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Abstract

Pythagorean—hodograph (PH) curves admit the formulation of
real-time CNC interpolators that are extremely accurate, flexible,
and robust. Motivated by the practical benefits of these algorithms
in high—speed machining applications, we study the approximation
of “traditional” (piecewise-linear/circular) G code part programs
by PH curve tool paths. A least—squares fitting approach, entailing
the solution of a non-linear system of equations in four variables, is
employed to accomplish this approximation. We discuss both the
Newton—Raphson and simulated annealing methods for solving this
system. We also address issues of tolerance computation, footpoint
parameter refinement, penalization of the objective function by the
absolute rotation numbers or bending energies of PH curves, and
extension of the fitting procedure to 3D tool paths.

1 Introduction

Continuing efforts to reduce manufacturing costs and improve production
efficiency have prompted great interest in high—speed machining processes,
which employ feedrates and spindle speeds an order—of-magnitude or more
higher than those of conventional CNC practice [3,22,24,32]. Although
there are currently no universally-acknowledged (machine-independent)
standards for what constitutes “high-speed machining” (HSM), spindle
speeds in the range 10,000-50,000 rpm and feedrates of ~ 1200 in/min
(~ 50 cm/sec) are not uncommon.

Dynamical instability is of central concern in selecting HSM spindle
speeds and feedrates. Indeed, some authors define the high—speed regime
in terms of approach of the cutter tooth engagement frequency with the
workpiece to the natural frequency of the machine tool system, which
may incur resonant vibration (i.e., chatter) of the cutter [31]. Our present
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2 Least-squares approximation with PH curves

concern is not with this problem, which has been studied in some depth,
but rather with communicating tool path descriptions to the CNC system
in a concise manner that is sufficiently flexible to accommodate smooth
accelerations to high feedrates; to suppress machining force variations by
continuous feedrate variation; and to subdue feedrate fluctuations that
arise from the discrete nature of traditional (i.e., piecewise-linear/circular)
G code part programs.

Specifically, we shall advocate the use of real-time CNC interpolators
for Pythagorean—hodograph (PH) curves [18] in HSM applications. The PH
curves are polynomial parametric curves, compatible with the standard
Bézier/B-spline representation [7] of modern CAD systems, whose special
algebraic structure makes them uniquely suited to the problem of real—
time interpolation at either constant or arc-length/curvature-dependent
feedrates. A variety of PH curve interpolators, together with experimental
results from their implementation on an open—architecture CNC milling
machine, are described in [13, 14, 20, 21] (other authors [5, 6,26, 29, 30, 34]
have also formulated free-form curve interpolators, but their algorithms
are based on first—order Taylor approximations and thus lack the accuracy,
robustness, and flexibility of the PH curve interpolators).

Real-time PH curve CNC interpolators provide many advantages over
“traditional” (linear/circular) interpolators, that are especially valuable
in the HSM context — specifically:

o the ability to specify smooth accelerations and decelerations along
curved tool paths, through the use of feedrate functions with linear
or quadratic dependence on the arc length [20];

o the use of curvature-dependent feedrates to reduce machining—force
variations due to varying material removal rates at fixed depth of
cut along curved tool paths [13];

o the ability to directly interpolate the offset at a given fixed distance
d from a curved path, for tool-radius compensation [12,20];

e suppression of feedrate fluctuations incurred by the incompatibility
of discrete (i.e., linear/circular) tool path descriptions with smooth
realization of high speeds, and hence improved surface finish [14].

Note that, for traditional G code part programs, there is a fundamental
conflict between the accuracy with which a curved path is specified, and
the smoothness with which it is traversed at high feedrate. The accuracy of
a piecewise-linear/circular tool path approximation may only be improved
by increasing the number (and reducing the size) of the approximating
segments. However, if { is a typical segment length, V' is the feedrate, and
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At is the system sampling time, feedrate accuracy is maintained only if
VAt < ( (i.e., many sampling intervals elapse in traversing a segment).

When ¢ = 1 mm and At = 0.01 sec, for example, one may expect poor
feedrate performance as V approaches 10 cm/sec. This can have a variety
of deleterious consequences — including degradation of surface finish due
to “jerkiness” of the tool motion, and execution times longer than those
nominally expected from the specified paths and speeds. The PH curve
interpolators circumvent these problems by generating the timed reference
points, required by the control algorithm, directly from the exact analytic
definitions of the curved tool paths.

