
SELF-ASSEMBLING AUTOMATA: A MODEL OF
CONFORMATIONAL SELF-ASSEMBLY

KAZUHIRO SAITOU
Department of Mechanical Engineering and Applied Mechanics

University of Michigan, Ann Arbor, MI 48109-2125, USA

An abstract model of self-assembling systems is presented where assembly instruc-
tions are written as conformational switches – local rules that specify conforma-
tional changes of a component. The model, the self-assembling automaton, is de-
fined as a sequential rule-based machine that operates on one-dimensional strings
of symbols. Classes of self-assembling automata are defined based on classes of sub-
assembly sequences in which the components self-assemble. The minimum number
of conformations is provided which are necessary to encode subassembly sequences
in the each class. It is shown that three conformations for each component are
enough to encode any subassembly sequences of a string with arbitrary length.

1 Introduction

1.1 Coded and uncoded self-assembly

Nature exhibits various kinds of self-assembly. Raindrops on a leaf merge together
spontaneously to form one big drop. Protein molecules self-assemble inside biological
cells each time they divide. The self-assembly of raindrops is an example of uncoded
self-assembly, where assembly of each component is directed simply by minimization
of potential energy. On the other hand, many complex structures in nature, e.g.
biological cells, arise via coded self-assembly, where instructions for the assembly
of the system are built into its components 1. A well-studied example of coded
self-assembly is the assembly of bacteriophages, where new progeny in their host cell
occurs in a fixed morphogenic pattern. It is believed the assembly instructions for this
self-assembly are written in each component molecules in the form of conformational
switches. In a protein molecule with several bond sites, a conformational switch
causes the formation of a bond at one site to change the conformation of another
bond site. As a result, a conformational change which occurred at an assembly step
provides the essential substrate for assembly at the next step 2.

This coded self-assembly of bacteriophages has been studied by number of biol-
ogists (e.g. 3,4), and several computational models have been developed. Thompson
and Goel 5,6 proposed an finite automaton model of the protein molecules which un-
dergo conformational changes during the self-assembly of bacteriophage T4. Berger
et al. 7 identified a set of local rules which specify the conformational changes of the
component protein subunits in the self-assembly of icosahedral virus shells. They
showed by computer simulation that, the subunits can form a closed icosahedral
shell with the desired symmetry by following the local rules. The emphasis of these
work, however, was on modeling morphogenesis of particular biological systems, and

no attempts were made to generalize the model to self-assembling systems where
components self-assembles in arbitrary sequences.

1.2 Motivation

The work described in this paper was motivated by our previous work on evolutionary
design of mechanical conformational switches 8,9,10 , where we studied parametric de-
sign optimization of two different kinds of (mechanical) conformational switch models
that maximize the yield of a desired assembly via random interactions among com-
ponents. In these efforts, it was found that conformational switches can encode one
or more subassembly sequences, and the encodable subassembly sequences depend
on the conformational switch model employed. In particular, some subassembly se-
quences cannot be encoded by a conformational switch model no matter how many
conformations we assumed. This raises the following two questions: 1) Is it possible
to tell whether a subassembly sequence can be encoded by a given switch model, and
2) If so, how many conformations (or switch states) are necessary to encode a given
subassembly sequence? The relationship between subassembly sequences and confor-
mational switch models is analogous to the one between languages and “machines”
(models of computation) in the theory of computation 11, with a subassembly se-
quence being a language, and a conformational switch that encodes the subassembly
sequence being a machines that accepts the language.

This analogy motivated us to develop a formal model of self-assembling sys-
tems which abstracts the built-in assembly instructions in the form of conformational
switches, and to identify classes of self-assembling systems based on subassembly se-
quences in which the components of the systems self-assemble. The model, which we
will refer to as an one-dimensional self-assembling automaton, is defined as a sequen-
tial rule-based machine that processes one-dimensional strings of symbols. Several
theorems regarding the classes of self-assembling automaton are provided, although
proofs are omitted due to page restrictions. The complete proofs to all theorems are
found in 12.

