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ABSTRACT 

This paper presents a 3D extension of our previous 

work on the synthesis of assemblies whose 

dimensional integrity is insensitive to the dimensi-

onal variations of individual parts. Assuming that 

assemblies can be built in the reverse sequence of 

decomposition, the method recursively decomposes a 

given product geometry into two subassemblies until 

parts become manufacturable. At each recursion, 

joints are assigned to the interfaces between two 

subassemblies to ensure the two criteria for robust 

dimensional integrity, in-process dimensional 

adjustability and proper part constraints. Screw 

Theory is utilized as a unified 3D representation of 

the two criteria. A case study on an automotive space 

frame is presented to demonstrate the method.
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1. INTRODUCTION 

Structural enclosures of modern mechanical 

products, such as ship hulls, airplanes and 

automotive bodies, typically are made of hundreds or 

thousands of parts due to their geometric complexity 

and sizes. As the number of parts increases, however, 

achieving the dimensional integrity of the final 

assembly becomes more difficult due to the inherent 

variations in manufacturing and assembly operations.  

A solution is to adjust critical dimensions during an

assembly when parts are located and fully 

constrained in fixtures. This in-process dimensional 

adjustment is typically facilitated by slip planes, 

mating surfaces at joints that allow a small amount of 

relative motions. For example, Figure 1 shows two 

designs of a rectangular box. In contrast to design in 

(a) with no in-process adjustability of the critical 

dimensions (length between sections 1 and 3), design 

in (b) provides slip planes such that relative location 

of parts can be adjusted along the critical dimension.  

Figure 1 Two box designs (a) without and (b) with 

adjustable height during assembly (Lee and 

Saitou, 2003a). 

The dimensional integrity of an assembly is also 

affected by the post-assembly distortion due to the 

internal stress induced by joining parts with 

dimensional mismatches. A solution is to ensure a 

proper constraint of parts at each assembly step. For 

example, part 1 in Figure 2 (a) is not properly 

constrained and therefore the post-assembly 

distortion might occur, if the length of sections 2 and 

4 are slightly different due to manufacturing 

variation. With two slip planes perpendicular to each 

other, the design in (b) can absorb manufacturing 

variations within section 1 and 2-3-4, provided that 

variations in angles are negligible.  

In addition to the decomposition of product geometry 

and the assignment of joint types at part interfaces, 

the assembly sequence also influences the in-process 

Figure 2 Two box designs (a) without and with (b) 

proper constraints (Lee and Saitou, 2003a). 
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dimensional adjustability and proper part constraints. 

In an assembly sequence in Figure 3 (a), the critical 

dimension (total length) is not adjustable since there 

is no slip plane when the total length is determined 

with the addition of part 1. On the other hand, the 

sequence shown in (b) provides the slip plane at the 

assembly step where the critical dimension is 

achieved, to absorb a variation in length. As another 

example, the sequence in Figure 4 (b), where each 

critical dimension is independently adjusted at each 

step, is more desirable than the sequence in (a), 

where both dimensions are adjusted by one step, 

inevitably requiring a compromise between two 

critical dimensions.

Figure 3 Assembly sequences (a) without and (b) with 

in-process adjustability (modified from Whitney, 

et al., 1999).  

Figure 4 Assembly sequences where two dimensions are 

adjusted (a) at one step and (b) independently at 

two steps (modified from Whitney et al., 1999).  

Figure 5 illustrates an effect of the assembly 

sequence on proper part constraints, where the 

sequence in (a) causes improper constraint of part 1 

at the second step, whereas all parts are properly 

constrained at all steps in the sequence in (b).  

As illustrated so far, the in-process adjustability and 

proper part constraints are effective tools for 

achieving high dimensional integrity of an assembly 

without requiring high part tolerances (Blanding, 

1999). The use of these tools in complex assemblies 

can be a very tedious task due to the coupling 

between the product decomposition, joint 

assignments, and assembly sequences. As a remedy, 

we have previously designed (Lee and Saitou, 2003a) 

a correct and complete algorithm to fully enumerate 

feasible solutions for any 2D enclosure geometry. 

Assuming that assemblies can be built in the reverse 

sequence of decomposition, the algorithm recursively 

decomposes a given product geometry into two 

subassemblies until parts become manufacturable. At 

each recursion, joints are assigned to the interfaces 

between two subassemblies to ensure in-process 

dimensional adjustability and proper part constraints.  