A system of G codes for communicating PH tool paths and feedrate
functions to CNC machines has been developed [14]. This was designed for
compatibility with the existing conventions [1] for linear/circular G codes,
allowing the latter to be combined with PH curves in part programs. We
encourage the reader to consult the references cited above for background
on PH curve interpolators; see also [2,8,9,10, 11, 15, 19] for details on basic
properties of, and construction procedures for, PH curves.

2 Tool path approximation

Ideally, tool paths are generated ab initio in terms of PH curves in CAD
systems, and downloaded to CNC machines incorporating the appropriate
software interpolators. However, although PH curves are fully compatible
with the infrastructure of existing CAD systems, and intuitive methods
can be provided for users to construct and manipulate them, most CAD
vendors are entrenched trying to make current functionality work robustly,
and exhibit reluctance to venture into uncharted territory.

Thus, as a practical means of taking advantage of the capabilities of
PH curve interpolators in HSM, we focus on the problem of approximating
“standard” (linear/circular) G code part programs by PH curves to a given
tolerance. Our intent is to make use of a least—squares fitting procedure to
replace numerous linear/circular motions by relatively few PH segments.
Once the geometrical approximation of the tool paths is accomplished,
feedrate functions may be imposed on the PH curves to suit requirements
of the particular HSM application. A program serving these purposes can
then be used as a universally—compatible “post—processing” package (this
approach was suggested by Bruce Nourse of Manufacturing Data Systems
Inc., Ann Arbor, MI — a supplier of “unbundled” open—architecture soft-
ware CNC controls). It is expected that the least—squares PH curve fitting
methods will be useful in other contexts — e.g., in “reverse engineering.”
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2.1 Pre—processing steps

We wish to perform least—squares fits of planar PH quintic curves to an
ordered sequence of N + 1 points, qg,...,qn. The first step is to identify
subsequences of the point data that have “sufficiently simple” shape to
admit accurate fits. One possible strategy is to require these subsequences
to be monotone with respect to both the coordinate axes — we say that
Qs - - - s Qmtn 18 @ monotone subsequence if

(r1 — ) (zr — 23=1) >0 and  (yre1 — yr)(Yr — Yr—1) > 0

for k=m+1,....,m+n—1, where qx = (@, yxr). At first, we attempt
to fit a single PH quintic r(#) to each monotone subsequence. To ensure
continuity, we require the PH curve to interpolate the first and last points:
r(0) = q,, and r(1) = 4 (end—tangents might also be fixed to ensure
G*' continuity). If the fit does not satisfy the specified tolerance, we split
Qs - - - s Qman Into two subsequences, and fit a PH curve to each — this
process can be repeated recursively until the desired tolerance is attained.

2.2 Pythagorean—hodograph curves

[t is convenient to introduce the complex representation [9] for PH curves,
in which the z and y components of a plane parametric curve are regarded
as real and imaginary parts of a complex function r(¢) = «(t) +iy(t) of a
real variable t. The square of any complex polynomial w(?) = u(t)+iv(t)
then yields a hodograph r'(¢) = 2'(¢) + iy'(t) = w?(¢) such that
?(t) = W) =), y(t) = 2u(t)u(t), o) = u¥(t) + v*()
are three polynomials satisfying the Pythagorean condition
:1;’2(t) + y'Q(t) = Uz(t).
Thus, for example, the Bernstein—form complex quadratic
w(t) = wo(l —1)* + wi2(1 — 1)t + wyt?
vields, upon integrating r'(¢) = w?(¢), the Bézier representation
5 5 .
) = e, 0= (Ja-or e
=0 t

of a planar PH quintic, with control points

p1 = pPo + wWo /5,

Pz = P1 + Wowy /5,

Ps = p2 + (QW% + wowg) /15,

Ps = Ps + WiWw2 /5,

Ps = ps + W3 /5, (2.2)
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po being an arbitrary integration constant. We also write the given point
data in complex form as qx = xp +1yg for k =0,..., N.

