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ABSTRACT

A new design of a linear micro vibromotor for on-substrate fine positioning of micro-scale components is presented
where a micro linear slider is actuated by vibratory impacts exerted by micro cantilever impacters. These micro
cantilever impacters are selectively resonated by shaking the entire substrate with a piezoelectric vibrator, requiring
no need for built-in driving mechanisms such as electrostatic comb actuators as reported previously.!»? This selective
resonance of the micro cantilever impacters via an external vibration energy field? provides with a very simple means
of controlling forward and backward motion of the micro linear slider, facilitating assembly and disassembly of a micro
component on a substrate. The double-V beam suspension design* is employed in the micro cantilever impacters
for larger displacement in the lateral direction while achieving higher stiffness in the transversal direction. An
analytical model of the device is derived in order to obtain, through the Simulated Annealing algorithm, an optimal
design which maximizes translation speed of the linear slider at desired external input frequencies. Prototypes of the
externally-resonated linear micro vibromotor are fabricated using the three-layer polysilicon surface micro machining
process provided by the MCNC MUMPS service.

Keywords: micro assembly, on-substrate fine positioning, micro electro-mechanical systems (MEMS), micro linear
vibromotor, micro mechanical resonator.

1. INTRODUCTION

Assembly has not been an issue of research in micro electro mechanical systems (MEMS). This is because one of the
largest advantages of surface micro fabrication technologies, which MEMS is based on, is no need for assembly; an
entire system (e.g., a chip) with multiple components can be fabricated in processes involving no assembly. As the
complexity of the system increases, however, the need for assembly, as well as disassembly, becomes more evident
since complex integrated systems often suffer from low reliability due to the lack of modularity among subsystems.
This is especially true for MEMS, which often require complex electro mechanical integration and packaging. Despite
these demands, no practical assembly/disassembly methods of micro-scale components suitable for automation has
been developed so far.

Assembly in MEMS, if needed, is typically done by manual operation of micro probes or micro tweezers (e.g.,”).
Such miniaturization of the conventional pick-and-place robotic assembly, however, experiences extreme difficulty in
handling and positioning components with sizes less than a millimeter, due to the surface adhesion forces which cause
sticking among components and handling devices.® Figure 1 illustrates pick-and-place assembly of a micro-scale
component using a micro gripper. Surface adhesion forces such as electrostatic, van der Waals, and surface tension
forces cause the component to stick to the gripper during the approach (Figure 1 (b)) and the release (Figure 1 (d))
phases. Mechanical shock can be applied to the gripper to drop the stuck component (Figure 1 (e)), with the price
of inaccurate positioning of the released component (Figure 1 (f)).

One way to overcome this problem is to design a device on the substrate that facilitates component positioning
so that gross positioning is done in the conventional pick-and-place fashion®, whereas fine positioning is done by
the on-substrate positioning device. This concept is illustrated in Figure 2, where a on-substrate linear actuator
pushes a inaccurately positioned micro component (e.g., as a result of the “shock release” shown in Figure 1 (e)
and (f)) against a fixture anchored to the substrate (Figure 2 (a)), achieving precise positioning of the component
(Figure 2 (b)). The linear actuator also should be able to re-open to release the positioned component to facilitate
the potential needs for disassembly (Figure 2 (c)).
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*or with other processes which are more effective for gross positioning — see Section 5 for an example.
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Figure 1. Typical pick-and-place assembly in micro scale (modified from%). (a) A gripper approaches to a com-
ponent; (b) The component sticks to the gripper; (c) the gripper grasps the component; (d) The component is
transported to a desired location; (e) The component is released with shock; (f) The component is placed at inaccu-
rate position.
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Figure 2. Precise component positioning and release with a on-substrate linear actuator and a fixture. (a) inaccu-
rately positioned component; (b) accurately positioned component; (c) release of the component for disassembly.

