
MULTI-PERIOD CAPACITY PLANNING FOR INTEGRATED  
PRODUCT-PROCESS DESIGN 

Emre Kazancioglu
Department of Mechanical Engineering 

University of Michigan,  
USA

ckazanci@umich.edu 

Kazuhiro Saitou 
Department of Mechanical Engineering 

University of Michigan,  
USA

kazu@umich.edu

ABSTRACT 

This paper presents an optimization-based method to 

aid capacity planning decisions by quantifying the 

trade-off between the capital and operating costs of a 

production facility and the quality of finished prod-

ucts. Given forecasted market demands during multi-

ple production periods, multi-objective optimization 

selects the quantity and the types of production ma-

chines to be purchased during each period, which 

simultaneously maximize the quality of the finished 

products and minimize the total production cost dur-

ing the periods. The product quality is estimated as 

the statistical variation from the performance targets 

obtained from the output tolerances of the machines 

that manufacture the components, via Monte Carlo 

simulation. The production cost is estimated as the 

annual equivalent cost of owning and operating a 

production facility during the production periods, 

obtained from the price of each machine and a dis-

crete event simulation of production process. A case 

study with an automotive valvetrain is presented to 

illustrate the method.

KEYWORDS

Product-process design, robust design, capacity plan-
ning, discrete event simulation, Monte Carlo simula-
tion, multi-objective optimization.  

1. INTRODUCTION 

With the increased number of players competing in a 
global market, it is becoming of crucial importance 
for companies to be able to accommodate changes in 
demand and customer preferences in a timely man-
ner, by optimally allocating the capacity of their pro-
duction facilities. However, short term, reactive 
planning that attempts to meet demands and quality 

requirements of immediate future only, usually com-
promises profits over multiple production periods 
due to the following reasons:  

1. Incremental change in production capacity is 
benefited less by economies of scale. 

2. Time lag between the purchase decision and the 
delivery of production machines may impede 
meeting demands.

3. Capacity expansion/retraction usually requires 
production to stop. 

4. Allocating excess capacity early or preserving it 
in anticipation of future demand increase may be 
economically advantageous. 

Despite increased uncertainty in long-term demand 
forecasts, it is often desirable to consider multiple 
production periods in order to meet fluctuating de-
mand with minimum capital and operating costs.   

On the other hand, if cost is reduced at the expense of 
quality, the brand image may easily be damaged and 
future demand may be jeopardized. However increas-
ing product quality by investing on higher quality 
machinery drives the price of the product up. For 
smarter capacity planning decisions, therefore, it is 
important to understand the trade-off between the 
capital and operating costs incurred by the expan-
sion/retraction of production capacity and the result-
ing changes in product quality.  

As a computational aid to multi-period capacity 
planning decisions, this paper presents a method for 
quantifying product quality-production cost trade-
offs via multi-objective optimization. Given market 
demand forecasts for multiple production periods, the 
method determines the quantity and types of produc-
tion machines to be purchased during each period, 
which simultaneously maximizes the quality of the 
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finished products and minimizes the total cost of 
production. The product quality is estimated as the 
statistical variation from the target performances ob-
tained from the output tolerances of the machines 
that manufacture the components, via Monte Carlo 
simulation. The production cost is estimated as the 
annual equivalent cost of owning and operating a 
production facility during the production periods, 
obtained from the price of each machine and a dis-
crete event simulation of production process. A case 
study with automotive valvetrain is presented to il-
lustrate the method.  

2. RELATED WORK 

Capacity planning involves analysis and decisions to 
balance capacity at a production or service point with 
demand from customers and the methods vary ac-
cording to the length of the planning horizon as long, 
medium and short term. Extensive research has been 
conducted on developing tools to make effective ca-
pacity planning decisions focusing on different as-
pects of the problem.  