2 Theory of one-dimensional self-assembling automata

2.1 Conformational switches as assembly instructions

Suppose we are given a one-dimensional component bin which initially contains a
random assortment of components. Further suppose we are given a set of assembly
instructions, or simply rules, describing which components can bind to which other
components. Let the rules be of the form a + b → ab, which means a component a
and a component b can bind together to form an assembly ab. Assembly occurs by
randomly picking two assemblies in the bin and mating them together. If one of the
built-in rules fires, the two assemblies can bind together, and the resulting assembly
is returned to the bin. To keep track of the subassembly sequences, we parenthesize
the resulting assembly when it is formed. The rule a + b → ab fires, for example,
when a component a and a component b are picked and an assembly (ab) is added
to the bin as a result. If no rules fires, the two assemblies are simply returned to

Rules: a + b --> ab, b + c --> bc

(ab) c c

(a)

(b1) (b2)

(c1) (c2)

a (bc) c

a b c c

((ab)c) c (a(bc)) c

Rules: a + b --> ab', b' + c --> b'c

(ab') c c

(a)

(b)

(c)

a b c c

((ab')c) c

Figure 1: assembly of abc with (right) and without (left) a conformational switch.

the bin. Note that the rules are assumed to be local so that a + b → ab also fires
when, for example, an assembly (ca) and an assembly (ba) are picked, which results
in forming an assembly ((ca)(ba)). This random picking continues until no further
rule firing is possible by picking any two assemblies in the bin. To see how the above
scenario abstracts the behavior of self-assembling systems, let us consider a trivial
example.

Example 1 Suppose our initial bin contains one component a, one component b,
and two component c’s (which we represent as 〈a, b, c, c〉), and our rule set contains
a + b → ab and b + c → bc, as shown in Figure 1 (a). As we proceed the random
picking process described above, no change occurs to the contents of the bin until a
and b are picked, or b and c are picked. If a and b are picked, the rule a + b → ab
fires and the resulting bin becomes 〈(ab), c, c〉 (Figure 1 (b1)). After that, ((ab)c) is
eventually formed when (ab) and c are picked and b+ c→ bc fires. The resulting bin
becomes 〈((ab)c), c〉 and no further rule firing is possible (Figure 1 (c1)). Similarly,
if b and c are picked, the rule b+ c→ bc fires and the resulting bin becomes 〈a, (bc), c〉
(Figure 1 (b2)). After that, (a(bc)) is formed eventually when a and (bc) are picked
and a+b→ ab fires. The resulting bin becomes 〈(a(bc)), c〉, and no further rule firing
is possible (Figure 1 (c2)).

In the above example, the rules do not enforce any subassembly sequences to
assemble abc, in other words the final bin contains either ((ab)c) or (a(bc)) depending
on the order of rule firing. One can design conformational switches that enforce
abc to be assembled only in one of the above two subassembly sequences. We can
represent conformational switches as rules of the form a + b → a′b′, which means a
component a and a component b can bind together to form an assembly a′b′, where
a′ and b′ represents different conformations of a and b after conformational changes,
respectively.

Example 2 Suppose a component b can take two conformations b and b′, and con-
formational switching between b and b′ occurs according to the rules a+ b→ ab′ and
b′ + c → b′c, as shown in Figure 1 (d). Starting with 〈a, b, c, c〉, the random picking
process eventually picks up a and b. As a result of firing the rule a + b → ab′, the
state of the bin becomes 〈(ab′), c, c〉 (Figure 1 (e)). After that, the rule b′ + c → b′c
eventually fires to form an ((ab′)c). The resulting bin becomes 〈((ab′)c), c〉, and no
further rule firing is possible (Figure 1 (f)). Note that conformational change of com-

ponent b after binding to a enforces abc to be assembled only in the order ((ab)c)a, by
sending out a “signal” that indicates it has bound to a so it is ready to bind to c.

Similarly, the rules a+ b′ → ab′, b+ c→ b′c enforces the only possible assembly
order to be (a(bc)). In Example 2, we can view the subassembly sequence ((ab)c)
is encoded by the conformational switches represented by the rules a + b → ab′ and
b′ + c → b′c. In the following sections, we will discuss which types of subassembly
sequences can be encoded by which type of conformational switches.