2.3 Non-linear least—squares fits

Our problem of fitting a PH quintic r(¢) to the points q, . . ., Qm4n differs
from “ordinary” least—squares fits in two respects. In the latter context,
one finds a function f(¢) approximating scalar values fo,..., f, at given
independent—variable values t,...,t,. Further, the “fitting parameters,”
with respect to which the sum of the squared deviations [ f(¢1) — fx]* will
be minimized, appear linearly in the fitting function f(?).

In fitting a parametric curve to point data q,,, . . . , Qmin, the parameter
t is the independent variable, and we must identify a “target value” ¢; for
each point q. Ideally, t; would correspond to the footpoint of qi on r(t)
— i.e., the value that minimizes |r(t) — qi| for ¢ € [0,1]. In general, this
footpoint parameter value is a root of the polynomial equation

Pty = ¥(1) - [r(t) — qi] = 0. (2.3)

of degree 2n — 1 if r(¢) is of degree n. Since the coefficients of r(¢) are not
known a priori, and t; does not admit a closed—form expression in terms
of them if n > 3, we must rely on fixed estimates of t,,,...,t,1, in the
fitting procedure. For monotone data, a reasonable choice is

UL lee — 2w | Yk — Y|

ty = = + (2.4)
2 |xm+n_foL| |ym+n_yTrL|
for k =m,...,m+n, i.e. the average of the fractional = and y distances of
qr = (xk, yx) along the overall & and y extents of the data qu,, ..., Quin-
Given these choices for t,,,...,t,,1,, our problem is to minimize
m—+n 5
A(W07W17W2) = Z | r(tk) - CIk| (25)
k=m

with respect to wq, wy, wo, subject to the constraint

2W? + wawy

3 + WiWy + W% =5 (qm+n - qm) ’ (2'6)

W(Q) + wowy +
which ensures that ps = r(1) = qum+n on taking po = r(0) = q,, in (2.2).

The second difference between our problem and an “ordinary” least—
squares fit is now apparent — the fitting function r(¢) defined by equations
(2.1) and (2.2) depends non—linearly on the fitting parameters wg, wy, wo.
Hence, we cannot expect to obtain a linear system by equating to zero the
derivatives of (2.5) with respect to these parameters.
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Equation (2.6) defines a quadric surface — specifically, an ellipsoid —
in the complex three-dimensional space C* with coordinates (wg, Wy, wz).
In order to eliminate this constraint, we parameterize the quadric in terms
of complex—angle variables 8 = 6 4+ 19 and ¢ = ¢ + 1y as

Wo = /Ps— Ps (sin0 + \/5COSQCOS¢ — \/gcosesin(ﬁ) ,

Wi =/ Ps—Ps (Sin0 — 2\/5COSQCOS¢) ,
Wy = 1/ Ps — Ps (sin9+\/56080cos¢—|-\/gcosesin(ﬁ) ] (2_7)

where we write p; = q,,, and py = q4n. Here, the complex trigonometric
functions can be written explicitly in terms of real and imaginary parts as

sin@ = sin(f +10) = sinfcoshdd + i cosfsinhd,
cos @ = cos(§ +10) = cosfcoshd) — isinfsinhd, (2.8)

and similarly for ¢ = ¢ 4+ i@ (note that these functions are periodic with
respect to the real part, but not the imaginary part, of the argument).

The parameterization (2.7) of the “constraint quadric” arises from an
orthogonal transformation that diagonalizes equation (2.6) — it is easily
verified through direct substitution. Finally, we simplify the control point
expressions (2.2) by using (2.6) to obtain

Po = Ps,

p1=ps + w5 /5,

P2 = Ps + (W5 +wowy) /5,

Ps = py — (Wiwz +w3) /5,

P4+ = Py — W§/57

Ps = Py (2.9)
We can thus re-formulate the least—squares fitting problem in terms of an
unconstrained minimization of the objective function

m—+n

A8, 9) = E | e(ts) — aqil?, (2.10)

where the dependence of r(¢) on the complex fitting parameters 8 and ¢
is defined sequentially through equations (2.1), (2.9), and (2.7).