Bienstock and Shapiro (1988) presents stochastic 
programming approach to the optimal resource ac-
quisition problem using a scenario based probabilis-
tic future demand. Barchi et al. (1975) combine the 
production-inventory and capacity expansion prob-
lem by modeling it as a linear, integer problem. 
Bhatnagar et al. (1999) discusses a finite-horizon 
Markov decision process (MDP) model for providing 
decision support in semiconductor manufacturing on 
issues such as when to add additional capacity and 
when to convert from one type of production to an-
other. Paraskevopoulos et al. (1991) demonstrate the 
existence of uncertainty influences the investment, 
production and pricing decision using a sensitivity 
approach. Asl and Ulsoy (2002) presents an optimal 
solution for the capacity management problem in 
Reconfigurable Machining Systems with stochastic 
market demand with time delay between the time 
capacity change is ordered and the time it is deliv-
ered, based on the Markov Decision Theory. Saitou 
et al (2002) uses a discrete-event simulation and a 
genetic algorithm to determine resource allocation in 
a multi-product production facility such that the pro-
duction costs are insensitive to the changes in pro-
duction volumes due to market demand fluctuations. 
This work is later extended in Lee and Saitou (2002), 
where the datum relationships in family of machined 
parts and the allocation of production resources are 
simultaneously optimized for robustness against pro-

duction volume variations in a multi-period produc-
tion scenario.

Although there is extensive research in capacity 
planning, the issues of product quality resulting from 
the change in production facility, has not been ad-
dressed. Also, most capacity planning literature use 
analytical models of production process which re-
quire many assumptions. The present method, on the 
other hand, utilizes multi-objective optimization and 
the simulation of production processes and product 
performances, which allows the examination of the 
trade-off between production cost and product qual-
ity for realistic production scenario.  

3. METHOD 

3.1. Overview 

The developed method for multi-period capacity 
planning is illustrated in Figure 1. Given demand 
forecasts during the periods of interest and a selec-
tion of the types and numbers of machines, the pro-
duction system model simulates the production proc-
ess during the period, and calculates the capitol and 
operating costs and the tolerances of the product pa-
rameters (e.g., component dimensions), which affect  
the product performance. These tolerances are fed 
into the product model, which calculates, via Monte 
Carlo simulation, the statistical distribution of the 
product performances. Based on the production cost 
and the performance distribution, a multi-objective 
optimizer determines the Pareto-optimal selections of 
the types and numbers of machines, with respect to 
performance variation and production cost.  

product modelproduct model

performance performance 
variation variation 
vs. costvs. cost

Multi-criteria 
optimizer

cost modelcost model

discrete event 
system 

simulation

production 
system model

production 
system model

machine type machine type 
and quantityand quantity

demanddemand

σ

part tolerancespart tolerances

Figure 1 Overview of method 
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3.2. Production System Model 

We consider a class of production systems which are 
comprised of cells of machines each performing one 
manufacturing operation, and part buffers between 
each cell. Figure 2 shows an example with three cells 
and five buffers. As illustrated in Figure 2, each cell 
consists of one or more machines. While machines in 
a cell perform the same manufacturing operation 
which affects one or more product parameters, they 
can be of different types. A type of machines is de-
fined based on the following information:  

• manufacturing operation 

• process time (mean and standard deviation) 

• tolerances of the relevant product parameters 

• operating cost 

• machine price 

The topology of a production system can be repre-
sented as an incidence matrix A = (aij) of material 
flows (represented as arrows in Figure 2):  

 1 if flows from cell  to buffer 

-1 if flows from buffer  to cell 

0 otherwise

ij

i j

a j i=    (1) 

Table 1 shows the incident matrix of the example 
system in Figure 2. During the optimization process, 
this matrix remains constant, whereas the types and 
quantity of machines in each cell are altered among 
the available choices, in order to maximize the prod-
uct quality and minimize the production cost.  

B1

B2

M1

M2

M2

M1

M2

M1

M2

B4

B3

cell 1cell 1
cell 2cell 2

cell 3cell 3

B5

B6

Figure 2 Example production system 

Table 1 Incidence matrix of the example production 
system in Figure 2 

B1 B2 B3 B4 B5 B6 

Cell 1 -1 1 1 0 0 0 
Cell 2 0 -1 -1 1 0 0 
Cell 3 0 0 0 -1 1 1 

For a given selection of machine types and quanti-
ties, the operation of the production facility is simu-
lated by a discrete event simulation (Banks, et al,
1996). The process time of each machine type is as-
sumed as normally distributed with given mean and 
standard deviation, and accordingly sampled during 

the simulation. After simulating production for the 
periods with forecasted demands, the total amount of 
production and the utilization of each machine for 
each period are calculated, in order to estimate the 
operating cost as demonstrated in detail in the fol-
lowing section. In addition, the types of machines in 
each cell which are used to manufacture each product 
are recorded during the simulation, in order to esti-
mate the quality of the finished product as described 
in the next section.  