2.2 Definition of one-dimensional self-assembling automata

We define a one-dimensional self-assembling automaton as a sequential rule-based
machine that operates on one-dimensional strings of symbols. A component of a
one-dimensional self-assembling automaton is an element of a finite set Σ, and an
assembly is a string in Σ+. Additionally, a component a ∈ Σ can take a finite number
of conformations represented by a, a′, a′′ · · ·, and the transition among conformations
is specified by a set of assembly rulesb.

Definition 1 A one-dimensional self-assembling automaton (henceforth abbreviated
SA) is a pair M = (Σ, R), where Σ is a finite set of components, and R is a finite set
of assembly rules of the form either aα + bβ → aγbδ (attaching rule) or aαbβ → aγbδ

(propagation rule), where a, b ∈ Σ and α, β, γ, δ ∈ {′}∗c. The conformation set of
a ∈ Σ is a set Qa = {aα | α ∈ {′}∗, aα appears in R.}. The conformation set of M
is a union of all conformation sets of a ∈ Σ.

We will often call a string in Q+ as an assembly by conformation, or simply an
assembly if there is no ambiguity with a string in Σ+.

Example 3 Using the above definition, the self-assembling system in Example 2 can
be defined as M1 = (Σ, R), where Σ = {a, b, c}, and R = {a+ b→ ab′, b′ + c→ b′c}.
The conformation set of M1 is Q = {a, b, b′, c}.

We view an SA as having an associated component bin, with a infinite number
of “slots” each of which can store an assembly (by conformation) or the null string
Λ. Initially, a finite number of the slots contain assemblies and the rest of the slots
are filled with Λ. Self-assembly of components proceeds by applying the rules in R
to the a random pair of assemblies (possibly Λ) in the component bin. As a result
of the rule application, assemblies are deleted from and added to the component bin,
just like assertions are deleted from and added to the working memory in rule-based
inference systems. The rule application to a random pair (x, y) is done according to
the following procedure:

1. If (x, y) = (zaα, bβu) for some z, u ∈ Σ∗, and R contains the rule r = aα + bβ →
aγbδ (which we shall call r fires), delete x and y and add zaγbδu.

2. If (x, y) = (zaαbβu,Λ) or (x, y) = (Λ, zaαbβu) for some z, u ∈ Σ∗, and R contains
the rule r = aαbβ → aγbδ (which we shall call r fires), delete x and y and add zaγbδu.

aHere, we consider ((ab)c) and ((ab′)c) are the same assembly.
bEach component, therefore, can be viewed as a finite automaton.
cIt is assumed aΛ = a, where Λ is the null string.

where a, b ∈ Σ and α, β, γ, δ ∈ {′}∗. If none of the above applies to (x, y), x and y
are simply returned to the component bin, leaving the bin unchanged. Note that at
any point of self-assembly, the component bin contains a finite number of non-null
strings with finite length, since the total number of components in the initial bin is
finite and no new component is created by applying the rules to the bin.

Let A be a finite set. A unordered list U over a finite set A is a list of some
number of elements in A, written as U = 〈a | a ∈ A〉. In particular, U can contain
more than one copy of elements in A. We write a ∈ U if NUMa(U) > 0, where NUMa(U)
is the number of a’s in U . Also, we define SEQ(A) to be a shorthand of a language
generated by the context-free grammar ∀a ∈ A, S → (SS) |a. Note that A ⊂ SEQ(A).
A string x in SEQ(A) is a full parenthesization of a string u = RM-PAREN(x) in A+,
where RM-PAREN is a function that removes parentheses from its argument string. We
interpret the parse tree of x as a (binary) assembly tree, i.e. a representation of a
pairwise “assembly sequence” of u.

Definition 2 Let Σ be a component set of an SA. A subassembly sequence is a
string in SEQ(Σ). A subassembly sequence x is basic if x contains at most one copy
of elements in Σ, i.e ∀a ∈ Σ, Na(x) ≤ 1.

