho , b, hh (Fig. 7, ranges given in Table 1) 
Discrete Variables: th , tb (Fig. 7, ranges given in Table 1, step is 0.1mm) 

 
 
 
 
 
 
 
 
 
 

4.2. Best Known Solution of the Problem 

The design problem of a B-pillar subjected to roof crush conditions is discussed in [22] using 
Mixed Reactive Taboo Search1 (MRTS). In general, taboo search techniques have a good 
chance at finding good designs without requiring too many objective function evaluations 
[23-25]. Like Genetic Algorithms (GA) [26, 27], MRTS does not stop upon encountering a 
local optimum design, but has the capability to continue searching for even better designs. 
The basic principle of operation of MRTS pivots upon searching the local neighborhood of a 
current design, while memorizing its previous moves and preventing entrapment in local 
optima through imposing taboo conditions. MRTS has the advantage of allowing the user to 
pre-dictate the maximum number of model evaluations and when properly applied, it is 
guaranteed to do no worse than a corresponding local search algorithm. A reference solution 
of the problem is sought by performing several runs of each of MRTS [22] and real coded GA 
[27] (Table 4). The runs use a FEM model of the B-pillar for simulating the roof crush test 
conditions and the maximum number of FEM simulations per run is set at 1500. The best 
known solution to the problem is the one found by run #5 of GA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 For details of the MRTS algorithm, the reader is referred to [22] 

Fig. 8. B-Pillar Location in Vehicle Fig. 9. Model of Roof Crush Test 

Crushing Force 

B-Pillar 
B-Pillar 

(Source: American Iron and Steel Institute: www.steel.org) 
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Table 4. Results of Global Optimization Runs for the FEM Model of the B-Pillar 
Algorithm GA MRTS 

Run ID #1 #2 #3 #4 #5 #1 #2 #3 #4 #5 
ho (mm) 60.1 61.0 61.2 61.3 61.2 61.1 61.1 62.3 61.2 61.0
b (mm) 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0
hh (mm) 12.5 11.6 11.4 11.5 11.4 11.5 11.5 12.4 11.5 11.6
th (mm) 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
tb (mm) 1.2 0.8 1.0 0.9 0.8 0.9 0.8 0.8 1.2 0.8
Mass (Kg) 4.590 4.581 4.579 4.580 4.579 4.579 4.579 4.621 4.582 4.581
Con. Force (kN) 39.2 39.2 39.2 39.2 39.2 39.2 39.2 40.7 39.2 39.2

4.3. Problem Solution Employing the RBNN Meta-Model 

Having access to a pre-compiled database of cross-sections crash properties can be valuable 
to designers. Instead of performing costly FEM simulations to evaluate the performance 
during crash, it is possible to use the meta-model for a rough estimate of the suitable section 
size then further tune the estimate through a short local optimization run. Only RBNN is used 
in this design example since it seemed to have superior performance. After thoroughly 
searching the design alternatives using the RBNN (which is quick task), a short local 
optimization run is performed to fine tune the design. Table 5 shows the success of this 
approach in finding a design that is almost as good as the best known design (only 0.001% 
difference in the structural mass), while utilizing only 9% of the computational resources. 
 

Table 5. Results and Run Time Comparison – Direct vs. RBNN Assisted Optimization 
 Best Known Solution RBNN –  Assisted 

ho (mm) 61.2 61.1
b (mm) 70.0 70.0
hh (mm) 11.4 11.5
th (mm) 2.4 2.4
tb (mm) 0.8 0.8
Mass (Kg) 4.57905 4.57910
Constraint Force (kN) 39.2 39.2
Number of Full FEM Simulations 1500 120
Total Run Time on a 2.4GHz PC 36 hours 3 hours

5. CONCLUSIONS 

This paper motivates generating pre-compiled databases and suitable meta-models for 
approximating crash properties of structural cross-sections. Measures for approximating the 
crash behavior of structural members are introduced and a comparison of meta-models is 
performed. The comparison showed that radial basis neural networks have better performance 
in estimating such crash behavior compared to polynomial response surface fits and feed 
forward neural networks. A design example of a vehicle B-pillar demonstrated how proper 
implementation of meta-models can significantly improve the efficiency of the design task. 

ACKNOWLEDGMENTS 
This research is sponsored by Nissan Technical Center North America, Inc. The authors acknowledge 
Mr. Masakazu Nakamura, Mr. Ken Jimbo and Mr. Noborou Tateishi at NTCNA for technical 
information. 

 



MDP-8 Cairo University Conference on Mechanical Design and Production Cairo, Egypt, January 4-6, 2004                    Hamza and Saitou 

600 
 

 

REFERENCES 
1. Mayer, R. R., Kikuchi, N. and Scott, R. A., “Application of Topological Optimization Techniques 

to Structural Crashworthiness,” International Journal for Numerical Methods in Engineering, Vol. 
39, pp. 1383-1403 (1996). 

2. Mayer, R. R., “Application of Topological Optimization Techniques to Automotive Structural 
Design,” Proceedings of the ASME 2001 International Mechanical Engineering Congress and 
Exposition, November 11-16, New York, NY, IMECE 2001 / AMD 25458, (2001). 

3. Luo, J., Gea, H. C. and Yang, R. J., “Topology Optimization for Crush Design,” Proceedings of 
the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 
September 6-8, Long Beach, CA, AIAA Paper Number: AIAA-2000-4770, (2000). 

4. Gea, H. C. and Luo, J., “Design for Energy Absorption: A Topology Optimization Approach,” 
Proceedings of the ASME 2001 Design Engineering and Technical Conference, September 9-12, 
Pittsburgh, PA, DETC 2001 / DAC 21060, (2001). 