3.3. Product Model 

The product model takes a set of product parameters 
(e.g., component dimensions) as an input and calcu-
lates the statistical distribution of the product per-
formances. The product model can be analytical, a 
numerical simulation, or a surrogate model of a com-
putationally expensive numerical simulation as 
adopted in the following case study.  

In the present study, the quality of the product is es-
timated as the statistical variation of the product per-
formance. This can be calculated by Monte Carlo 
simulation of the product model with the product pa-
rameters sampled according to the tolerances of the 
types of machines used to manufacture each product.  

3.4. Design Variables and Constraints 

The design variables are the types and number of 
machines in each cell in the production system at 
each period. It can be represented as the number of 
machines of type k  in cell j during period i:

, 0, 1, , , 1, , , 1, ,ijk ijk jx x i n j m k l∈ ≥ = = =Z K K K  (2) 

where n is the number of periods, m is the number of  
cells, lj is the number of available machine types at 
cell j.

For example, let us consider the machine allocation 
problem using three periods (n  = 3) and the produc-
tion system in Figure 2 assuming there are two types 
of machines available in each cell (i.e., m = 3, l1 = l2

= l3 = 2). Then, the machine allocations shown in 
Figure 3 are represented as 3 3 2 18× × =  integer vari-

ables:

111 112 121 131 132 122

211 231 212 221 222 232

311 312 321 331 322 332

1,    2

0,   1,   2

0,   1,   2

x x x x x x

x x x x x x

x x x x x x

= = = = = =
= = = = = =
= = = = = =

 (3) 

There must be at least one machine in a cell, which 
imposes the following constraint: 
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1

1;   1, , , 1, ,
jl

ijk

k

x i n j m
=

≥ = =K K (4)

B1

B2

M1

M2

M2

M1

M2

M1

M2

B4

B3

cell 1cell 1
cell 2cell 2

cell 3cell 3

B5

B6

a) period 1 

B1

B2

M2

M2

M2

B4

B3

cell 1cell 1

cell 2cell 2 cell 3cell 3

B5

B6

M1

M2

b) period 2 

B1

B2

M1

M2

M2

M2

M2

B4

B3

cell 1cell 1
cell 2cell 2

B5

B6

M1

M2

M2

cell 3cell 3

c) period 3 

Figure 3 Example machine allocations for 3 periods 

3.5. Objective Functions 

The first objective function is the measure of product 
quality defined as the sum of the coefficient of varia-
tions of the performance criteria:  

1

1

cn

i

i i

f
σ
µ=

= (5)

where nc is the number of performance criteria, µi and 

σi are the mean and standard deviation of the i-th per-
formance criterion obtained by Monte Carlo simula-
tion of product model. Alternatively, a weighted sum 

of σi can be used.

The second objective function is the estimation of the 
capital and operating costs of production, defined as 
the sum of the annual equivalent of capital invest-
ment cost (AECC), operating cost (AEOC), backorder 
cost (AEBC), and holding cost (AEHC) for all peri-
ods (Park, 2001).  

2f AECC AEOC AEBC AEHC= + + + (6)

Each cost term is given as: 

1

1

1

1

{(1 ) }
n

i i i

i

n

i i

i

n

i i

i

n

i i

i

AECC IC SC

AEOC OC

AEBC BC

AEHC HC

ε δ η

ε δ

ε δ

ε δ

=

=

=

=

= + +

=

=

=

 (7) 

where η is cost of capital of the project, ε is the capi-
tal recovery factor for equal payments during n peri-
ods given as: 

(1 )

(1 ) 1

n

n

η ηε
η
+=

+ −
 (8) 

and δi is the discount factor which is used to compute 
the present value of future cash flows.

1

(1 )
i i

δ
η

=
+

 (9) 

The capital investment cost ICi of period i is the sum 
of the cost of machines purchased at the beginning of 
the period. Assuming there is no machine available at 
the beginning of period 1:  

1

1 1

jlm

jk ijk

j k

IC c x
= =

=  (10) 

For the subsequent periods, the cost incurs only when 
new machines are purchased: 

( 1)

1 1

max(0, );   2,
jlm

i jk ijk i jk

j k

IC c x x i n−
= =

= × − = L
 (11) 

where cjk is the price of machine of type k in cell j.