Definition 3 Let M = (Σ, R) be an SA. A configuration of M is a unordered list
〈x | x ∈ SEQ(Q)〉, where Q is the conformation set of M . Let x ∈ SEQ(Σ) be a
subassembly sequence. A configuration Γ covers x if Γ = 〈a | a ∈ Σ〉 and ∀a ∈ Σ,
Na(x) ≤ NUMa(Γ).

The sequence of self-assembly can be traced by examining the configuration
each time the component bin changes as a result of applying the rules in R to the
component bin. To keep track of the order of assembly, the non-null string newly
added to the component bin are parenthesized in the new configuration if it is added
by an attaching rule.

For two configurations Γ and Φ, we write Γ `M Φ if the configuration of M
changes from Γ to Φ as a result of applying a rule in R to the component bin exactly
once, reading “Φ is derived from Γ at one step.” Similarly, Γ `∗M Φ if the configuration
of M changes from Γ to Φ as a result of applying the rules in R to the component
bin zero or more times, reading “Φ is derived from Γ.” If there is no ambiguity, `M
and `∗M are often shortened to ` and `∗, respectively.

Example 4 Let us consider M1 in Example 3. Let Γ = 〈a, b, c, c〉 and Φ = 〈a, b, c〉.
The configurations Γ and Φ covers the subassembly sequence ((ab)c). Self-assembly
of ((ab)c) from Γ proceeds as 〈a, b, c, c〉 `M1 〈(ab′), c, c〉 `M1 〈((ab′)c), c〉

Given an SA as defined above, the process of self-assembly eventually terminates
when no rule firing is possible, or runs forever due to an infinite cycle of rule firing.
It is natural to say an SA self-assembles a given string in a given sequence if the
process of self-assembly terminates, and all terminating configurations contains the
string which is assembled in the sequence. Formerly, this can be stated as follows:

Definition 4 Let M = (Σ, R) be an SA, Γ be a configuration of M and x ∈ SEQ(Σ)
be a subassembly sequence. Γ is stable if there is no rule firing from Γ, i.e. CM(Γ) =

{Γ}, where CM (Γ) = {Φ|Γ `∗M Φ}. M self-assembles x from Γ if the both of the
followings hold:

1. All configurations derived from Γ can derive a stable configuration, i.e. ∀Φ ∈
CM(Γ), ∃Φ1 ∈ CM(Φ), CM(Φ1) = {Φ1}.
2. ∀Φ ∈ C∗M(Γ), ∃y ∈ Φ such that x = RM-PRIME(y), where C∗M (Γ) is a set of stable
configurations derived from Γ, and RM-PRIME is a function that removes the prime
symbols (’) from its argument.

Example 5 M1 in Example 3 self-assembles ((ab)c) from 〈a, b, c, c〉.

2.3 Constructing one-dimensional self-assembling automata

Given a basic subassembly sequence x ∈ SEQ(Σ), one can write a procedure which
constructs a set of assembly rules R such that M = (Σ, R) self-assembles x from
any configuration Γ that covers x. The following procedure MAKE-RULE-SET takes as
input a basic subassembly sequence x ∈ SEQ(Σ), a flag η ∈ {left, right, none}, and
a rule set R. The flag η indicates from which side the next assembly would occur,
with none indicating there is no next assembly. MAKE-RULE-SET(x, none, ∅) returns a
pair (u,R), where u is the final assembly (by conformation) such that RM-PRIME(u) =
RM-PAREN(x) and R is the rule set containing the assembly rules to assemble x from
Γ. In the following pseudocode, x, y, z ∈ SEQ(Σ) are basic subassembly sequences,
a, b ∈ Σ, α, β ∈ {′}∗, and u, v ∈ Q∗ where Q = {aα | a ∈ Σ, α ∈ {′}∗}, and LEFT and
RIGHT are functions that return the symbol at the left end right end of the argument
string, respectively.