5. Soto, C. A., “Optimal Structural Topology Design for Energy Absorption: A Heurtistic 
Approach,” Proceedings of the ASME 2001 Design Engineering and Technical Conference, 
September 9-12, Pittsburgh, PA, DETC 2001 / DAC 21126, (2001). 

6. Yang, R. J., Gu, L., Tho, C. H. and Sobieski, J., “Multidisciplinary Optimization of a Full Vehicle 
with High Performance Computing,” Proceedings of the American Institute of Aeronautics and 
Astronautics 2001 Conference, pp. 688-698, AIAA Paper Number: AIAA-2001-1273, (2001). 

7. Mase, T., Wang, J. T., Mayer, R., Bonello, K. and Pachon, L., “A Virtual Bumper Test Laboratory 
for FMVR 581,” Proceedings of the ASME 1999 Design Engineering and Technical Conference, 
September 12-15, Las Vegas, Nevada, DETC 99 / DAC 8572, (1999). 

8. Kurtaran, H., Omar, T. and Eskandarian, A., “Crashworthiness Design Optimization of Energy-
Absorbing Rails for the Automotive Industry,” Proceedings of the ASME 2001 International 
Mechanical Engineering Congress and Exposition, November 11-16, New York, NY, IMECE 
2001 / AMD 25452, (2001). 

9. Chen, S., “An Approach for Impact Structure Optimization using the Robust Genetic Algorithm,” 
Finite Elements in Analysis and Design, Vol. 37, pp. 431-446, (2001). 

10. Yang, R. J., Wang, N., Tho, C. H., Bobineau, J. P. and Wang, B. P., “Metamodeling Development 
for Vehicle Frontal Impact Simulation,” Proceedings of the ASME 2001 Design Engineering and 
Technical Conference, September 9-12, Pittsburgh, PA, DETC 2001 / DAC 21012, (2001). 

11. Soto, C. A. and Diaz, A. R., “Basic Models for Topology Design Optimization in Crashworthiness 
Problems,” Proceedings of the ASME 1999 Design Engineering and Technical Conference, 
September 12-15, Las Vegas, Nevada, DETC 99 / DAC 8591, (1999). 

12. Redhe, M. and Nilsson, L., “Using Space Mapping and Surrogate Models to Optimize Vehicle 
Crashworthiness Design,” Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary 
Analysis and Optimization, September 4-6, Atlanta, Georgia, AIAA Paper Number: AIAA-2002-
5536, (2002). 

13. Bennett, J. A., Lust, R. V. and Wang, J.T., “Optimal Design Strategies in Crashworthiness and 
Occupant Protection,” ASME AMD-Vol. 126, pp. 51-66, (1991). 

14. Chellappa, S. and Diaz, A., “A Multi-Resolution Reduction Scheme for Structural Design,” 
Proceeding of the NSF 2002 Conference, January 2002, pp. 98-107, (2002). 

15. Hamza, K. and Saitou, K., “Design Optimization of vehicle structures for crashworthiness using 
equivalent mechanism approximations,” Proceedings of the ASME 2003 Design Engineering and 
Technical Conference, September 2-6, Chicago, Illinois, DETC 2003 / DAC 48751, (2003). 

16. LSTC, LS-DYNA Software Manuals, Livermore Software Technology Corporation, Livermore, 
CA, USA, (2001). 

17. Han, J. and Yamada, K., “Maximization of the Crushing Energy Absorption of the S-Shaped 
Thin-Walled Square Tube,” Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, September 6-8, Long Beach, CA, AIAA Paper 
Number: AIAA-2000-4750, (2000). 

18. MathWorks, MatLab 6.1 Neural Networks Toolbox Documentation, MathWorks Inc., Natick, 
MA, USA, (2001). 



MDP-8 Cairo University Conference on Mechanical Design and Production Cairo, Egypt, January 4-6, 2004                    Hamza and Saitou 

601 
 

 

19. MathWorks, MatLab 6.1 Signal Processing Toolbox Documentation, MathWorks Inc., Natick, 
MA, USA, (2001). 

20. Sasena, M., “Flexibility and Efficiency Enhancements for Constrained Global Design 
Optimization with Kriging Approximations,” Ph.D. Dissertation, University of Michigan, Ann 
Arbor, USA, (2002). 

21. Papalambros, P. and Wilde, D., “Principles of Optimal Design,” second edition, Cambridge 
University Press, New York, USA, (2000). 

22. Hamza, K., Saitou, K. and Nassef, A., “Design Optimization of a Vehicle B-Pillar Subjected to 
Roof Crush using Mixed Reactive Taboo Search,” Proceedings of the ASME 2003 Design 
Engineering and Technical Conference, September 2-6, Chicago, Illinois, DETC 2003 / DAC 
48750, (2003).  

23. Glover, F., “Tabu Search,” Kluwer Academic Publishers, New York, USA, (1999).  
24. Battiti, R. and Tecchiolli, G., “The Reactive Tabu Search,” ORSA Journal on Computing, Vol. 6, 

pp. 126-140, (1994). 
25. Youssef, A.M., “Reverse Engineering of Geometric Surfaces using Tabu Search Optimization 

Technique,” M.Sc. Dissertation, Cairo University, Cairo, Egypt, (2001). 
26. Goldberg, D.E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-

Wesley, Massachusetts, USA (1989). 
27. Michalewicz, Z. “Genetic Algorithms + Data Structures = Evolutionary Programs,” 3rd edition, 

Springer-Verlag, Berlin, Heidelberg, New York (1996). 