The purchased machines can be sold at their market 
value at the end of period i to if there is excess capac-
ity for the next period, which can be represented as a 
negative salvage cost SCi:

1 1

;   1, 1
j

ijko

i

lm
A

i jk

j k o O

SC c i nα
= = ∈

= − = −K
 (12) 

where α is the yearly percentage decrease in the 
market value of a machine, Aijko is the age of the o-th
machine of type k in cell j in period i. Oi is a set of 
max(0, x(i-1)jk - xijk) indices of machines of type k in
cell j sold after period i.  There are no priorities set 
among machines as to which one is to be sold first. 
This is done intentionally since depending on the rate 
of market value depreciation and the rate of increase 
in the operating cost, fixed policies such as selling 
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the oldest machines may be suboptimal. At the end of 
period n, all purchased machines are assumed to be 
sold:

1 1 1

j njk

njko

l xm
A

n jk

j k o

SC c α
= = =

= −  (13) 

However, depending on the type of a production sys-
tem and the range of the periods considered, this as-
sumption can be replaced with a more suitable one. 

The operating cost OCi of period i is the sum of the 
product of the machine utilization, operating cost, 
and total operation time in a period: 

1 1 1

(1 )
j ijk

ijko

l xm
A

i ijko jk i

j k o

OC u oc tλ
= = =

= × + × (14)

where uijko is the utilization of the o-th machine of 
type k in cell j in period i, ocjk is the operation cost of 

machine type k in cell j, λ is the yearly percentage 
increase in the operation cost, and ti is the operating 
time. They are given as: 

max

/

min( , / )

ijko ijko s

i i i s

u bt t

t t d n t

=

= ×
(15)

where btijko is the operating time (busy time) of the o-
th machine of type k in cell j in period i, ts is the total 
operation time simulated, tmax is the maximum opera-
tion time, di is the demand in period i, and ni is the 
number of products produced in period i. The values 
of btijko, ts, and ni are provided by the discrete event 
simulation of the production process.  

The back order cost BCi penalizes poor customer ser-
vice due to unmet demand by a cost proportional to 
the amount of the demand that cannot be filled:  

max(0, )i b i iBC c d n= × −   (16) 

where cb is the back order cost. Similarly, the excess 
production incurs the inventory holding cost HCi:

max(0, )i h i iHC c n d= × −  (17) 

where ch is the holding cost.  

3.6. Optimization Problem 

With the design variable, constraints, and objective 
functions defined in the previous section, the prob-
lem can be formulated as the follows: 

1 2

1

minimize { , }

subject to 1;   1, , , 1, ,

                , 0, 1, , , 1, , , 1, ,

jl

ijk

k

ijk ijk j

f f

x i n j m

x x i n j m k l

=

= = =

∈ ≥ = = =Z

K K

K K K

(18)

In the following case study, the problem is solved 
using a multi-objective genetic algorithm, an exten-
sion of genetic algorithms that do not require multi-
ple objectives to be aggregated to a single value, e.g.,
as a weighted sum. Instead of static aggregates such 
as a weighted sum, multi-objective genetic algo-
rithms dynamically determine an aggregate of multi-
ple objective values of a solution based on its relative 
quality in the current population, typically as the de-
gree to which the solution dominates1 others in the 
current population. The results of the case study are 
produced with an implementation of non-dominated 
sorting genetic algorithm (NSGA-II) (Coello et al., 

2002), where the quality of a solution is measured in 
terms of the number of solutions dominating it in the 
current population. Interested readers should refer to 
(Coello et al., 2002) for the details of the NSGA-II 
algorithm.  

4. CASE STUDY: ENGINE VALVETRAIN 

A case study is conducted on the valvetrain system of 
a Ford Duratec 2.5L V6 SI engine, released in 1994. 
The engine has a maximum power output of 125 kW 
at 6250 rpm and 220 Nm of torque at 4250 rpm and 
is used in the Mercury Mystique, Ford Contour and 
Ford European Mondeo. The main function of the 
valvetrain system (Figure 4) is to control the flow of 
intake and exhaust gases by opening and closing the 
valves, which is obtained by transforming the rota-
tional camshaft motion into linear motion of the 
valve. The case study focuses on the production of 
valve stems and camshafts, and their effects on the 
horsepower, torque, and fuel consumption of the en-
gine.