3 Newton—Raphson scheme

We can minimize (2.10) by setting its derivatives with respect to the fitting
parameters equal to zero, and solving the resulting system of non-linear
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equations. However, since the modulus |z| of a complex variable z is not an
analytic function of that variable, we cannot formulate this minimization
directly in terms of the complex unknowns 8 and ¢ — we have to express
(2.10) explicitly in terms of their real and imaginary parts (6,9) and (¢, ¢).
In other words, we re—write (2.10) in the form

m—+n

A(07ﬂ7¢799) = Z[x(tk)_xk]z + [y(tk)_yk]Zv (31)
k=m
where x(t) and y() are obtained by substituting (2.8), and the analogous
expressions for ¢, into (2.7), (2.9), and (2.1), and separating the result into
real and imaginary parts. Since the resulting expressions are somewhat
cumbersome, we refrain from explicitly enumerating them.
For convenience of notation, we shall now write

v=1[vvvsv ]l =[006p]", (3.2)

and

OA 0A O0A 0A

— T — a o, 9. o
t=[fffsfs] = Jvy Ovy Ovs Jvg

Thus, the least—squares fitting problem amounts to solving the non—linear
system of equations f(v) = 0, where the component functions fi,..., f1
of the variables vq,..., vy are defined by

0A mtn P P
fi = 9o = =2 Z r(te) — xp ai(tk) + [y(te) — yx ] ai(tk) . (3.3)

In general, the non-linear system f(v) = 0 admits no simple closed—form
solution, and we must resort to the use of numerical methods.

In this section we discuss a multivariate Newton—Raphson scheme that
is efficient, but requires an initial “guess” for the solution values. However,
since there is in fact a multiplicity of solutions, the computed solution can
be sensitive to the initial guess, and may not identify the global minimum
of (2.10). The simulated annealing method, described in the next section,
is guaranteed (under suitable conditions) to find the global minimum.

The Hessian matriz M for the function A has elements

9?A

My = —
/ 8v¢8vj

for 1 <e,5<4
— in terms of x(¢) and y(t), these elements are given explicitly by

min 0%z Py
My =2 5 { Lolt) = au] 5] + () = ) ()

8:1; ax ay ay

Uy

_|_
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The Newton—Raphson scheme provides a sequence of approximations v(!,
v@ .. from a given starting approximation v(®), that converges rapidly
to an exact solution of f(v) = 0 under suitable conditions. The (k+1)-th
approximation is given in terms of the k—th approximation by

v+ — & MY v (v for k=0,1,2,... (3.5)

where, on the right-hand side, the inverse M~! of the Hessian and the
vector f of function values are evaluated at the k—th iteration, v(¥).

The convergence of the Newton—Raphson iterations can be monitored
by a suitable measure of fractional changes in the solution values, such as

|[v*+D — v,
6k+1 - HV(k)HQ Y

where ||v||z = y/vi + - -+ + v, or of the residual function values, such as

opr = €Y.

To start the Newton—Raphson iterations (3.5), we require initial values for
the unknowns (3.2) — i.e., for the complex values § and ¢. We use the
PH quintic Hermite interpolation algorithm [15], which requires two end
points r(0), r(1) and derivatives r'(0), r'(1) as input, to estimate these
initial values. For end points we have r(0) = ps and r(1) = py, while for
the end derivatives we estimate their orientations by linear least-squares
fits to a few points sy ..., Qmar and Quan—rs-- - Qmintr Neighboring
Ps = Qm and Ps = Qumtn, and we assign their magnitudes to be A |py—ps|,
where A is a numerical scale factor of order unity.

Note that the PH quintic Hermite interpolation problem actually has
four distinct solutions, and it is essential to select the “good” interpolant
— having the smallest absolute rotation number [15] — from among them.
The values wg, Wi, wy are computed directly by the Hermite interpolation
algorithm; @ and ¢ can then be obtained through the relations

sinf = Wo 1 Wi+ W and tang = V15 W2~ Wo .
3(pf—p5) W2—2W1 + wy

Tests with the Newton—Raphson method reveal that the function (2.10)
has many distinct local minima, which do not all identify acceptable least—
squares fits to the data. We have used this method only for exploratory
purposes — because of the difficulty of guaranteeing identification of the
global minimum (or even just a “reasonable” least—squares fit), we do not

recommend this approach for practical use. We now turn our attention to
the simulated annealing method, which offers much better performance in
this respect — although at greater computational cost.
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4 Simulated annealing method

The Newton—Raphson schemeis an example of a 2nd—order “local descent”
minimization method — it uses the gradient vector dA/dv; and Hessian
matrix 9*A/dv;0v; of the objective function (2.10). A basic defect of this
method is that it cannot guarantee convergence to the global minimum of
(2.10): it typically converges to a “local” minimum, determined entirely by
the choice of the initial guess for the variables v. To address this problem,
we have investigated the application of the simulated annealing algorithm
[23] — a global heuristic search scheme inspired by thermal annealing of
critically heated solids, to the minimization of the function (2.10).