This paper describes a design of such a micro linear actuator for fine positioning of a micro- to meso-scale
component on a substrate. The design is based on a linear micro vibromotor reported by Daneman et al.,' where
a micro linear slider is actuated by vibratory impacts exerted by micro cantilever impacters. Dissimilar to their
design, however, these micro cantilever impacters are selectively resonated by shaking the entire substrate with a
piezoelectric vibrator, requiring no need for built-in driving mechanisms such as electrostatic comb actuators. This
selective resonance of the micro cantilever impacters via an external vibration energy field® provides with a very simple
means of controlling forward and backward motion of the micro linear slider, facilitating assembly and disassembly
of a micro component on a substrate. The double-V beam suspension design? is employed in the micro cantilever
impacters for larger displacement in the lateral direction while achieving higher stiffness in the transversal direction.
An analytical model of the device is derived in order to obtain, through the Simulated Annealing algorithm, an optimal
design which maximizes translation speed of the linear slider at desired external input frequencies. Prototypes of the
externally-resonated linear micro vibromotor are fabricated using the three-layer polysilicon surface micro machining
process provided by the MCNC MUMPS service.

2. RELATED WORK

In the efforts of the development of a bulk assembly method for micro- to meso-scale components, several approaches
have been proposed to incorporate self-positioning to micro assembly. Yeh and Smith? integrated trapezoidal GaAs
micro blocks on a Si substrate with trapezoidal holes by dispensing these in a carrier fluid (ethanol) onto the Si
substrate. Cohn, Kim and Pisano® experimented with the self-assembly of small hexagonal parts (1 mm in diameter)
by placing a quantity of them on a slightly concave diaphragm that was agitated with a loudspeaker. Hosokawa,
Shimoyama and Miura® experimented with the self-assembly of micro parts which are brought together on a water
surface by surface tension of the water. Bohringer, Goldberg, Cohn, Howe and Pisano'® proposed a method to
position sub-millimeter parts using ultrasonic vibration to eliminate friction and adhesion, and electrostatic forces
to position and align parts in parallel. While no external positioning/handling of components is necessary in these
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Figure 3. A schematic top view of the externally-resonated linear micro vibromotor for on-substrate precise
positioning.

methods, the components are only grossly positioned, requiring auxiliary means to achieve precise positioning needed
for practical micro electro mechanical applications.

Other work has been done on the use of mechanical force to both self-position and fasten components so that
assembly requires less positioning/handling of components. Judy, Cho, Howe and Pisano'! fabricated a laterally-
deflecting cantilever on the side wall of a polysilicon mesa which adjusts the position of other structures attaching to
the cantilever, and provides the bearing forces between structures. Burgett, Pister and Fearing!'? used spring loaded
latches to self-position the plates within micro fabricated hinges. Prasad, Bohringer and MacDonald'® fabricated a
micro snap fastener with 1-2 pm wide laterally-deflecting chamfered latches. These methods do not consider the
potential need for disassembly, hence non-destructive removal of the fastened components is extremely difficult or
even impossible.

3. DESIGN
3.1. Operational principle

Our design of the externally-resonated linear micro vibromotor for micro assembly is based on a linear micro vibro-
motor reported by Daneman et al.,! where a micro linear slider is actuated by vibratory impacts exerted by micro
cantilever impacters. Dissimilar to their design, however, these micro cantilever impacters are selectively resonated
by external piezoelectric vibration, requiring no need for built-in driving mechanisms such as electrostatic comb
actuators.

As illustrates in Figure 3, it consists of a linear slider located between two pairs of folded cantilever impacters
anchored on the substrate which can exert forward and backward vibratory impacts to the sides of the slider,
depending on which pair of impacters is resonated by external vibration. Figure 4 illustrates the three-step operation
of the linear micro vibromotor. First, the substrate is shaken with a piezoelectric vibrator at the frequency fi.
This external vibration resonates only the forward impacters, causing the linear slider to move right (Figure 4 (a)).
This motion causes the slider to push a micro component against an anchored fixture, achieving precise positioning
(Figure 4 (b)). Next, the substrate is shaken at the frequency fo. This external vibration resonates only the backward
impacters and moves the slider to the left (Figure 4 (c)), releasing the positioned component.

This selective resonance of the micro cantilever impacters via an external vibration energy field®> provides with
very simple means of controlling forward and backward motion of the micro linear slider, without explicit routing
to direct energy to each of the impacters. This property of the selective resonance would be particularly useful
in the situation where a number of linear micro vibromotors are implemented in a two-dimensional array in order
to position multiple micro components simultaneously. By designing the forward and backward impacters to have
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Figure 4. Three-step operation of the externally-resonated linear micro vibromotor. (a) the resonance of forward
impacters, (b) the resulting forward sliding motion and the resonance of the backward impacters, (c) the resulting
backward sliding motion.