MAKE-RULE-SET(x, η, R)
1 if x = a
2 then return (a,R)
3 if x = (yz)
4 then (u,R)← MAKE-RULE-SET(y, right,R)
5 (v,R)← MAKE-RULE-SET(z, left,R)
6 aα ← RIGHT(u)
7 bβ ← LEFT(v)
8 if η = none
9 then R← R ∪ {aα + bβ → aαbβ}
10 return (uv,R)
11 if η = left

12 then R← R ∪ {aα + bβ → aINC(α)bβ}
13 (u,R)← PROPAGATE-LEFT(u, R)
14 return (uv,R)
15 if η = right

16 then R← R ∪ {aα + bβ → aαbINC(β)}
17 (v,R)← PROPAGATE-RIGHT(v, R)
18 return (uv,R)

MAKE-RULE-SET (henceforth abbreviated MRS) recursively traverses the left and
right subtrees (y and z in the line 3), and adds a attaching rule to R that as-
sembles (yz). If a component will be assembled from the left at the next assem-
bly step (η = left in the line 11), propagation rules are added (by the procedure
PROPAGATE-LEFT in the line 13) that propagate conformational changes thorough the
assembly corresponds to the left subtree. If a component will be assembled from
the right at the next assembly step (η = right in the line 15), propagation rules are
added (by the procedure PROPAGATE-RIGHT in line 17) that propagate conformational
changes thorough the assembly corresponds to the right subtree. If there is no next
assembly step, i.e. yz is the final assembly (η = none in the line 8), no propagation
rules need to be added. The subroutines PROPAGATE-LEFT and PROPAGATE-RIGHT are
defined as follows:

PROPAGATE-LEFT(u, R)
19 if u = aα

20 then return (aINC(α), R)

21 if u = vaαbβ

22 then R← R ∪ {aαbINC(β) → aINC(α)bINC(β)}
23 (u,R)← PROPAGATE-LEFT(vaα , R)

24 return (ubINC(β), R)

PROPAGATE-RIGHT(u, R)
25 if u = aα

26 then return (aINC(α), R)
27 if u = aαbβv

28 then R← R ∪ {aINC(α)bβ → aINC(α)bINC(β)}
29 (u,R)← PROPAGATE-RIGHT(bβv,R)

30 return (aINC(α)u,R)

where INC is the “conformation incrementor” function which appends the prime sym-
bol (′) to its argument string such that for α ∈ {′}∗, INC(α) = α′. For example,
INC(Λ) =′ and INC(′) =′′. The correctness of MRS can be proven by induction on
|RM-PAREN(x)|. Here we simply state the fact.

Theorem 1 MRS is correct.

Example 6 Let us consider Σ = {a, b, c, d} and x = ((a(bc))d). A call of MRS(x, none, ∅)
returns with (ab′′c′d,R) where R contains the following rules: b + c→ b′c, a+ b′ →
ab′′, b′′c → b′′c′ and c′ + d → c′d. It is clear that an SA M = (Σ, R) self-assembles
x from the configurations that cover x, e.g. 〈a, b, c, d〉 and 〈a, a, b, b, c, c, d, d〉.

2.4 Classes of one-dimensional self-assembling automata

The running time of MRS depends on the shape of the parse tree of the input (basic)
subassembly sequence. The worst case behavior of MRS occurs when, at every step of
recursion, either PROPAGATE-LEFT or PROPAGATE-RIGHT is called. The best case, on
the other hand, is when there is no call of PROPAGATE-LEFT and PROPAGATE-RIGHT.

pp
p

p p
p

p p p

p

p

p p

p

p

p p

p

p

p p p p

p

p
p

p

p

p

p

p

p

p

p

Figure 2: Parse tree of an assembly template generated by GI (left), and by GII (right).

This is the case when the rule set R returned by MRS contains no propagation rules,
whereas there is at least one propagation rules in R in other cases. Accordingly, two
classes of SA are defined based on the presence of propagation rules in the rule set.

Definition 5 Let M = (Σ, R) be an SA. M is class I if R contains only attaching
rules. M is class II if R contains both attaching rules and propagation rules.