Figure 4 Valvetrain system (Kazancioglu, et al., 2003) 

                                                          
1 For a vector-valued function f = (f1,f2,..,fn) to be minimized, a point 

x dominates y if fi(x) < fi(y) for all i = 1,2,…,n.
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4.1. Production System Model 

Figure 6 shows the considered production system, 
which produces valve stems and cam shafts, and as-
sembles them with engine blocks. The line for valve 
stem production consists of two cells for machining 
operations (cells 1 and 2), which correspond to the 
valve stem length (LVS) and valve stem diameter 
(VD), respectively. The line for camshaft production 
also consists of two cells for grinding cam lobes (cell 
3) and assembling the finished cam lobes to camshaft 
(cell 4).  Cells 3 and 4 correspond to the cam lift du-
ration angle (ANGD) and cam lift beginning angle 
(D0), respectively. Table 2 shows the incidence ma-
trix of the valvetrain production system.  

engine engine 
blocksblocks

camscams

cell 1cell 1 cell 2cell 2

cell 3cell 3 cell 4cell 4
cell 5cell 5

valve valve 
partsparts

B1 B2

B7

B6

B3 B4

B5

ANGD Op. D0 Op.

VD Op. LVS Op.

ASBLY

B8FGIFGI

Figure 5 Valvetrain production system 

Table 2 Incidence matrix of the valvetrain production 
system 

B1 B2 B3 B4 B5 B6 B7 B8 

Cell 1 -1 1 0 0 0 0 0 0 
Cell 2 0 -1 0 0 0 1 0 0 
Cell 3 0 0 -1 1 0 0 0 0 
Cell 4 0 0 0 -1 0 0 1 0 
Cell 5 0 0 0 0 -1 -1 -1 1 

The type of machines available for the production 
system is listed in Table 3. The processing times of 
the machine tools correspond to the time it takes to 
process one batch of parts which is 24 for both the 
valves and the cam lobes (4 cam shafts, 6 cam lobes 
on each). 

4.2. Product Model 

The product model of the case study is a surrogate 
model of an integrated valvetrain-engine simulation 
developed in the authors’ previous work (Kazan-
cioglu, et al., 2003). The simulation, illustrated in 
Figure 6, uses commercial software GT-Vtrain and 
GT-Power. The inputs are the valve and cam parame-
ters of the valves including VD, LVS, ANGD, and 
D0 which are the design variables of the case study, 
discussed in the previous section. The outputs are the 

horsepower, torque, and fuel consumption of the en-
gine.

Table 3 Machine data of valvetrain production system in 
Figure 5 

Cell 1 Cell 2 Cell 3 

M1 M2 M1 M1 M2 M1 

mfg. operation VD VD LVS LVS ANGD ANGD

µ  process time [min] 20 25 10 15 20 35 

σ process time [sec] 5 1 3 1 5 2 

operating cost [$/h] 30 40 15 20 50 100 
machine price [K$] 200 270 150 200 350 500 

tolerance 0.01 0.005 0.03 0.02 2 1 

Cell 4 Cell 5 

M1 M2 M1 M1 

mfg. operation D0 D0 ASSY ASSY 

µ  process time [min] 50 60 3 2 

σ process time [sec] 5 2 10 10 

operating cost [$/h] 50 100 50 75 
machine price [K$] 350 420 60 60 

tolerance 0.003 0.002 NA NA 

LVS

VD 

ANGD

D0

LV
LC
CLEAR
LR
KS
FM
VM
LM

inputs

horsepower
torque
fuel consumption

outputs

6 exhaust valves

GT-Vtrain

12 intake valves

GT-Power

GT-Vtrain

GT-Vtrain

GT-Vtrain

Figure 6 Integrated valvetrain-engine simulation 

Figure 7 Horsepower output of the neural network model 
(dotted) and the simulation model (solid) (Ka-
zancioglu, et al., 2003). 
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Due to the excessive computational time to conduct 
Monte Carlo simulation, a surrogate model of the 
valvetrain-engine simulation is built using a feed 
forward neural network in MATLAB Neural Net-
work Toolbox. 