Figure 5 Assembly sequences (a) without and (b) with 

proper constraints (Lee and Saitou, 2003a). 

This paper presents a 3D extension of the algorithm, 

where Screw Theory (Ball, 1900) is utilized as a 

unified 3D representation of in-process adjustability 

and proper part constraints. Dissimilar to our 

previous work that assumes joints with arbitrary 

mating angles, they are selected from a library of 

feasible joints specific to the application domain. A 

case study on an automotive space frame is presented 

to demonstrate the method. 

2. RELATED WORKS 

Previous works related to assembly synthesis in 

general are reviewed in (Lee and Saitou, 2003a). Due 

to the space limit, this section focuses on the works 

relevant to the 3D extension of the method.  

The advantages of properly constrained assemblies 

are well known to practitioners in precision 

machinery design and several methods have been 

proposed in literatures including: Kinematic Design 

(Whitehead, 1954), Minimum Constraint Design 

(Kamm, 1990) and Exact Constraint Design (Kriegel, 

1995; Blanding, 1999). These works describe 

disadvantages of over-constraint through examples 

and provide good practices as well as analytical 

methods to compute constraints. In these works, the 

most commonly cited merit of properly constraint 

design is repeatability which leads to high precision. 

Recently, there has been a trial to analyze and 

classify key features that enables properly constraint 

design (Downey, et al., 2002).  
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A universal analytical method for motion and 

constraint analysis dates back to Screw Theory, a 

pioneering work by Ball (1900). Since then, Screw 

Theory has been applied to areas of mechanism, 

robotics and machine design. Among others, 

Waldron (1964) utilized the screw theory to build a 

general method which can determine all relative 

degrees of freedom (DOF) between any two rigid 

bodies making contacts to each other. Recently, 

Konkar and Cutkosky (1995) has proposed a 

recursive algorithm which computes motions allowed 

by mating features within mechanisms. Adams and 

Whitney (1999) have extended this method by 

providing a dual method to compute the state of 

constraint of parts and applied it to rigid body 

assemblies with mating features such as pin-slot joint.  

While these works provide tools for analyzing 

constraints in a given assembly and simple design 

guidelines, they do not address a systematic synthesis 

of an assembly with desired constraint characteristics 

such as in-process dimensional adjustability and 

proper part constraints, as discussed in this paper.

3. TERMINOLOGY*

Since the assembly synthesis deals with objects yet to 

be decomposed into an assembly of separate parts, a 

few terms need to be defined to avoid confusion with 

generic meanings used in other literatures. 

• A product geometry is a geometric representation 

of a whole product as one piece (Figure 6 (a)).  

• A member is a section of a product geometry 

allowed to be a separate part. A pair of members 

is connected when they meet at a certain point in 

the product geometry.  

• A configuration is a group of members which are 

connected to at least one member within the 

group. A product geometry is a configuration, so 

as a part (as defined below). 

• The Key Characteristics (KCs) are defined by Lee 

and Thornton (1996) as product features, 

manufacturing process parameters, and assembly 

features that significantly affect a product’s 

performance, function and form. In this paper, KC 

refers to a critical dimension to be achieved in 

assemblies.  

• A configuration graph (or simply configuration if 

unambiguous in the context) is a triple  

C = (M, E, A)    (1) 

                                                          
* Previously defined in Lee and Saitou (2003b). 

where M, E, and A are the sets of nodes 

representing members, edges representing 

connections between two members, and edges 

representing KCs, respectively (Figure 6 (b)). 

• A decomposition is a transition of a configuration 

into two or more subconfigurations by removing 

connections between two members.  

• A part is a configuration that is not decomposed 

further under given criteria, eg., a minimum part 

size. A part may consist of one or more members.  

• A joint library is a set of joint types available for 

a specific application domain (Figure 7).  

• An (synthesized) assembly is a set of parts and 

joints that connect every part in the set to at least 

one of other parts in the set. 

• Assembly synthesis is a transformation of a 

product geometry into an assembly. 

Figure 6 (a)  product geometry of a beam based product 

and (b) its configuration graph. 

Figure 7 An example of joint library for 3-D beam based 

assemblies consisting of lap, butt and lap-butt.  