We are going to define the classes of basic subassembly sequences which cor-
respond to each of the above classes of SA. The basic subassembly sequences that
correspond to the best running time (hence corresponds to class I SA) are those in
which the direction from which new components are added do not alter during the
entire self-assembly process. On the other hand, the directions must alter at least
once in the basic subassembly sequences that correspond to the other cases (hence
corresponds to class II SA). Classes of such subassembly sequences are described
more precisely below.

Definition 6 An assembly template is a string t ∈ SEQ({p}). An instance of t on
a finite set Σ is a subassembly sequence x ∈ SEQ(Σ) obtained by replacing p in t by
a ∈ Σ. If x is an instance of t, t is an assembly template of x.

Example 7 Two strings t1 = ((pp)(pp)) and t2 = ((p(pp))p) are assembly templates.
Let Σ = {a, b, c, d}. The basic subassembly sequences x1 = ((ab)(cd)) and x2 =
((b(ad))c) are instances of t1 and t2 on Σ, respectively.

Definition 7 An assembly grammar is a context-free grammar whose language is
a subset of SEQ({p}). The class I assembly grammar GI is an assembly grammar
defined by the following production rules:

S → (LR)

L → (Lp) | p
R → (pR) | p

The parse tree of the assembly templates in L(GI) is shown in the left of Figure 2.
Each of the left and right subtrees is a liner assembly tree, which specifies self-
assembly proceeding in one direction. The parse trees of the assembly templates in
SEQ({p}) are general binary tree with no special structures.

Example 8 The assembly template t1 in Example 7 can be generated by GI , for
example, through the derivation S ⇒ (LR) ⇒ ((Lp)R) ⇒ ((pp)R) ⇒ ((pp)(pR)) ⇒
((pp)(pp)) and hence t1 ∈ L(GI).

We can interpret L(GI) and SEQ({p}) as sets of assembly templates with the
different number of changes in the direction of self-assembly. Let t be an assembly
template and x be an instance of t. If t ∈ L(GI), the direction of self-assembly
does not alter during the self-assembly of x. If t ∈ SEQ({p}) \ L(GI), the direction
of self-assembly alters at least once during the self-assembly of x. Based on these
observations, the following theorems can be proven. Here we again state only the
facts.

Theorem 2 For any basic subassembly sequence x which is an instance of an as-
sembly template t ∈ L(GI), there exists a class I SA which self-assembles x from a
configuration that covers x.

Theorem 3 For any basic subassembly sequence x which is an instance of an as-
sembly template t ∈ SEQ({p}) \L(GI), there exists a class II SA which self-assembles
x from a configuration that covers x. Further, there exist no class I SA which self-
assembles x from a configuration that covers x.

2.5 Minimum conformation self-assembling automata

In this section, we will provide the minimum number of conformations necessary
to encode a given subassembly sequence based on the classes of basic subassembly
sequences introduced earlier. Since the number of conformations may vary for each
component, the following definition is necessary.

Definition 8 Let M be an SA and Q is the conformation set of M . M is an SA
with n conformations if n = max

aα∈Q
|α|.

Definition 9 The class II assembly grammar GII is an assembly grammar defined
by the following production rules:

S → (L0R0)

L0 → (L0R1) | R1

R0 → (L1R0) | L1

L1 → (L1p) | p
R1 → (pR1) | p

Note that L(GI) ⊂ L(GII) ⊂ SEQ({p}). The parse tree of the assembly templates
in L(GII) is shown in the right of Figure 2. The right parse tree in Figure 2 can be
obtained from the left parse tree in Figure 2, by replacing leaves at the right branches
of the left subtree by a linear assembly tree, and vice versa. Let x be an subassembly
sequence and t is an assembly template of x. If t ∈ L(GII) \ L(GI), the direction
of self-assembly alters exactly once, and if t ∈ SEQ({p}) \ L(GII), the direction of
self-assembly alters more than once during the self-assembly of x.

Example 9 The assembly template t2 in Example 7 cannot be generated by GI but
can can be generated by GII , for example, through the derivation S ⇒ (L0R0) ⇒
((L0R1)R0) ⇒ ((pR1)R0) ⇒ ((p(pR1))R0) ⇒ ((p(pp))R0) ⇒ ((p(pp))p) and hence
t2 ∈ L(GII) \ L(GI). An assembly template t3 = (p((p(pp))p)) cannot be generated
by GII and hence t3 ∈ SEQ({p}) \ L(GII).