As training data for the neural network, pairs of the 
inputs and outputs of the valvetrain-engine simula-
tion at 3000 rpm with full load are sampled by using 
the five-level full factorial design of the four parame-
ters: LVS, VD, ANGD and D0. Each parameter is 

assumed to vary within [0.975µ-3σ, 1.025µ+3σ], 
which is equally divided into the 5 ranges to define 5 
factor levels. At each factor level, a value is uni-
formly sampled in the corresponding range. Figure 7 
shows the horsepower output for 50 random unseen 
inputs, using the trained neural network model and 
the simulation model. The outputs of the neural net-
work model match very well with the corresponding 
ones from the simulation model (Kazancioglu, et al.,
2003).

4.3. Optimization Problem 

Three, one-year periods (n = 3) are considered as a 
horizon of the capacity planning. Since there are 5 
cells (m = 5), each of which has two types of ma-
chine available (lj = 2; j = 1,…,5), there are 
3 5 2 30× × =  integer design variables. The quality  

objective f1 is defined as the sum of the coefficient of 
variation of horsepower, torque and fuel consump-
tion, obtained by the Monte Carlo simulation with 
the neural network model.  

Table 4 shows the market demand for the three peri-
ods, which represents a situation where demand falls 
in the second period and picks up again in the third 
period. The following assumptions made for the 
valvetrain production during the three-year period: 

1. Production stops as soon as the demand is met at 
each period. In other words, production for future 
demands is not allowed.  

2. Time for the delivery of the purchased machines 
is not longer than one year. 

3. The number of the machines of the same type 
should not exceed 5 in all periods. In other 

words, 5ijkx ≤ .

4. Input buffers which provide raw materials never 
starve.

Table 5 lists the parameter values for the cost objec-
tive f2. The backorder cost cb is set to an extremely 
high value to enforce the demands to be met always. 
Considering the limited market for the machines for 

valvetrain production, α is also set to be very high. 
The holding cost ch is zero since no inventory is al-
lowed according to the above assumption.  

Table 4 Market demand for valvetrain 

periods (year) 

1 2 3
demand 30,000 15,000 35,000 

Table 5 Parameter values for objective functions 

description value
n number of periods 3 

η cost of capital of the project 10 [%/year] 

α depreciation rate of machine 
value 

50 [%/year] 

λ rate of increase in operation cost 10 [%/year] 

tmax maximum operation time 4320 [h] 
cb back order cost inf [$] 

ch holding cost 0 [$] 

4.4. Results 

To demonstrate the importance of the multi-period 
planning and the quantification of quality-cost trade 
off, the results are presented for the following three 
cases:   

1. Case 1. Single-period, minimum cost plan-

ning: Three capacity planning problems for the 
three periods are separately solved for minimum 
cost (i.e., cost objective f2 only).  

2. Case 2. Multi-period, minimum cost planning:

One capacity planning problem considering all 
three periods is solved for minimum cost (i.e., 
cost objective f2 only).  

3. Case 3. Multi-period, minimum cost-

maximum quality planning: One capacity 
planning problem considering all three periods is 
solved for minimum cost and maximum quality 
(i.e., both quality objective f1 and cost objective 
f2).

Table 6 shows the parameters of multi-objective ge-
netic algorithm used to obtain the results.  

Table 6 Parameters of genetic algorithm 

Case 1 Case 2 Case 3

mutation probability 0.01 0.01 0.01 
crossover probability 0.9 0.9 0.9 
population size 25 25 45 
max. # of generations 30 30 70 

Table 7 shows the optimal values of cost objective 
function for Case 1 and Case 2, and Tables 8 and 9 
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show the optimal machine allocations for Case 1 and 
Case 2, respectively. The annual equivalent cost of 
Case 2 is approximately $250K less than that of Case 
1. Ignoring the time value of money, this approxi-
mately adds up to $750K cost savings over the three-
year planning horizon.  

In Case 1, since an increase in the demand in the 
third period is not anticipated, a capacity retraction is 
carried out in the second period due to reduced de-
mand. In Case 2, on the other hand, the demand in-
formation about the third term is available and it is 
more cost effective to keep the excess capacity in the 
second period in comparison to retracting capacity in 
the second period and than to expand it later again in 
the third period.  