4. SCREW THEORY†

In Screw Theory, a screw is defined as a pair of a 

straight line (screw axis) in a 3D Cartesian space and 

a scalar (pitch). It is commonly represented by screw 

coordinates, a pair of two row vectors Σ = (s; s0) in 

3D Cartesian coordinates, where s is a unit vector 

parallel to the screw axis and 

s0 = r × s + ps                                                           (2) 

In the equation, r is the position vector of a point on 

the screw axis and p is the pitch, which can be 

recovered using 

                                                          

†  The terminology and formalization in this section are 

summarized from Ball (1900), Hunt (1978), Roth (1984) 

and Konkar and Cutkosky (1995). 

(a) (b) 1

2
3

4

kc1

kc2

1

2

3

4

k
c
1

kc2

587Three-dimensional assembly synthesis for robust dimensional integrity based on screw theory



ss

ss

⋅
⋅

= 0p                                                                  (3) 

A screw with an infinite pitch does not follow 

Equation (2), instead it is denoted by using zero 

vector for s and having s0 represent the unit vector 

parallel to the screw axis.  

Two types of special screws, a twist and a wrench, 

are utilized in this paper. A twist is a screw 

representing a motion of a rigid body simultaneously 

rotating around and translating along an axis. Using 

screw coordinates, it is denoted as Τ = (ωωωω; v), where 

ωωωω is the angular velocity and v is the linear velocity 

of a point on the body (or its extension) located at the 

origin of global reference frame. A wrench is a screw 

representing a force along and a moment around an 

axis exerted on a rigid body. Using screw coordinates,

it is denoted as Ω = (f; m), where f is the force and m

is the moment that a point on the body (or its 

extension) located at the origin of global reference 

frame should resist. 

Two screws, Σ1 = (s1; s01) and Σ2 = (s2; s02), are 
reciprocal to each other, if and only if they satisfy:  

s1 ⋅ s02 + s01 ⋅ s2 = 0.                                                 (4) 

If a twist Τ is a reciprocal of wrench Ω (or vise 
versa), Ω does no “work” to a rigid body moving 
according to Τ.

When a body can receive linear combinations of 

several screws (either twist or wrench), this set of 

screws are typically represented as a matrix where 

each screw in the set forms a row vector of the 

matrix. This matrix is called a screw matrix. As its 

row space is the screw space, the rank of a screw 

matrix is equal to the dimension of the screw space.  

The function reciprocal(S) returns a screw matrix, of 

which row space includes all reciprocal screws to 

screws contained in S. It can be obtained by 

exchanging the former three columns and the letter 

three columns of the null space of S.

The union of screw matrices represents the sum of 

screw spaces and it can be obtained by simply 

“stacking” them on top of one another:   

1

2

1

n

i

i

n

=

=

S

S
S

S

M
U    (5) 

The intersection of screw matrices is the set of 

screws common to the screw matrices and can be 

computed through double reciprocals:  

1 1

reciprocal( reciprocal( ))
n n

i i

i i= =

=S SI U       (6) 

Since a twist and a wrench are also screws, the 

definitions of reciprocal, union, and intersection hold. 

Woo and Freudenstein (1970) presents kinematic 

properties of various joint types in screw coordinates, 

which are borrowed to build twist matrices of beam 

joint types.  

Figure 8 Lap (a) and lap-butt joint (b) of a beam based 

model and the local coordinate frames for twists.  

Figure 8 (a) shows a typical lap joints found in beam-

based structures. When it is attached to another beam, 

the tab allows planar motion parallel to x-y plane. 

Also, if we assume that the length of the tab is very 

small compared to the length of the beam, it can be 

treated as a line contact along y-axis, thus allowing 

the rotation about y-axis. Thus, a lap joint at its local 

coordinate frame can be modeled as a twist matrix:   

=

010000

001000

000100

000010

lap
T                                    (7) 

Similarly, a butt joint in Figure 8 (b) allows the 

motion parallel to y-z plane, can be modeled as: 

=
100000

010000

000001

butt
T                                    (8) 

In twist matrices in equation (7) and (8), each row 

represents an independent motion, and each non-zero 

number represents rotation or translation along a 

corresponding axis – x, y, z, vx, vy or vz. For 

example, in the first row in Equation (7) has 1 at the 

second column, which means the lap joint allows 

rotational motion about y-axis. In the third row, it has 

1 at the fourth column, meaning translation along the 

x y

z
(a)

x

z
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x-axis. As these matrices are used only to give 

information on which DOFs are constrained for a 

joint type, amplitude of each twist (row) of these 

twist matrices, in this paper, does not have significant 

meaning.