Figure 5. A closed-up view of a impacter mass and the slider side wall.

different resonance frequencies, each linear micro vibromotor in the array can be operated independently by the
external piezoelectric vibrations driven by the sum of the signals with appropriate resonance frequencies.?

In Figure 4, note that the direction of the external vibration is not parallel to the direction of impacters’ oscillation
(i.e., the direction of impact). Therefore, it is the component of the external vibration parallel to the direction of
impact that causes the resonance in the micro impacters. Another component of external vibration causes the
impacters to deform perpendicular to the direction of impact, which is undesirable for efficient operation of the linear
micro vibromotor. The micro cantilever impacters, therefore, should have high stiffness in the direction perpendicular
to the direction of impact, while keeping the relatively low stiffness in the direction of impact. To achieve this goal,
the double-V beam suspension design? is employed in the micro cantilever impacters, which realizes higher transversal
stiffness than the conventional folded parallel beam design without affecting the lateral stiffness.*

3.2. Modeling

Equations of motions of a lumped parameter model of the impacter-slider system illustrated in Figure 3 is derived
in order to obtain an optimal design which maximizes translation speed of the linear slider at desired external input
frequencies. Figure 5 shows the closed-up view of a impacter mass and the slider side wall, where (x,y) denote the
coordinate system for the impacter position, and ({,~) denote the coordinate system for the slider position. The
-y axes are rotated from (-y axes by the impact angle 6. The following assumptions are made in derivation of the
lumped parameter model:

e The impacters and the slider do not move in the direction perpendicular to the substrate.
e The impacters are completely rigid in y direction.

e The slider is completely rigid, and there is no clearance in « direction between the flange and the slider.



e There is no friction between the substrate and the impacter mass.
e An impact between the impacter mass and the slider side wall occurs instantaneously.

e Impacts by the two impacters in a pair occur simultaneously.

Given these assumptions, an impacter can be modeled as a simple mass-spring-damper system with an external
force input fe,e(t):

ma + bk + kx = fere(t) (1)

where m, b, and k are the mass, viscous damping coefficient, and spring constant of a impacter, respectively. Assuming

Coutette air flow between the substrate and the impacter mass, and small lateral displacement of the folded beams,
these parameters are expressed as'**:

m = pAt+ 2phwl (2)
A
b = ME (3)
w3 cos ¢
k = Eh (7) cos ¢ (1 + 5 ) (4)

where p is the mass density of the impacter material (polysilicon); A and t are the planer area (including the area
of the joining member of two folded beams) and thickness of the impacter mass, respectively; h, w, and [ are the
height, width, and total length of the two segments of a V-beam, respectively; u is the viscosity of the air; d is the
vertical gap between the substrate and the impacter mass; E is Young’s modulus of the beam material (polysilicon);
and ¢ is the half of the angle between the two segments of a V-beam. Assuming the substrate is shaken with the
external vibration { = Zjcos(wt) in ¢ direction, the inertial force fe.¢(t) exerted to a impacter is:

fewt(t) = mw?Zy cos O cos(wt) (5)

Similarly, the equation of motion of the linear slider is given as:
MG =F(t) (6)
where M is the mass of the slider and F' is a net force exerted to the slider:

0 if ( =0and | — B+ Fop(t)] < Fy

F(t) = { —BC + Fep(t) — Fa($/[€)) otherwise "

where B is the viscous damping coefficient of the slider; F..;(t) = Mw?Zy cos(wt) is the inertial force exerted to the
slider; Fs and Fy are static and dynamic frictional forces, respectively. The parameters M and B are given similarly
to Equations 2 and 3.

