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ABSTRACT

This paper presents a computational method for
rapidly generating alternative product shapes and
evaluating their structural responses during concep-
tual design. It integrates the vague discrete interval
models (VDIM) as the representation of a set of al-
ternative product shapes, and the variational analysis
(VA) technique as the method for quickly approx-
imating structural responses of alternative product
shapes generated from the VDIM, based on the finite
element analysis results of a nominal product shape.
A simple case study on the two-dimensional cross
section of a chair demonstrates that the method is ca-
pable of evaluating the structural responses of shape
alternatives with a reasonable accuracy and negligi-
ble computational overhead.
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1. INTRODUCTION

During the conceptual design phase, a designer ex-
plores alternative design concepts and select one or
several concept(s) to be examined further during the
detailed design phase (Ullman, 2003). This two-
phase exploration process is widely accepted as a
standard practice, since it facilitates the effective ex-
ploration of a large design space where the close ex-
aminations of all design alternatives are not practi-
cal. It also naturally matches the thinking process
of human designers, who tend to search for the em-

bodiments of design specifications by progressively
refining details.

For products whose primal functions are determined
by their shape, conceptual design requires rapid gen-
eration of a large number of shape alternatives in a
certain class of shapes, and their evaluations with
respect to desired design specifications. It poses a
unique challenge to designers since they must eval-
uate a shape alternative based on the incomplete de-
scriptions of product geometry, which are being com-
pleted during this very evaluation process.

As a solution to an aspect of this challenge, this paper
presents our first attempt towards a computer support
for conceptual shape design of products with struc-
tural specifications, such as stress and displacement
under certain loads. Considering that the complete
details of product shapes are yet to be finalized dur-
ing detail design, it is hypothesized that the accu-
racy of generated geometry is, if within a reasonable
bound, is of less importance than the ease of gener-
ating alternative shapes that allows interactive con-
cept exploration. Similarly, the accuracy of struc-
tural analysis, if within a reasonable bound, would
be of less importance than the speed of analysis that
allows interactive concept examination.

Based on this reasoning, the paper proposes a com-
putational method for rapidly generating alternative
product shapes and evaluating their structural re-
sponses during conceptual design. It integrates the
methods of vague discrete interval modeling (VDIM)
(Ruśak, Z. and Horv́ath, I., 2005) to represent of
a set of alternative product shapes, and the varia-
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tional analysis (VA) technique (CADOE, 2002) as
the method for quickly approximating structural re-
sponses based on the finite element analysis results
of a nominal product shape. A simple case study on
the two-dimensional cross section of a chair demon-
strates that the method is capable of evaluating the
structural responses of shape alternatives with a rea-
sonable accuracy and negligible computational over-
head.

The rest of the paper is organized as follows: First,
relevant literatures are reviewed. Next, the proposed
method is described, followed by the results of a case
study. Finally, the conclusion and future work are
given.

2. RELATED WORK

2.1. Shape alternative generation for
conceptual design

One approach to creating large number of shape
alternatives is called evolutionary design. It sup-
ports the designer by automatically generating a large
number of shape mutations from an existing shape
based on genetic algorithms. The designer is not re-
quired to understand the mathematical representation
of the model, merely to use some fitness criterion at
each generation and guide the evolution of shapes.

Smyth and Wallace (2000) applied evolutionary de-
sign approach to parametric surfaces, in which the
structure is defined by a skeleton model. To gener-
ate shape alternatives, (a) first the designer chooses a
handle type, i.e. skeleton, lattice or bounding box of
the shape, then (b) enters generic operation settings
e.g. the mutation rate, finally (c) the algorithm gener-
ates shape variances by alternating the parameters of
the representation. Tauraet al. (1998) combined evo-
lutionary design and procedural modeling, in which
shapes are represented by sets of rules instead of ge-
ometrical data. When these rules are to be applied
to a given shape, an evolutionary approach is used
to determine a cell division model that best fits to
compute the results of shape manipulation. However,
this cell division model is limited for well tessellated
shapes that do not contain any holes or incomplete
shape components.