Once the twist matrix is obtained for a joint type, the 

reciprocal wrench matrix can be computed as 

described above, and the wrench matrices 

corresponding to twist matrices in (7) and (8) are: 

0 0 1 0 0 0
reciprocal( )

0 0 0 1 0 0
lap lap

= =W T       (9) 

1 0 0 0 0 0

reciprocal( ) 0 0 0 0 1 0

0 0 0 0 0 1

butt butt
= =W T    (10)

Each non-zero number now represents force or 

moment along a corresponding axis – fx, fy, fz, mx, my

or mz - that the joint can constrain. For example, in 

the first row in Equation (9) has 1 at the third column, 

which means the lap joint can support a force along 

z-axis.

5. 3D ASSEMBLY SYNTHESIS  

5.1. Binary decomposition 

The assembly synthesis algorithm in (Lee and Saitou, 

2003a) adopted in this paper assumes every assembly 

step combines two subassemblies. Conversely, the 

algorithm decomposes a configuration into two 

(sub)configurations, by removing some connections, 

which is equivalent of finding a cut-set ‡ (Foulds, 

1991) of the configuration graph. In the following, 

CSd and KCd denote the cut-set and the set of KCs 

broken by a decomposition d, respectively. For the 

decomposition shown in Figure 9, CSd = {(1, 2), (3, 

4)} and KCd = {kc , kc2}.

Any configuration Ca = (Ma, Ea, Aa) decomposed to 

two subconfigurations Cb = (Mb, Eb, Ab) and Cc = (Mc,

Ec, Ac), must satisfy the following conditions: 

Mb ∅ and Mc ∅.

(Ma, Ea), (Mb, Eb) and (Mc, Ec) are connected. 

Ma = Mb ∪ Mc.

Mb ∩ Mc = ∅.                                                        (9) 

The 1st condition states subconfigurations should be 

nonempty. The 2nd condition states the configurations 

                                                          

‡ In a configuration graph, edges representing KCs are not 

counted to a cut-set. 

must be connected before and after decomposition. 

The 3rd and 4th conditions specify two 

subconfigurations do not share any members.  

A joint is assigned to each connection broken by a 

binary decomposition, which can be represented as a 

mapping JLCSdd a:γ , where JL is a joint library. 

With the joint assignment, a (binary) decomposition 

d can be uniquely specified as d = (Ma, γd, (Mb, Mc)).

See Figure 10 for an example. Note that a feasible 

joint type may depend on the local geometry at the 

joint location. For example, feasible joint types 

between two perpendicular beams would be different 

from that for two coaxial beams. 

Figure 9 A binary decomposition in product geometry 

(left) and configuration graph (right). 

Figure 10 Joint types assigned to the subconfiguratins in 

Figure 9. The ‘L→’ represents a lap joint from a 

lower-index node to a higher-index node.  

5.2. The 1st decomposition rule for in-
process dimensional adjustability 

Let us consider how to assign appropriate joint types 

for those decompositions which have at least one 

broken KC. Recall Figure 3, which has a slip plane 

between parts 2 and 3 such that the KC can be 

delivered. The assembly sequence in Figure 3 (b) 

shows that it is desirable that a slip plane is provided 
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at the very assembly operation where KC is realized, 

no matter how subassemblies are assembled before. 

This can be stated in the reverse course as follows: 

no matter how a subconfiguration is decomposed 

further, when KCs are broken by a decomposition, 

joints assigned to the cut-set, in combination, should 

allow motions compatible with the KCs. This 

statement has been refered to as the 1st

decomposition rule for in-process dimensional 

adjustability (Lee and Saitou, 2003a).  