An oblique impact of the impacter tips to the slider side wall is modeled as an impact with restitution in ~
direction, and an impact with instantaneous momentum transfer in ¢ direction.? Let ¢ be the distance between the
impacter tip and the slider side wall measured in = direction as shown in Figure 5. If = < ¢, there is no impact. At
x = ¢, the impacter tip contacts the slider sidewall. In in 7 direction, the following boundary condition models the
energy dissipation of the impacter at an impact:

vt sinf = —ev sinf (8)

where v~ and v™ are impacter velocities in = direction right before and right after the impact, and e is the coefficient
of restitution. In ( direction, linear momentum is transferred from the impacters to the slider. Considering there
are two impacters to drive the slider:

2mu™t cos@ + MV = 2mu~ cos + MV~ (9)

where V'~ and V' are slider velocities in x direction right before and right after the impact. Rearranging Equations 8
and 9 gives the boundary condition to model the energy transfer to the slider at an impact:

Vi=V"+ 2%(1 +e)v cosb (10)



Table 1. The physical constant values used in the simulation

| Parameter | Value [unit] | Note
p 2.33 [g/cm?] LPCVD polysilicon'*
W 1.79 x 1075 [Pa - 5] air at 20 C°
E 169 |G Pa] Polysilicon!®
F 20 [uN] between LPCVD polysilicon layers?
Fy 5[N] between LPCVD polysilicon layers!
e 0.5 between LPCVD polysilicon side walls?

The equations of motion defined as Equations 1 through 10 are numerically integrated with the forth-order Runge
Kutta method to predict and optimize a design of the externally-resonated linear micro vibromotor. The values of
the ¢ and 6 used in the numerical simulation are 15° and 45°, respectively. The values of d, h, and ¢ are constrained
by the MUMPs process provided by MCNC used for device fabrication discussed in Section 4. They are set to be
0.75 pm, 2.0 um, and 3.5 um, respectively. The physical constant values used in the simulation are shown in Table 1.
The values of Fs and F,; account for not only the friction between the substrate and the slider but also the slop
between the slider and its guide, and are estimated based on! since the slider size and its fabrication process are
virtually identical. In order to facilitate fair comparison of device performances with different input frequencies,
the power input from the external vibration is kept constant. Since the power input from the external vibration is
proportional to Z2 - w3, this quantity is kept at a constant value of 50 m?/s3T.

Figure 6 shows results of numerical integration of the above equations of motion 1 through 10 in the time period
from to = 0.0 [msec] to t; = 3.0 [msec] with two external input frequencies: (a) v = w/27 = 5.2 [kHz] and (b)
v = w/21m = 6.2 [kHz|. For each input frequency, the top figure shows the time plot of the slider position, and
the bottom figure shows the time plot of the impacter position. The parameter values common to both figures are
A =1.5x10* [pm?], w = 4.0 [um], I = 600 [um], ¢ = 3.0 [um], and the slider area is 8.0 x 10* [um]. These values
give the impacter natural frequency v, = wy, /27 = 5.2 [kHz|, where w,, = y/k/m. The initial condition (z(to), & (to))
is (0.0,0.0) in both cases. Note that the slider moves approximately three times faster when driven with 6.2kHz
(Figure 6 (b)) than when driven with 5.2kHz, a natural frequency of the impacter (Figure 6 (a)). This increase
in the system resonance frequency is due to the nonlinear “hardening spring” behavior observed in many dynamic
systems involving impacts'®19 often approximated by a damped Duffing oscillator2°:

i+ 2ai + fr + ex® = f(t) (11)

where «, 3, ¢ > 0 are constants and f(¢) is a periodic function of time ¢.

As other nonlinear oscillatory systems, the Duffing-like nonlinear systems exhibit instabilities where a small
perturbation of the initial condition (z(tp),#(tp)) completely changes the frequency response of the system.'619
Such instabilities can occur in the impacter-slider system as defined in Equations 1 through 10, since it is likely
that the initial position of the impacter mass varies at every operation of the device due to the sticking between
the impacter mass and the substrate, and between the impacter tips and the slider side wall. Figure 7 shows the
frequency responses of the impacter-slider system with the same parameter as in Figure 6 with the initial impacter
positions z(tg) = 0.0,1.0,2.0, 3.0 [um]. The system frequency response in this case is the average slider speed during
the given time period. Based on the observation that the change in the slider position at an impact is a monotonously
increasing function of the linear momentum of the impacters right before the impact, the system response is defined

as follows: .
> v (t)
k=2

_ 12
f— (12)

r(x0,p, V) =

where xg = (z(to),v(to)) is the initial condition, p is a vector of the system parameters, v is the input frequency,
n is the number of impacts occurred during the time period from ¢y to tf, and ¢y, £ = 2,3,...,n is the time when