The basic idea of the simulated annealing algorithm is motivated by
the physical process of slowly cooling a molten material from an initial
high temperature to well below its freezing point, so that it solidifies into a
near—perfect crystal structure — a process called annealing [23]. A perfect
crystal corresponds to an absolute minimum of the energy associated with
the configuration of its constituent particles. Departures from this ideal
— 1.e., “crystal defects” — will correspond to higher energies, which may
nevertheless be local minima (compared to “neighboring” states) of the
energy. The random thermal motions associated with each temperature
allow the system to “seek” the lowest energy state, and the cooling must
proceed at a sufficiently slow rate to prevent “trapping” in local energy
minima (corresponding to defective crystal structures).

f(x)

>

FIGURE 1. Local descent method applied to a univariate function f(z).

The simulated annealing method interprets the value of a function,
whose global minimum is sought, as an “energy” value. Random changes
in the variables of that function correspond to thermal motions of particles,
and a “temperature” variable controls their magnitude. The temperature
slowly decreases as the algorithm proceeds, thereby gradually inhibiting
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these random changes. Under suitable conditions, it is guaranteed that
the final “frozen” state of the system will identify the global minimum.
In local descent methods, the variables are always changed in a manner
that attempts to reduce the function value. As noted above, such methods
often result in convergence to a local (rather than the global) minimum,
and the final result is completely dependent on the chosen starting point.
Figure 1 illustrates this for a univariate function f(x). Starting from point
P yields convergence to the local minimum at Q, while starting at R will
give convergence to S (which happens to be the global minimum).
Clearly, to achieve convergence to the global minimum from arbitrary
starting points, an algorithm must be capable of executing “uphill” steps,
i.e., movements from the current point to one with a higher function value
(a “worse” point). However, this must be done in a “controlled” manner,
that does not jeopardize eventual convergence to the global minimum; see
Figure 2. The simulated annealing algorithm incorporates this property.

A uphill movement

f(x)

-
FIGURE 2. Uphill motion required for convergence to global minimum.

In simulated annealing, the occurrence of uphill motion is controlled in
a probabilistic manner, motivated by concepts from statistical mechanics.
A step involving a decrease in the function value is always taken, whereas
a step that involves an increase by Af is only taken with probability

A
probability (uphill movement) = exp (—k—jjj) \ (4.1)

where k is a positive constant — analogous to the Boltzmann constant of
thermodynamics — and 7" > 0 is the current “temperature.” Note that,
according to (4.1), uphill movements are more likely for small increases
A f in the function value, and at higher temperatures T'. A step governed
by these principles is known as a Metropolis step of the algorithm, after
an author of pioneering simulations [28] of statistical mechanics.
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A typical implementation commences with a random start point and a
very high temperature. A “neighboring” point is randomly sampled, and
selected with certainty as the new point if the function value has decreased.
If the function value has increased, it is accepted with the probability (4.1).
These Metropolis steps are repeated at each temperature, until a suitable
termination criterion is satisfied: either the system “equilibriates” at that
temperature, or a prescribed bound on the number of steps is attained.
The temperature is then decreased according to the temperature schedule
— a pre—determined sequence of monotonically decreasing values.

The choice of temperature schedule, and the size of the neighborhoods
used to select new points, have a significant impact on the performance of
the algorithm. The best choices are generally dependent on the properties
of the function being minimized. The examples shown here have employed
a modified version of the temperature schedule suggested in [27]:

T
1+8n’

where T" and 17"V are the current and new temperatures, § < 1 is a

Tnew _

(4.2)

positive constant, and n counts the number of temperatures employed thus
far. The neighborhoods from which new points are selected are defined by

o™V = v; + pT tan(r) for i =1,...,6, (4.3)

K3

where v; and vV are the ¢-th coordinates of the current and new points,
r is a uniformly—distributed random number between —7 /2 and 7 /2, and
p is a positive constant. Note that the probability density function for the

random variable € = p T tan(r) corresponds to the Cauchy distribution:
pT
(pT) 4 e

Figure 3 illustrates the shape of f(e) for p =2 and T'= 10, 5, 1. As shown
in this figure, the sampling of a new points is biased toward ¢ = 0, and

fle) = % (4.4)

this bias increases rapidly as the temperature T' decreases — in fact f(e)
coincides, in the limit pT" — 0, with the Dirac é—function.