The minimum number of conformations of SA which is necessary to self-assemble a
given basic subassembly sequence x depends on whether x is an instance of an assem-
bly template in L(GI), L(GII) \ L(GI), or SEQ({p}) \ L(GII). Since any attaching
rules produced by MRS requires at most two conformations for each component, the
minimum number is two if x is an instance of an assembly template in L(GI).

Theorem 4 For any basic subassembly sequence x which is an instance of an as-
sembly template t ∈ L(GI), there exists class I SA M with two (2) conformations
which self-assembles x from a configuration Γ that covers x. For L(x) ≥ 3, M is an
SA with the minimum number of conformations which self-assembles x from Γ.

The “conformation incrementor” INC used in MRS simply appends the prime
symbol (′) to its argument string each time it is called. The number of conformations
of a component, therefore, could be very large depending on how many times INC is
called to the component before MRS returns. Alternatively, we can use a “modulo n”
conformation incrementor INCn such that for α ∈ {′}∗, |α| ≤ n

INCn(α) =

{
α′ if |α| < n
Λ if |α| = n

For example, INC2(Λ) =′ and INC2(
′) = Λ. Using this notation, we can write INC as

INC∞. Running MRS with INCn, instead of INC∞ produces the assembly rules at most
n conformations for a component. Such rules, however, are no longer guaranteed
to self-assemble the components in a given subassembly sequence. In particular,
there could be more than one conflicting propagation rules which specify different
conformational changes of the same two adjacent components. In order to show
MRS run with INCn instead of INC∞ is correct, therefore, it suffices to show no such
conflicts among propagation rules are possible. If the rule set R contains at most
one propagation rule for each two adjacent components, no conflicts are possible.
Therefore, the above statement is true for the smallest possible n, i.e. n = 2. This
is the case when the subassembly sequence x is an instance of an assembly template
t ∈ L(GII) \ L(GI), when the direction of self-assembly alters exactly once.

Theorem 5 For any basic subassembly sequence x which is an instance of an assem-
bly template t ∈ L(GII)\L(GI), there exists class II SA M with two (2) conformations
which self-assembles x from a configuration Γ that covers x. And M is an SA with
the minimum number of conformations which self-assembles x from Γ.

Example 10 Let us consider Σ = {a, b, c, d} and x = ((a(bc))d). The subassembly
sequence x is an instance of t2 = ((p(pp))p) in Example 7. From Example 9, t2 ∈
L(GII)\L(GI). A call of MRS(x,none, ∅) run with INC2 returns with (abc′d,R) where
R contains the following rules: b + c→ b′c, a+ b′ → ab, bc→ bc′ and c′ + d→ c′d.
It is clear that M = (Σ, R) is an SA with two conformations which self-assembles x
from the configurations that cover x, e.g. 〈a, b, c, d〉 and 〈a, a, b, b, c, c, d, d〉.

If R contains more than one propagation rules of the same two adjacent com-
ponents, n must be large enough to cause no conflicts among the propagation rules.
This corresponds to the case where x is an instance of t ∈ SEQ({p}) \ L(GII), when

the direction of self-assembly alters more than once. Here, we claim only three con-
formations are necessary to encode arbitrary x. This might sounds counter-intuitive
since we are claiming only three conformations can encode basic subassembly se-
quences with arbitrary (possibly very large) sizes. The proof of this claim is based on
the observation that there are only two kinds of propagations rules; the rules which
propagate conformational changes to the left, and the rules which propagates con-
formational changes to the right, and that for given two adjacent components, these
two kinds of propagation rules always fires in alternate order. The proof of this state-
ment is done by showing MRS run with INCn causes no conflicts among propagation
rules of the same adjacent components in the case of n = 3. To do this, we define a
concept called a n-conformation transition cycle. Then, we prove that no such con-
flicts among propagation rules are possible for INCn if there exists a n-conformation
transition cycle. Finally, we show there exists a 3-conformation transition cycle.