Table 7 Optimal cost for Case-1 and Case-2 

Case 1 Case 2 

AEOC $2,771,805 $2,759,349 
AECC $2,887,460. $2,657,771 
AEBC $0 $0 

f2 $5,659,265 $5,417,120 

Table 8 Optimal machine allocation for Case-1 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

P 1 5 1 0 3 5 3 4 3 2 0
P 2 2 1 0 2 1 2 1 2 1 0
P 3 2 5 0 3 2 5 4 4 2 0

Table 9 Optimal machine allocation for Case-2 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

P 1 5 1 0 3 2 5 4 3 0 2
P 2 4 1 0 3 2 5 3 3 0 2
P 3 5 2 0 3 2 5 4 4 0 2

Figure 8 shows the quality-cost trade off curve 
(Pareto front) obtained for Case 3. A square at the 
bottom-right indicates the optimum result of Case 2, 
which only minimizes cost. Tables 10 shows the val-
ues of the objective functions for Case 2 and of the 
two alternatives for Case 3 indicated on Figure 8. 
The optimal machine allocations for alternatives 1 
and 2 are shown in Tables 11 and 12, respectively.  
Tables 11 – 13 summarize the standard deviations of 
the engine performance metrics for Periods 1, 2 and 3 
respectively.  

Both alternatives for Case 3 have better quality char-
acteristics than Case 2, where quality was not con-
sidered during capacity planning. The results shows 
with approximately $550K additional investment to 
Case 2 result, the product quality increases about 
10%, while approximately $350K to alternative 1 
yields the quality increases of approximately 25%. 

5. CONCLUSION 

This paper presented an optimization-based method 
for capacity planning of production facilities consid-
ering the demand changes in multiple production pe-
riods and the trade-offs between the product quality 
and production cost. The method is then applied to a 
capacity planning problem in an automotive valve-
train production. The results demonstrated the effec-
tiveness of considering multi-period demand forecast 
and quantitative quality-cost trade-off in capacity 
planning decisions.  

Future work will investigate the capacity planning 
problem in multi-product production lines under sto-
chastic demands, which allows the quantification of 
quality-cost trade-off between flexible and dedicated 
production machines.  

Quality - Cost Pareto Front 
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$5,800,000
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$6,200,000

$6,400,000

$6,600,000

0.6 0.7 0.8 0.9 1 1.1

Figure 8 Quality-cost Pareto front for Case 3 

Table 10 Optimal cost and quality objective function val-
ues of Case-2 and Case-3 

Case 2 Case 3 – Alt 1 Case 3 – Alt 2 

AEOC $2,759,349 $2,893,004      $2,797,127 
AECC $2,657,771 $3,081,844 $3,519,554 
AEBC $0 $0 $0 

f2 $5,417,120 $5,974,849 $6,316,777 

f1 1.080 0.974 0.726 

Table 11 Optimal machine allocation for the alternative 1 
in Figure 8 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

P 1 5 1 0 3 2 5 4 3 0 2
P 2 4 1 0 3 2 5 3 3 0 2
P 3 5 2 0 3 2 5 4 4 0 2

Table 12 Optimal machine allocation for the alternative 2 
in Figure 8 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

P 1 0 5 0 5 5 5 0 5 0 2
P 2 5 0 3 0 0 5 0 5 0 2
P 3 3 5 0 5 2 5 5 5 0 2

alternative 2 

alternative 1
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Table 13 Comparison of engine quality results in Period 1 

Power (kW) Torque (N-m) BSFC  

µ σ µ σ µ σ
Case 2 87.08 10.61 203 20.73 243 39.74 
 Alt. 1 86.25 9.54 204 19.22 251 36.53 
Alt. 2 87.38 2.89 207 7.06 246 18.21 

Table 14 Comparison of engine quality results in Period 2 

Power (kW) Torque (N-m) BSFC  

µ σ µ σ µ σ
Case 2 86.72 9.25 208 18.42 249 40.53 
 Alt. 1 87.66 7.20 205 15.19 248 35.67 
Alt. 2 87.27 4.95 204 13.18 249 30.44 

Table 15 Comparison of engine quality results in Period 3 

Power (kW) Torque (N-m) BSFC  

µ σ µ σ µ σ
Case 2 86.497 9.02 208 17.3 244 39.8 
 Alt. 1 85.745 8.32 207 16.8 248 28.8 
Alt. 2 86.62 8.29 206 16.4 251 36.1 
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