TFor instance, this value gives the external vibration amplitude Zg = 1.27 um at the frequency v = w/2n = 5.0kHz, which is
reasonable for actuation with a piezoelectric stack vibrator.
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Figure 6. The simulated vibromotor performances. (a) v = w/2r = 5.2 [kHz]; and (b) v = w/27 = 6.2 [kHz].
The top figure shows the time plot of the slider position, and the bottom figure shows the time plot of the impacter
position.
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Figure 7. The frequency responses of the impacter-slider system for the initial impacter positions x(tg) =
0.0,1.0,2.0, 3.0 [um)].

the second impact, the third impact, etc. occurred. Note that v~ (¢1) is not included in the above sum to avoid
accounting for the first impact due to the initial impacter position. As shown in Figure 7, the input frequencies at
which the sudden transitions in the system response occur (bifurcation points®?) varies for different initial impacter
positions.

Although the above dynamic model shares some similarities to the one presented in et. al,® there are two
essential differences to be noted. First, the model in' was solved by piercing together the independently-solved
analytical solutions for impact and non-impact cases, whereas the above solution is obtained through numerical
integration of the system model. In,! piercing together two analytical solutions was feasible since the impacter
neutral position could be adjusted with the DC bias to the comb actuators such that the impact to the slider
side wall occurs just at the free oscillation amplitude of the impacters, minimizing the nonlinear effects due to the



impact. On the other hand, the system model needs to be numerically solved in the above since our interest is
the full dynamic behavior of the system in “early” impact cases, where the impacts occur far before the impacters
reach their free oscillation amplitudes. In such cases, piercing together two analytical solutions cannot predict the
dynamic behavior of the system, most notably the nonlinear effects illustrated in Figure 7. Second, in,' the slider
side wall was modeled as a very stiff spring and a damper, whereas in the above it is modeled as a rigid wall with
restitution. Modeling the side wall as a stiff spring and a damper provides a straightforward analytical solution
during impact,'617! although numerical integration of such a model requires very small time step during impact,
resulting in increased computational time. On the other hand, the restitution model, employed in numerous work on
impact dynamics modeling (e.g.,'81%2) requires much less computational time for numerical integration due to the
assumption of the instantaneous impact. The simple restitution model is employed in the above since in our work
numerically solving the system model is essential, and also the numerical simulation is repeatedly used during design
optimization discusses in the next section.

3.3. Design optimization

The system frequency response as defined in Equation 12 provides an objective function for an optimal vibromotor
design that maximizes translation speed of the linear slider at a desired external input frequency. For reliable
operation of the device, the design should be optimized for maximum slider speed in the presence of small perturbation
of the initial conditions. The instability of the system response illustrated in Figure 7 requires the optimization to
maximize the system response at the worst case scenario, i.e., to maximize the minimum response among possible
perturbation of the initial condition. In addition, the forward impacters should not respond to the input frequency
for the backward impacters, and vise versa. These considerations suggest the following max-min formulation of an
optimal design problem of the forward impacters:

max min r(xo, P, Vf) (13)
P Xo

s.t.  max r(xg,p,) =0 (14)
X0

xo €D (15)

peP (16)

where 7 is the system frequency response as defined in Equation 12, and vy and v are the input frequencies for the
forward and backward impacters, respectively. Equation 14 constraints that a feasible design should not respond
to the backward input frequency 14 regardless of the initial condition xg. Switching v in Equation 13 and v in
Equation 14 gives a formulation for the backward impacters.