A KC, in this paper, is assumed to be a critical 

dimension between parts only achieved by 

adjustment during assembly of the parts. Thus the 

dimension noted as a KC will be constrained by a 

fixture, according to which parts being assembled 

will be adjusted. In this context, KC constrains 

relative DOFs between two parts; hence it is natural 

to model a KC as a wrench matrix. The approach 

taking tolerance relations as constraints can be found 

in the area of computer-based tolerance modeling, 

and a recent study by Wu et. al. (2003) shows the 

number and the type of DOFs constrained for each 

tolerance relation in standard tolerance classes. In 

this paper, we consider only distance and angularity 

between lines (beams’ axes). The distance between 

lines constrain only one translational DOF between 

two points where the KC is anchored, thus it is 

modeled as a wrench whose axis passes these points. 

The angularity between lines constrains only one 

rotational DOF between two lines and it is modeled 

as a wrench with infinite pitch whose axis is the 

vector product of the two lines’ direction vectors. 

The 1st decomposition rule for in-process 

dimensional adjustability, in other words, states that 

the DOFs constrained by KCs should not be 

constrained by the joints, thus avoiding conflicts. 

Once wrench matrices are associated to joints and 

KCs broken by a decomposition, this rule can be 

stated in the screw theory’s terminology: for a 

decomposition, the wrenches representing joints and 

KCs should not constrain the same DOF, thus 

satisfying: 

( )
( ) ( )

d

d d

ae

e CS a KC

=W W O                                (11) 

Since the rank of the intersection of the joint and KC 

matrices is zero as shown in equation (11), by the 

theorem from linear algebra, it is obvious that the 

rank in equation (12) is merely summation of ranks 

of joint and KC matrices: 

( )

( )

rank(( ) ( ))

rank( ) rank( )

d

d d

d

d d

ae

e CS a KC

ae

e CS a KC

= +

W W

W W
               (12) 

Furthermore, as the proper constraint design in its 

rigorous definition avoids under-constraint as well as 

over-constraint, the combined constraints from joints 

and KCs should cover six DOFs, such that no DOF 

could be left unconstrained when two parts are being 

assembled. In other words, the dimension of the 

combined wrench space, i.e., the rank of the union of 

joint and KC wrench matrices, should be equal to six. 

Combined with equation (12), we can now conclude 

the 1st rule of decomposition for in-process 

dimensional adjustability with:  

( )

( )

rank(( ) ( ))

rank( ) rank( ) 6.

d

d d

d

d d

ae

e CS a KC

ae

e CS a KC

= + =

W W

W W
       (13) 

Consider the product geometry decomposed in 

Figure 9 and joint assignment shown in Figure 10, 

which has two lap joints, j  and j2 for edges cut by 

the decomposition. Suppose the location of j  and j2
in global reference frame X-Y-Z are (3, 0, 0) and (0, 

4, 0). Then, based on the local coordinate frame of 

lap joint shown in Figure 8 and orientation of j  and 

j2, Wlap (Equation (9)) can be transformed to j  and 

j2 in global reference frame. Then the union of joint 

wrench matrices can be computed: 

( )

0 0 1 0 0 0

~ 0 0 0 1 0 0

0 0 0 0 1 0
d

d

e j j2

e CS

γ
∈

=W W WUU
§ (14) 

The wrench matrix in (14) has 1 at the third, fourth 

and fifth column, meaning that it supports force 

along Z-axis, moments about X and Y axis, 

respectively. On the other hand, the decomposition in 

Figure 9 has broken two KCs, kc  and kc2. The 

union of these KCs is: 

1 2

0 1 0 0 0 1.5

0 0 0 0 0 1
d

a kc kc

a KC∈

= =W W WUU . (15) 

Note that Wkc  (upper row) represents the distance 

KC between member 1 and 3 (translation along Y-

axis) and Wkc2 (lower row) represents the angularity 

KC between member 1 and 2 (rotation about Z-axis).  

                                                          
§ The result has been reduced to the Row Reduced Echelon 

Form for easy interpretation. 
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The union of the joint twist matrix (Equation (14)) 

and KC twist matrix (Equation (15)) is: 

( )

0 1 0 0 0 0

0 0 1 0 0 0

( ) ( ) ~ 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

d

d d

e a

e CS a KC

γ
∈ ∈

W WUU U . (16) 

It shows that the parts are constrained in X-axis 

neither by joints nor by KCs. Although it does not 

satisfy Equation (13), it does satisfy Equation (12), 

which implies at least that there is no conflict 

between joints and KCs. As this decomposition does 

not satisfy Equation (13), the assembly synthesis 

process will discard it.