Figure 4 shows (on a logarithmic scale) the variation of the objective
function (2.10) with the temperature counter n in equation (4.2) during a
typical simulated annealing run. Two examples of PH quintics computed
by the simulated annealing method (fits to 10 data points) are shown in
Figure 5. These illustrate the ability of PH quintics to accurately model
both convex and inflected smooth data — the quality of fit is excellent in
both cases. The point data in the second case is actually from a circular
arc, and the fit is clearly very accurate even though circular arcs cannot
be represented exactly as (polynomial) PH curves.
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FIGURE 4. Value of (2.10) during a typical simulated annealing run.

In Figure 6 we have added random “noise” to the data points for the
examples in Figure 5, and then computed new least—squares fits based on
this noisy data. The resulting fits are remarkably similar to those obtained
from the original “smooth” data — indicating that the fitting process is
quite insensitive to (small) random perturbations of the input.

Finally, Figure 7 shows the tendency of PH quintics to “smooth out”
sharp directional changes in the discrete point data (in both examples,
the points lie on straight-line segments that meet at sharp angles). This
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FIGURE 5. Examples of least—squares PH quintic fits to smooth point
data, computed by means of the simulated annealing algorithm — open
dots indicate the point data, and the solid dots are Bézier control points.

FiGURE 6. PH quintic fits to the data in Figure 5 with superimposed
“noise” — note that the curves are relatively insensitive to this noise.

smoothing effect can be a desirable attribute for HSM applications, since
sudden changes of direction imply very high accelerations.

An advantage of simulated annealing over the Newton—Raphson method
is that it uses only values of the function (2.10), and not its derivatives. If
the function evaluation is written efficiently, simulated annealing can be
quite fast: the examples shown in Figure 5 required only a few seconds on
an HP wokstation, although the runs involve ~ 10° evaluations.
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FIGURE 7. Two examples illustrating the smoothing of sharp corners
by least-squares PH quintic fits to sets of piecewise-linear point data.

5 Tolerance estimation

To determine the accuracy of fit of the PH quintic r(¢) to Qi - - -, Qmtn, We
need to compute the true footpoint parameter values of these data points
on r(t). This incurs a polynomial root—solving problem, for which suitable
methods [25] based upon the numerically-stable Bernstein representation
[16,17] are available. Thus, if (2.3) has r > 0 real roots t1,...,t, of odd
multiplicity on ¢ € [0,1], and we set to = 0 and t,47 = 1, we may define

for k=m+1,...,m+n—1 as the true distance of q; from r(?); note

that 6,, = 6,1, = 0 by definition. We may then use

n—1 [ — m+1<k<m+n-—1

1 m4+n—1
Sims = Z o7 or Omax = max O (5.2)

as appropriate measures for the overall quality of fit. These can be used to
ensure that the approximation satisfies a given tolerance, and to indicate a
need for subdividing the data q,,, .. ., qm+s if the tolerance is not satisfied.

6 Footpoint parameter refinement

The initial estimates (2.4) of footpoint parameter values for the data points
qx can significantly influence the quality of the fit. Thus, as an alternative
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(or in addition) to subdividing the data into smaller sequences to improve
the accuracy of fit, one may also employ a procedure for refinement of
these footpoint parameter values. Namely, one first performs a fit based
on (2.4) and then, once the errors (5.1) and corresponding true footpoints
on the fitted curve are computed, the latter can be used in lieu of (2.4) to
perform a new fit. This process may be repeated, but further improvement
in the quality of fit — as measured by (5.2) — is usually marginal.

7 Control of tangent behavior

Asnoted in Section 3 above, the PH quintic Hermite interpolation problem
admits four distinct solutions, three of which exhibit undesired “looping”
behavior. The “good” solution is distinguished by having the least total
— i.e., without clockwise/anticlockwise cancellation — tangent rotation,
as characterized by the absolute rotation number

Rum = 5 /01 (1)) [¥'(¢)] dt. (7.1)

which can be calculated through an analytic reduction of the integral [15].
For PH quintics, this quantity lies in the range 0 < R ps < 2.