Theorem 6 For any basic subassembly sequence x which is an instance of an as-
sembly template t ∈ SEQ({p}) \ L(GII), there exists class II SA M with three (3)
conformations which self-assembles x from a configuration Γ that covers x. And M
is an SA with the minimum number of conformations which self-assembles x from Γ.

Example 11 Let us consider Σ = {a, b, c, d, e} and x = (a((b(cd))e)). The sub-
assembly sequence x is an instance of t3 = (p((p(pp))p)) in example Example 9,
and t3 ∈ SEQ({p}) \ L(GII). A call of MRS(x, none, ∅) run with INC3 returns with
(ab′c′′d′′e,R) where R contains the following rules: c + d → c′d, b + c′ → bc′′,
c′′d → c′′d′ d′ + e → d′′e, c′′d′′ → cd′′, bc → b′c, and a + b′ → ab′. It is clear
that M = (Σ, R) is an SA with three conformations which self-assembles x from the
configurations that cover x, e.g. 〈a, b, c, d, e〉 and 〈a, b, b, c, d, d, e, e〉.

3 Summary and future work

In this paper, an abstract model of self-assembling systems is presented where as-
sembly instructions are written as conformational switches – local rules that specify
conformational changes of a component. The model, the self-assembling automaton,
is defined as a sequential rule-based machine that operates on one-dimensional strings
of symbols. Classes of self-assembling automata are defined based on classes of sub-
assembly sequences in which the components self-assemble. The minimum number
of conformations is provided which is necessary to encode subassembly sequences in
the each class. It is shown that three conformations for each component are enough
to encode any subassembly sequences of a string with arbitrary length. A number
of extensions to the current theory of one-dimensional self-assembling automata are
left for future work. They include the extensions to assembly containing identical
components, detaching rules (rules of the form aαbβ → aα + bβ), and assembly with
arbitrary topology.

Acknowledgments

The author acknowledge Profs. Mark Jakiela and Jonathan King for their encour-
agements at the initial stage of the work. This work was partially supported by the
National Science Foundation under grant DDM-9058415 to Prof. Jakiela.

References

1. G. M. Whitesides. Self-assemblying materials. Scientific American, pages
146–149, September 1995.

2. J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner.
Molecular Biology of the Gene. Benjamin/Cummings, Menlo Park, California,
1987.

3. S. Casjens. and J. King. Virus assembly. Annual Review of Biochemistry,
44:555–604, 1975.

4. R. A. Crowther, E. V. Lenk, Y. Kikuchi, and J. King. Molecular reorganization
in the hexagon to star transition of the baseplate of bacteriophage T4. Journal
of Molecular Biology, 116:489–523, 1977.

5. R. L. Thompson and N. S. Goel. A simulation of T4 bacteriophage assembly
and operation. BioSystems, 18:23–45, 1985.

6. R. L. Thompson and N. S. Goel. Movable finite automata (MFA) models
for biological systems I: Bacteriophage assembly and operation. Journal of
Theoretical Biology, 131:351–385, 1988.

7. B. Berger, P. W. Shor, L. Tucker-Kellog, and J. King. Local rule-based theory
of virus shell assembly. In Proceedings of the National Academy of Science,
USA, pages 7732–7736, 1994. Vol. 91.

8. K. Saitou and M. J. Jakiela. Automated optimal design of mechanical confor-
mational switches. Artificial Life, 2(2):129–156, 1995.

9. K. Saitou and M. J. Jakiela. Subassembly generation via mechanical confor-
mational switches. Artificial Life, 2(4):377–416, 1995.

10. K. Saitou. Conrotmational Switching in Self-Assembling Mechanical Systems:
Theory and Application. PhD thesis, Massachusetts Institute of Technology,
1996.

11. J. C. Martin. Introduction to Language and the Theory of Computation.
McGraw-Hill, New York, New York, 1991.

12. K. Saitou. On Turing completemess of one-dimensional self-assembling au-
tomata. in preparation.