5.3. The 2nd decomposition rule for in-
process dimensional adjustability 

As discussed in Figure 4, when multiple KCs in the 

same direction are realized at an assembly step, the 

adjustment of one KC will affect the dimension of 

the other KCs. Viewing KCs as constraints, this 

happens when two or more KCs constrain the same 

DOF of a subassembly at an assembly step. However, 

for complex assemblies, detecting over-constrained 

tolerance relationship is not straightforward from the 

engineering drawings because tolerances are 

specified on parts, not subassemblies, which are 

defined by assembly sequences. Therefore, a clumsy 

assembly planning might cause a subassembly’s 

DOF to be constrained by several KCs. In order to 

avoid this situation, one should plan assembly steps 

such that, in every assembly step, subassemblies 

being assembled are free of over-constraining KCs.  

Accordingly, the 2nd decomposition rule for in-

process dimensional adjustability in (Lee and Saitou, 

2003a) states a decomposition can break only KCs 

independent to each other** . In other words, KCs 

broken by a decomposition, i.e., the KCs in KCd,

should not constrain the same DOF more than once. 

In such cases, the intersection of the wrench matrix 

corresponding to any subset of KCd and the wrench 

matrix of its complement set must result in the zero 

matrix:

\

, ( ) ( )
d

a ad

a K a KC K

K KC =W W O             (17) 

                                                          
** In 2D cases in the previous works, only KCs 

perpendicular to each other were allowed to be stricter. 

, which is also equivalent to: 

rank( ) rank( )
d d

a a

a KC a KC

=W W .                        (18) 

The two KCs shown in Figure 9, each with single 

wrench make the KC matrix of rank 2 as shown in 

Equation (15), thus satisfying Equation (18).          

5.4. The decomposition rule for in-
process proper constraint 

In Figure 5, it has been shown that joints should be 

perpendicular to each other to have subassemblies 

being assembled properly constrained. Similarly to 

drawing the first and second decomposition rule for 

in-process dimensional adjustment, this assembly 

rule has been inversed to the decomposition rule for 

non-forced fit in our previous work (Lee, B. and 

Saitou, K., 2003a), which allows only mutually 

perpendicular joints to be broken by a decomposition. 

This rule is simplified and limited to two-

dimensional space assuming over-constraints in 

rotation are minimal.  

The idea of this rule is that there should be no over-

constraint at each assembly step, hence the 

decomposition rule (renamed as the decomposition

rule for in-process proper constraint) should not 

allow any combination of joints yielding over-

constraint of parts. In other words, joints placed for 

connections broken by a decomposition, i.e., the 

joints corresponding to CSd, should not constrain the 

same DOF more than once. Except that joints serve 

as constraints, instead of KCs, this rule is identical to 

the 2nd rule of in-process dimensional adjustability, 

thus satisfying:  

( ) ( )
\

, ( ) ( )
d d

d

d e e

e C e CS C

C CS =W W O         (19) 

, which is also equivalent to: 

( ) ( )
rank( ) rank( )

d d

d d

e e

e CS e CS

=W W .                  (20) 

For the decomposition depicted in Figure 10, each of 

the two joints j and j2 has rank 2 (Equation (9)). 

However, the union of corresponding wrench 

matrices has rank 3, which does not satisfy Equation 

(20). In order to check what DOFs are over-

constrained, we can intersect the wrench matrices:

2 recip(recip( ) recip( ))

recip( )

[0 0 1 4 3 0]

j j j j2

j j2

=

=

= − ≠

W W W W

T T

O

I U

U  (21) 
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The results states that the joints over-constrain the 

translational DOF along Z-axis, which yields locked 

moment about X-axis with unit of 4 and moment 

about Y-axis with unit of -3. It occurs because j

itself constrains parts both in translation along Z-axis 

and the moment about X-axis at the same time j2
combined with j  constrain the moment about X-axis 

again.  And j2 and j  cooperate in the same way to 

result in the locked moment about Y-axis.  

5.5. Unified decomposition rule for in-
process proper constraint 

According to Equation (18), the set of KCs related to 

a decomposition should be linearly independent. 