To compute (7.1) it is convenient [15] to express the hodograph r'(¢) =
[wo (1 =)+ wy 2(1 —t)t + wy t?]* in the form r'(t) = k (¢ — a)*(t — b)*.
From the output 8 and ¢ of the fitting process, we obtain wq, wi, wy from
(2.7), and the complex values a and b required to compute Raps may then
be written as

a b I¢)

a= —— and

a+1 :[3+1’

where a and B are the two roots z of the complex quadratic equation
wyz? + 2wz + wo = 0.

Now the PH quintics corresponding to (local) minima of the function
(2.10) do not necessarily exhibit “well-behaved” tangent variations (this
outcome is less likely with simulated annealing than the Newton—Raphson
method, however, since “bad” tangent behavior is usually incompatible
with a low value of (2.10)). To ensure a solution with a “reasonable” R,ps
value, and to help accelerate convergence toward such a solution, we have
also tried the modified objective function defined by

A8, 9)

0(8,9) = ECT + 1t Rabs(8, @), (7.2)
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where p is an adjustable “weight” factor of order unity, and we define

) 1 m4+n—1 )
<d>=g Yok —ai?.
k=m

We introduce the division of A by this quantity to ensure scale-invariance
of the new objective function (7.2) — note that A has dimension (length)?
while R.ps 1s evidently dimensionless.

The objective function (7.2) attempts to identify a PH quintic that is
both “faithful” to the given point data, and also “smooth” in the sense of
having a subdued tangent variation. In this context, the weight p serves
as a useful “shape control” parameter — when g > 1 the emphasis is
on identifying a smooth fit at the expense of the accuracy with which it
models the point data, whereas when p < 1 the fitted curve is allowed
to “wiggle” so as to more closely approximate the data. Examples of PH
quintics obtained by simulated annealing applied to the modified objective
function (7.2) are shown in Figure 8.

1=0 Ryps=0.372 >0 Rype=0.274

FiGURE 8. Typical examples of “smooth” PH quintic fits obtained by
simulated annealing with the modified objective function defined in (7.2).

Finally, we mention another approach to the smoothing—fitting process
based upon the objective function

AO.9) ()

R

£0,9), (7.3)

where S’ denotes the total arc length of r(t), and its elastic bending energy
is defined [10] by

£ = /01 (1) [P(1)] dt
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& can also be evaluated in closed—form from the complex values wq, wq, wo
— obtained from 6 and ¢ through (2.7) — although this is rather more
involved [10] than evaluation of (7.1). Again, the factors of (d?) in (7.3)
are introduced to render this function dimensionless and scale-invariant.
Note that we employ the bending energy per unit length — not the total
bending energy — in (7.3), since the latter becomes arbitrarily small [4]

-1

for a loop of radius ~ R and curvature ~ R~ as we let R — oo.

8 Extension to 3D tool paths

For brevity, we have only discussed the approximation of planar tool paths
by PH curves. The methods can be extended to three-dimensional paths,
using the PH space curves [19]. The principal difficulty in formulating
this extension is the absence of a compact representation scheme for PH
space curves, analogous to the complex form of planar PH curves — see,
however, the quaternion methods proposed in [33]. Nevertheless, one can
write down a function analogous to (3.1) in terms of nine unknown real
quantities «yg, 3o, Y0, @1, F1, Y1, 2, P2, 72 whose minimization — subject to
three (scalar) constraints — defines least—squares PH quintic space curve
fits to sequences of spatial point data. However, reformulating this as an
unconstrained minimization problem in six variables is more challenging.

9 Closure

We have described methods to perform least—squares fits of PH quintics
to discrete point data, motivated by the desire to approximate “standard”
(linear/circular) G code part programs by PH tool paths. The latter offer
concise part programs with continuously—variable feedrate capability to
ensure smooth acceleration/deceleration, control over machining forces,
optimization of total machining times. Furthermore, feedrate fluctuations
due to the discrete nature of standard G code part programs are subdued,
offering potential improvements in surface finish. We hope to report on
HSM experiments using these new capabilities in due course.

The authors gratefully acknowledge the support of the National
Science Foundation, through grant CCR-9530741, for this study.
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