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ABSTRACT 
Micro mechanical (MEMS) switches have sought for many promising applications due to its 
high power handling capability and low insertion loss compared to the solid-state 
counterparts. Despite these technological advantages, their reliability still requires much 
improvement.  One of the dominant failure modes of such MEMS switches is buckling due to 
residual and thermal stresses. As a solution to prevent the buckling, this paper proposes the 
use of elastic supports that allow switch expansion. Hybrid Discrete Simulated Annealing 
(HDSA), DSA followed by uni-variant search, is used for finding the optimum topology of 
the supports for the fixed-fixed beam type MEMS switches using nonlinear finite elements.  

KEYWORDS 
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1. INTRODUCTION 

Micro-electro mechanical systems (MEMS) are now found in different applications such as 
medical instruments, hearing aids, air-bag sensors, micro antennas and micro switches for 
radio-frequency applications [1-3]. Radio frequency (RF) MEMS switch is manufactured 
using thin film deposition micromachining technique [4]. A typical switch Fig. 1 is made of a 
thin beam (typically made from polysilicon or gold) rigidly supported at the two ends. The 
switch operation is realized by pulling down the beam with electrostatic force. Residual 
stresses arise in the beam during the manufacturing process. In addition, as the current 
passing in the beam causes the temperature raise and hence thermal stresses in the beam. 
Another cause of the thermal stresses is the difference between the thermal expansion 
coefficients of the beam and the substrate [5]. As a result, the switch can be subject to 
buckling or creep failure. It was found, for the switch configuration in Fig. 1, that buckling 
due to thermal stress is the dominant failure mode next to the local melting of contact surfaces 
[6].  
 

 
Fig. 1.  a typical “fixed-fixed beam” MEMS switch (side view). 
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This paper proposes a solution to prevent the buckling failure of the fixed-fixed beam type 
MEMS switches. The main idea is to find an optimum elastic support, instead of the 
traditional fixed rigid supports, that absorbs the thermal deformation and buckling forces, 
thereby preventing the buckling. The continuum topology optimization problem using Hybrid 
Discrete Simulated Annealing (HDSA), DSA followed by discrete uni-variant search, is 
formulated to find the optimal topology of the support.  
The paper starts with a brief review on topology optimization followed by a detailed 
description of the optimization problem formulation. Afterwards, a description of the HDSA 
algorithm is given. Finally, the optimization results are presented and discussed. 

2. CONTINUUM TOPOLOGY OPTIMIZATION 

Topology optimization is often referred to as “Layout Optimization” (or Generalized Shape 
Optimization). The importance of this type of optimization lies in the fact that the choice of 
the appropriate topology of a structure in the conceptual phase is generally the most decisive 
factor for the efficiency of a novel product. The term topology is derived from the Greek 
word topos, which means location, place, space or domain [7]. 
The first step in the field of continuum topology optimization was by Rossow and Taylor, [8]. 
Topology optimization of continua was clearly demonstrated by Cheng and Olhoff [9, 10], on 
optimal thickness distribution for elastic plates. Their work led to a series of works on optimal 
design problems introducing microstructures in the formulation of the problem [11]. The 
homogenization method for topology design can be seen as a natural continuation of these 
studies and has led to the capability to predict computationally the optimal topologies of 
continuum structures [12]. Topology optimization is now applied extensively in the design 
MEMS [2, 13]. 

3. PROBLEM FORMULATION 
 

Table 1. Properties of a typical MEMS switch  
for radio-frequency (RF) application [6]. 

Young 's Modulus (Pa) 8.00E+10 
Thermal expansion coefficient  1.42E-05 
Poisson’s Ratio 0.42 
Beam-length “L” (µm) 400 
Beam-thickness “t” (µm) 0.5 
Beam-width “b” (µm) 50 
Temp raise (oC) 280 

 
Table 1 shows the material properties (Gold) and the dimensions of a typical MEMS switch 
for radio-frequency (RF) application [6]. Using the straightforward continuum mechanics 
equations 1, 2 and 3 [14] and the given data, the buckling force and thermal force in the beam 
as well as the expected deformations due to these forces were calculated as shown in Table 2. 

Deformation due to a force f:  LL f
Ebt

∆ =         (1) 

Fixed-fixed buckling load:  
2 3

23
Ebtf
L

π
=         (2) 

Elongation due to temperature rise: L L Tα∆ = ∆         (3) 
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Table 2. Expected deformations and forces  
in the MEMS switch in Table 1. 