Similarly, the set of joints assigned for broken 

connections should be linearly independent 

according to Equation (20). Further, as these sets 

should be linearly independent to each other by 

Equation (13), these three equations in combination 

requires the independency of constraints, regardless 

of KC or joint, and full rank when unionized. Thus, 

combining Equation (13), (18) and (20), we can unify 

three decomposition rules into:    

( )

( )

rank(( ) ( ))

rank( ) rank( ) 6.

d

d d

d

d d

ae

e CS a KC

ae

e CS a KC

= + =

W W

W W
       (22) 

Finally, a predicate of a decomposition d = (Ma, γd,

(Mb, Mc)) for complying the all three rules is given 

as 0 0 0 0de:2 (2 ) (2 2 ) { , }
M E M M

JL true false× × ×a a ,

where de(Ma, γd, (Mb, Mc)) is true if and only if 

Equation (22) is satisfied. However, it is often the 

case that a under-constraints are unavoidable during 

assembly synthesis due to the limited choice of joints, 

Equation (22) may be relaxed to abandon the full 

rank.

5.6. Part manufacturability 

The decomposition stops when the resulting 

subconfigurations become manufacturable by a 

chosen manufacturing process. In the following case 

study on frame structures, components are assumed 

to be extruded and bent. Therefore, a predicate of a 

configuration Ma for stopping decomposition is given 

as 0stop_de:2 { , }
M

true falsea , where stop_de(Ma) is 

false (i.e.. decomposition continues) if and only if 

any of the following conditions are satisfied:  

• Ma has a KC (KCs can not be achieved by the 

tolerances of extrusion and bending). 

• Ma has a closed loop (cannot extrude such parts). 

• Ma  has a connection point where three or more 

members meet (cannot extrude such parts). 

• Ma  has members lie on more than one plane (difficult 

to handle/fixture). 

The product geometry shown in Figure 6 has two 

KCs and a closed loop thus stop_de returns false, 

subject to further decomposition.  

Figure 11 A partial AND/OR graph of the 2-D rectangular 

box in Figure 1.   

5.7. AND/OR graph of assembly 
synthesis

Figure 11 shows a partial AND/OR graph of 

assembly synthesis (Lee and Saitou, 2003a) for the 

2D rectangular box shown in Figure 1. Each node in 

white background contains a subset of members (Ma

⊆ M0) and each node in black background contains 

joint assignment JLCSii a:γ . A set of three lines 

which connects a configuration Ma, joint assignment

γi, and two subconfigurations (Mb, Mc) is a hyper-

edge, represented as (Ma, γi, (Mb, Mc)) which is also 

the representation of a decomposition defined earlier. 

The AND/OR graph of assembly synthesis is then 

represented as a triple:

AO = (S, J, F)                                                       (23) 

where S is a set of nodes representing configurations, 

J is a set of nodes representing joint assignments, and 

F is a set of hyper-edges (Ma, γi, (Mb, Mc)) satisfying 

the following necessary conditions.  

1. stop_de(Ma) = false.

2. de(Ma, γi, (Mb, Mc)) = true.                               (24) 

Then AO = (S, J, F) is recursively defined as: 

1. If stop_de(M0) = false, M0∈S.
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2. For ∀Ma∈S, if ∃γi, Mb, Mc such that f = (Ma, γi,

(Mb, Mc)) satisfies necessary conditions (19), then 

γi∈J, Mb, Mc∈S and f∈F.

3. No element is in S, J and F, unless it can be 

obtained by using rules 1 and 2.                       (25) 

The recursive definition in Equation (25) can be 

easily transformed to an algorithm build_AO that 

generates AO from initial configuration C0 = (M0, E0,

A0) and joint library JL by recursively decomposing a 

configuration into two subconfigurations (Lee and 

Saitou, 2003a), whose details are omitted due to 

space limitation. Using stop_de and de as defined 

earlier, one can run build_AO with any 3D 

configurations to enumerate all possible assemblies 

(decompositions and joint assignments) and 

accompanying assembly sequence that satisfy the 

rules for in-process dimensional adjustability and 

proper part constraint. 

6. CASE STUDY 

A frame structure in Figure 12 is decomposed using 

the joint types in Figure 13. Since the initial attempt 

yields no assembly synthesis without under-

constraints, the Equation (22) is relaxed to allow 

under-constraints.