Note that the evaluation of r(xg, p, ) requires only the impacter dynamics as defined in Equations 1, 4, 5, and
8. The design parameters p, therefore, only consists of the ones for the impacters: the planer area A of the impacter
mass; the width w and the total length [ of the two segments of a V-beam; and the distance ¢ between the impacter
tip and the slider side wall measured in = direction. The lower bounds of these parameters are given by the impacter
geometry illustrated in Figure 5 and the minimum feature length 2.0 um, as specified by the MUMPS process. Since
these parameters are not upper bounded, the set P is defined as follows:

P={(Awlc)|[200<A<00,20<w<00,80<1<00,20<c< o0} (17)

It is assumed that the perturbation in the initial condition is only in the initial impacter position due to the sticking
between the impacter mass and the substrate and between the impacter mass and the slider side wall, and is bounded
by —c and ¢. In other words,

D = {(x(to), v(to)) | — ¢ <a(to) <c, v(to) =0} (18)

Using 7(xo, p, ) as an objective function rather than more direct measures of the slider speed, e.g., {(t¢), has
two practical advantages for design optimization. First, the evaluation of r is far less computationally expensive than
the evaluation of the quantities involving the slider dynamics such as ((ty). Second, the prediction of the device
performance based on r is not necessarily less accurate than the prediction based on the slider dynamics, since it
does not involve phenomenological constants such as Fy and Fy, whose accurate estimates are extremely difficult to
obtain.



Table 2. Result from an optimization for vy = 6.0 [kHz| and v, = 3.0 [kHz].

| Parameter [unit] | Forward impacter | Backward impacter |

Alpm 13544 45446
w (pum 5.6774 4.0354
1 Tum] 795.74 795.27
¢ [m] 5.2046 2.6676
U [kH?Z] 5.8199 2.0385
z(to) [pm] ~2.6000 ~2.6676
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Figure 8. Frequency responses of the forward (right) and backward (left) impacters optimized for vy = 6.0 [kHz]
and v, = 3.0 [kH z].

Since the gradient-based nonlinear programming algorithms?! fail due to the discontinuous change in the system
response illustrated in Figure 7, the above optimization problem is solved using the Simulated Annealing algorithm.??
Table 2 shows the result from an optimization of the forward and backward impacters for the forward input frequency
vy = 6.0 [kHz] and the backward input frequency v, = 3.0 [kHz]. Note that the initial impacter position x(ty) of
the forward impacter that gives minimum response is approximately —0.5¢, not the minimum possible value —c as
for the backward impacter. This contradicts the trend illustrated in Figure 7, where the system response becomes
smaller as x(to) decreases. Further analyses reveal that for —c¢ < z(¢y) < —0.5¢, the first impact due to the large
initial deflection triggers bifurcation in the response which results in the response larger than for z(¢y) = —0.5¢.

Figure 8 shows the frequency responses of the forward (right) and backward (left) impacters in Table 2. Also
plotted on the figure are the forward and backward input frequencies, and the natural frequencies of the optimal
impacters. It can be easily seen from the figure that the shapes and the relative location of the two response curves are
optimized such that the forward impacter has a maximum response at the forward input frequency while achieving
zero response at the backward input frequency, and vise versa.

4. FABRICATION AND TESTING

Prototypes of externally-resonated linear micro vibromotors are fabricated using the three-layer polysilicon surface
micro machining process provided by the MCNC MUMPS service, where the bottom polysilicon layer serves as a
ground plane, and the middle and the top polysilicon layers are used for micro mechanical structures. Figure 9



) O g g ) AT

b) y . O g g™ f) ,m\

Figure 9. A basic flow of the MUMPS process. (a) Deposit and pattern the bottom polysilicon layer; (b) Deposit
and pattern the first PSG sacrificial layer; (c) Deposit and pattern the middle polysilicon layer; (d) Deposit and
pattern the second PSG sacrificial layer; (e) deposit and pattern the top polysilicon layer; (f) Dissolve the sacrificial
layers in HF solution.

a)

Figure 10. Fabricated prototypes of the externally-resonated to linear micro vibromotor with approximately 600 um
in the slider length. Preliminary testing suggested the several modifications to produce the design configuration shown
in Figures 3.

illustrates a basic flow of the MUMPS processt. A series of figures shows transversal cross sections of the micro
linear slider being fabricated. First, the bottom polysilicon layer (referred to as Poly0) is deposited and patterned
on a silicon substrate using low pressure chemical vapor deposition (LPCVD), as shown in Figure 9 (a). This is
followed by the deposition and patterning of a 0.75 pum thick sacrificial layer of LPCVD phosphosilicate glass (PSG).
Dimples are wet etched on this PSG layer to reduce friction between the bottom and middle polysilicon layers at the
completion of the fabrication process (Figure 9 (b)). On top of the PSG layer, a 2.0 um thick LPCVD polysilicon
layer (referred to as Polyl) is deposited and patterned. Figure 9 (c) shows the cross sectional pattern of the slider
made of Polyl. After the deposition and patterning of another PSG sacrificial layer (shown in Figure 9 (d)), and a
1.5 wm polysilicon layer (referred to as Poly2: shown in Figure 9 (e))), the PSG layers are dissolved in an etching
solution (HF), releasing the mechanical structure made of Polyl and Poly2 (Figure 9 (f)).