Bucking Force (µN) 10.28 
Deformation to avoid buckling (µm) 0.00206 
Elongation due to temp. rise (µm) 1.59 
Force induced by such elongation (µN) 7952 

 

It can be deduced that the buckling force is too small in comparison to the thermal force 
induced. As a result one can neglect the buckling force, and our objective at this point would 
be deigning a support that can absorb thermal deformation giving zero stresses in the beam. 
 

 
Fig. 2. Location of the supports for the MEMS switch (top view). 

 

Making use of the double symmetry in the problem and ignoring out of plane component of 
the thermal force (the force angle is 1.1458o), the design domain is reduced to the one shown 
in Fig. 3. 
 

 
Fig. 3. Discretized design domain for the support. 

 

The domain is discretized into fifty elements (10×5). The optimization was solved as a 
discrete problem with the discrete density (ρ) of the material at each finite element being a 
design variable (0 = absent, 1 = present). To overcome re-meshing, absent elements are 
assumed to have Elasticity modulus of 1/1000 of that of a present element. The total force is 
redistributed over the present elements at the right edge of the design domain. Since the 
desired strain in design domain is relatively large (ε > 0.01), nonlinear incremental solver is 
used to account for the large deformation. The number of increments used was 20. 
The objectives are 1) to maximize the average connectivity between any two adjacent 
columns of elements and 2) to minimize the number of elements used. In other words the 
problem is formulated as a multi-objective optimization problem: 

9 5

1 , , 1 10 5
1 1

2 ,
1 1

min : ( )
9

i j i j
j i

i j
j i

w
f w

ρ ρ
ρ

+
= =

= =

−
= +

∑∑
∑∑ρ

ρ     (4) 

Subject to: 
G1 ≡ Connectivity between any two adjacent columns, 
G2i ≡ Deflection constraint ≡ max ( ) 0,    1, 2, ..., ,i i mδ∆ − ≥ =ρ    (5) 
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G3i ≡ Deflection constraint ≡ min ( ) 0,    1, 2, ..., ,i i mδ∆ − ≤ =ρ    (6) 

{ }, 0,1i jρ ∈             (7) 
 

Where ρi, j is the density of the element in row i and column j, m is the number of present 
nodes on which the force is applied. w1 and w2 are weighing values to ensure equal effect of 
the two objectives (w1 = 0.9 and w2 = 0.1). ∆max,  ∆min are the maximum (1.2 µm), minimum 
(0.8 µm) nodal displacements at the points of loading respectively.  
The penalized objective function f(ρ) is now calculated as follows: 
 

1 1

1000 No. of violations of G1     If G1 is violated
( )

( ) 1000 2 1000 3         Otherwise.
m m

i i
i i

f
f G G

ρ
ρ

= =

×
=  + +

∑ ∑
   (8) 

 

Where G2i and G3i are equal to zero if their constraints are not violated. 
 

The deflections associated with constraints G2i and G3i were evaluated using non-linear finite 
elements incremental solver. The solver takes into account the thermal expansion due to 
temperature rise [15, 16]. 

4. OPTIMIZATION METHOD 

To effectively overcome the multi-modal and discrete nature of the topology optimization 
problem in Section 3, a hybrid optimization approach was used implementing Discrete 
Simulated Annealing (DSA) method followed by a discrete uni-variant search [17, 18]. 
Simulated annealing, also known as Monte Carlo annealing, statistical cooling, probabilistic 
hill climbing, stochastic relaxation or probabilistic exchange algorithm, was first introduced 
by Kirkpatrick et al. [19].  This algorithm is known as simulated annealing, due to the 
analogy with the simulation of the annealing of solids it is based upon [20]. The HDSA 
algorithm starts with the basic DSA algorithm followed by discrete uni-variant search, as 
illustrated in the following pseudo code [17, 18]: 
 
Begin  
Step 1: (Initialization) 

- Choose a start point x(0,0) for the independent variable. 
- Choose a start temperature T(0) = T0 
- Set x* = %x  = x(0,0), k = 0, and l = 1 

Step 2: (Metropolis simulation) 
- Let x(k, l) = abs( %x + z); Where z is a set of discrete random numbers for all independent 

variables drawn from a the set {0, -1}. 
- If F(x(k, l)) < F(x*),  set x* = x(k, l) 
- If F(x(k, l)) < F( %x ),  go to step 4 

Else 
  Draw a uniform random number p ∈[0,1)     

  If ( ) ( )( , )

( )