Figure 12 A frame structure with eight KCs. 

Figure 13 (top) joint types for frame sturcture, and 

(bottom) their graphical representation.  

The relaxed rule produced the AND/OR graph of 

assembly synthesis with 112 feasible decompositions 

with 73 feasible subassemblies. Due to the space 

limit, we have extracted a part of the AND/OR graph 

containing the assembly designs with minimum 

number of parts and under-constrains. The extracted 

graph has 26 feasible decompositions with 28 

feasible subassemblies, a half of which is depicted in 

Figure 14 as the product geometry is symmetrical 

about its XZ-plane. In Figure 14, white nodes are 

parts and grey nodes are subassemblies. Joint 

assignments are represented as black nodes with 

numbers, which represent the number of under-

constraints related to the assembly step. The number 

of parts and the number of under-constraints do not 

exhibit any trade-off in this example, since in general 

assemblies with fewer parts have less chance to be 

under-constrained. All assemblies shown in Figure 

14 have 7 parts and 2 under-constraints. There are no 

assemblies with fewer parts or under-constraints.  

Figure 14 Half of optimal AND/OR graph of assembly 

synthesis for the product geometry in Figure 12. 

Figure 15 shows all assembly designs in Figure 14. 

While the AND/OR graph has 12 trees, Figure 15 

shows only one way of part decomposition with 4 

variations in joint assignments, which is because 

there are three different assembly sequences for each 

assembly design in Figure 15.  For example, the 

assembly design at top left in Figure 15 has three 
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assembly sequences, which are thick-lined in Figure 

14. One of these assembly sequences is as follows: 

1. Assemble E and G to achieve kc2 and kc8. Under-

constrained in Y-translation and Y-rotation. 

2. Assemble D and E-G to achieve kc  and kc7.

Properly constrained. 

3. Assemble F and D-E-G to achieve kc3. Properly 

constrained.

4. Assemble C and D-E-F-G without achieving any 

KC. Properly constrained.  

5. Assemble B and C-D-E-F-G to achieve kc5 and 

kc6. Properly constrained.  

6. Assemble A and B-C-D-E-F-G to achieve kc4.

Properly constrained.  

Figure 15 All assembly designs existing in the optimal 

AND/OR graph shown in Figure 14, where 

corresponding assembly sequences can be found.  

Figure 16 Passenger area of an automotive space frame. 

Figure 17 An optimal assembly synthesized for the 

automotive space frame in Figure 16.  

Figure 16 shows the passenger area of an automotive 

space frame with 18 KCs (KCs at the far side of X-Z 

plane are symmetrical and omitted). Each horizontal 

beam at side (shaded area) has two members, 

however, we have not allowed them to part, in other 

to reflect practices and reduce the size of solution. 

With the same relaxed rule permitting under-

constraints, the AND/OR graph contains 12420 

feasible decompositions with 1492 feasible 

subassemblies. Among assemblies without any part 
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failing the manufacturability criteria, the minimum 

number of parts is 15 and the minimum number of 

under-constrains is 13. The optimal solution graph in 

terms of the number of parts and under-constraints 

with even weights contains 293 feasible 

decompositions with 87 feasible subassemblies, in 

which each synthesized assembly consists of either 

16 parts with 13 under-constraints or 15 parts with 14 

under-constraints. Three of these optimal assembly 

designs are shown in Figure 18 and the 

corresponding AND/OR graph of assembly synthesis 

is shown in Figure 17. The first assembly design 

consists of 16 parts and has two different assembly 

sequences in the partial optimal solution graph, 

which yield 13 under-constraints during assembly 

steps. The other designs have 15 parts and each has 

one assembly sequence in the graph, yielding 14 

under-constraints.

7. SUMMARY AND DISCUSSION 

This paper presented a 3D assembly synthesis 

method for in-process dimensional adjustability and 

proper part constraint based on Screw Theory. While 

this paper focuses only on in-process adjustability 

and proper part constraints and suggest ideal designs 

for these criteria, other criteria, such as part 

symmetry and structural stiffness, also drive 

assembly synthesis in practice. The present method, 

therefore, would most effectively be integrated in the 

design process if it is applied to subassemblies of a 

product first decomposed by a human designer based 

on the current practice.
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