Prior to the fabrication of the optimal device designs, two types of prototypes are fabricated for preliminary
testing, whose photos are shown in Figure 10. These prototypes are tested for the forward and backward motion
via external vibration applied by an piezoelectric stack vibrator glued to the dice with dry epoxy. This preliminary
testing suggested the several modifications to produce the design configuration shown in Figure 3. Figure 11 show
a mask layout of an array of these devices, each optimized for a different input frequency, with “dummy” micro
components. The size of the dummy square components is 500 pm x 500 pm, made with Poly1 layer in the MUMPS
process. These dummy micro components are anchored to the substrate with a very thin polysilicon structure which
can be easily broken with a probe tip at the testing. The fabrication of these devices are currently in progress. Upon
the completion of fabrication, testing is to be done on the positioning and release of the dummy micro components
against the anchored fixture elements, as well as on the cross talk among the impacters of different vibromotors on
a substrate.

tSee http://mems.mcnc. org/mumps . html for details.



Figure 11. An array of the externally-resonated micro vibromotors with “dummy” micro components, each of
which is optimized for a different input frequency. The size of the square micro components is 500 ym x 500 pm.

5. DISCUSSION AND FUTURE WORK

This work presented design, analysis, and optimization of a linear micro vibromotor for on-substrate fine positioning
of micro-scale components, where a micro linear slider is actuated by vibratory impacts exerted by micro cantilever
impacters. These micro cantilever impacters are selectively resonated by shaking the entire substrate with a piezo-
electric vibrator, requiring no need for built-in driving mechanisms such as electrostatic comb actuators as reported
previously.!»2  This selective resonance of the micro cantilever impacters via an external vibration energy field?
provides with a very simple means of controlling forward and backward motion of the micro linear slider, facilitating
assembly and disassembly of a micro component on a substrate. An analytical model of the device is derived in order
to obtain, through the Simulated Annealing algorithm, an optimal design which maximizes translation speed of the
linear slider at desired external input frequencies. Prototypes of the externally-resonated linear micro vibromotor
are fabricated using the three-layer polysilicon surface micro machining process provided by the MCNC MUMPS
service.

As discussed in Section 1, gross positioning of a micro component needs to be done prior to on-substrate fine
positioning using an externally-resonated linear micro vibromotor. Although the gross positioning could be done
sequentially in pick-and-place fashion, vibratory palletization,?® a part orienting method common to centimeter-scale
mechanical parts, could provide very efficient means of parallel gross positioning of micro components. During the
palletization, surface adhesion forces can be virtually eliminated by applying vertical vibration in ultrasonic range
as recently reported in.!® Such vertical vibration can also facilitate the operation of the linear micro vibromotor by
reducing the friction between a micro component and the substrate.

The current fine positioning scheme, however, lacks a positive fastening means to secure the attachment of
the component to the substrate. Therefore, the design modification of the linear slider, the etched cavity, and/or
anchored fixture should be investigated in order to achieve selective fastening and release of a component. For this,
the application of removable micro mechanical latching fasteners, or micro “mouse traps,”?* will be considered as a
possible fastening means.

One of the most promising applications of the micro assembly/disassembly as described in this paper is bare-
chip interconnection in multi-chip module (MCM), which requires a precision assembly/disassembly of meso-scale
components with high density electrical interconnection. Although the chips currently used in MCMs are typically
in 5-10 mm scale, the advent of the assembly/disassembly method by using the externally-resonated linear micro
vibromotor presented in this paper would stimulate further disintegration of subsystem components to improve the
overall system modularity, which in turn would reduce the sizes of the components to be assembled.
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