-
exp k l

k

F F
p

T

  <  
  

%x x , go to step 4 

Step 3: (check the number of Metropolis simulations) 
- If  Nl L≥ ,  go to step 5. 
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Step 4: (Inner loop) 
- Set %x  = x(k, l), l = l +1, and go to step 2 

Step 5: (termination criterion) 
- If k ≥ Kf, end the DSA and go to  Step 7 with solution x* 

Step 6: (Cooling loop) 
- Set x(k +1, 0) = x*, and %x  = x* 
- Cool T; T(k +1) = αT(k),   0 < α < 1 
- Set l = 1, k = k +1, and go to step 2 

Step 7: (discrete uni-variant search) 
- Randomly choose an element to change its state 
- If all the elements are chosen,  End 
- If the element was chosen earlier,  repeat step 7 
- Set ρelement = abs(ρelement - 1) 
- Evaluate new(objective function value (OFV)) 
- If new(OFV) < old (OFV),  

Update the solution 
Add the element to the set of chosen elements 
Repeat step 7  

End. 
 

It can be seen that several parameter values, initial temperature value (T0), number of cooling 
loops (Kf), length of the Metropolis simulations (LN), and the decrement of the control 
parameter (α), must be provided for tuning the algorithm for efficiency.  
In the following results, LN = 1 500, α = 0.7, Kf = 15, leading to a total number of function 
evaluations = 22 500. The value of T0 is computed each time the program runs using the 
following method: For a number of random transitions, calculate the average increase in the 
objective function value, 

+
∆F  

Find T0 such that:    
( )0

0ln
FT
λ

+
−∆

=         (9) 

 

In discrete uni-variant search, all the elements in the mesh (present and absent) are checked 
randomly. The element density is changed, from 0 to 1 or from 1 to 0, and the objective 
function is evaluated. If the objective function of the new topology is lower than that of the 
previous topology, the new topology is accepted. The process is repeated until all the ground 
structure members are checked.  

5. RESULTS AND DISCUSSION 

To account for the multi-modality and the random nature of the HDSA algorithm, the 
problem was solved several times with different starting points. The optimum solution among 
all HDSA runs is shown in Fig. 4 (a). The redundant elements that were not removed using 
the HDSA are trimmed manually yielding to the topology shown in Fig. 4 (b). Table 3 shows 
the objective function values for DSA, HDSA and the manually trimmed topologies; it also 
shows the horizontal displacements at the end nodes. 
The above topology has the lowest objective function value, the elements are efficiently used 
and the average connectivity is very high reducing the electrical resistance of the support. The 
horizontal deflection of the end nodes is not far from the desired deflection (-0.8), which 
means that the support has an acceptable stiffness as well. 
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Fig. 5 and Table 4 shows one of the suboptimal topologies obtained in an optimization run. If 
it is desired to have smooth, best usage of material, and symmetric support, this topology can 
be further simplified manually to the one in Fig. 6 and Table 5. It should be noted that these 
topologies, both before and after manual simplification, are less stiff than the optimum 
topology in Fig. 4. In addition, they have much lower element connectivity which could cause 
higher electric resistance. 

       
      (a)       (b) 

Fig. 4. (a) Optimum output by HDSA; (b) horizontal deformation of the topology after 
manual trimming.  

 

Table 3. Optimization results and consequent  
displacements at the end nodes.  

 HDSA Manually trimmed 
Objective function value 0.2667 0.2556 
Average connectivity 3.3333 2.4444 
Average number of elements 3.6000 2.7000 

Nodal displacements -0.8413 
-0.8054 

-0.8339 
-0.8267 

 

 
       (a)        (b) 

Fig. 5. (a) Suboptimum output by HDSA; (b) horizontal deformation of the topology after 
manual trimming. 

 

Table 4. Optimization results and consequent  
displacements at the end nodes. 

 HDSA Manually trimmed 
Objective function value 0.3222 0.3667 
Average connectivity 2.7778 2.3333 
Average number of elements 3.1000 2.7000 

Nodal displacements -0.8045 
-0.8070 

-0.8323 
-0.8026 
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(a)      (b) 

Fig. 6. (a) manually simplified topology of Fig. 5 (b) horizontal deformation. 
 

Table 5. Optimization results and consequent  
displacements at the end nodes. 

Objective function value 0.3444 
Average connectivity 1.5556 
Average number of elements 1.9000 

Nodal displacements -0.8702 
-0.8702 

6. CONCLUSION 

HDSA in addition to manual modification were used to find the optimum topology of 
structural supports for MEMS switches. Two elastic support designs were presented to 
increase the thermal reliability of such switches, considering the geometric nonlinearity and 
thermal expansion.  
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