When interactive approach is applied to generate
shape concepts, communication between the de-
signer and the modeling tool need to be amplified.
To help the designer to easily express his ideas, sev-
eral attempts have been made that focused on imple-
menting shape grammars for product design. First

efforts concentrated on only specific shape grammars
that can be used to generate products, e.g. build-
ings (Heisserman, 1994), and coffeemakers (Cagan,
1998). By limiting the application field to specific
products provided a better background for the re-
searchers to develop highly sophisticated grammars.
A general shape grammar based approach has been
proposed by Hsiao and Chen (1997), which facili-
tates the designer to create shape variances in three
steps. Although, they addressed the issue of mapping
linguistic rules to shape manipulation commands,
their solution was limited to a few rules.

Most of the above discussed methods are efficient to
quickly generate alternative shapes, but their results
cannot be directly used for physically based evalu-
ation due to the mismatch in their geometric repre-
sentation for shape conceptualization and for finite
element analysis. To address this issue, Rusák and
Horváth (2005) proposed a particles system repre-
sentation as a part of vague discrete interval model-
ing (VDIM), which is summarized in the following
section. This particle system representation inher-
ently ensures that the same finite element mesh could
be used to evaluate any shape instance that is derived
from the same vague discrete interval model.

2.2. Shape alternative evaluation for
conceptual design

Even with today’s fast PCs, the finite element analy-
sis of products with reasonable complexity can take
several minutes to hours. It is undesirable, there-
fore, to conduct the finite element analyses of each
shape alternative generated during the conceptual de-
sign. To facilitate interactive concept exploration, ap-
proximation methods can be applied to rapidly esti-
mate the structural responses of an alternative shape
based on the analysis results of one or several nomi-
nal shapes. Major classes of approximation methods
for structural analyses are surrogate models and re-
analysis.

Surrogate models estimate the structural responses of
shape alternatives within certain ranges, by interpo-
lating the analysis results of several nominal shapes
sampled within the range. Prior to the evaluation of
shape alternatives, the multiple sample shapes must
be analyzed first, and then the parameters of the in-
terpolation functions must be adjusted for the mini-
mum estimation error of the sampled responses. De-
pending on the type of interpolation functions, Arti-
ficial Neural Network (ANN) (Cheng and Tittering-
ton, 1994), Polynomial Regression, Kriging Method
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(Forsberg and Nilsson, 2005; Sakata,et al., 2003)
and Radial Basis Function (Mechesheimer, 2001;
Jin, et al., 2001) are popularly used. However, it
can potentially take a long time to construct an ac-
curate surrogate model, since the overall accuracy of
the estimation is affected by the number of samples,
Therefore, these methods may not be suitable for the
use with concept exploration.

Reanalysis is a class of methods for approximating
the structural responses of modified designs, based
on the analysis results of a single original design.
In contrast to surrogate models that require multi-
ple analyses (multi-point approximation), reanalysis
methods only utilize a single analysis result (single
point approximation). Due to this character, reanaly-
sis methods are more suitable for the concept explo-
ration of shape alternatives within a neighborhood of
a nominal design.

Of most notable in structural reanalysis is Combined
Approximations (CA) method (Levy, 2000; Kirsch
and Papalambros, 2001a; Kirsch and Papalambros,
2001b), which is based on the reduced-basis approx-
imation of the nodal displacement vector in terms of
a binomial series. Initially developed for static lin-
ear analyses, the method is later extended to nonlin-
ear static analyses, eigenvalue analyses, and also ap-
plied to calculate design sensitivities (Kirsch, 2002;
Kirsch, 2003). Another class of reanalysis methods
is based on Taylor series approximation (Choi, and
Chang, 1994; Yeh and Vance, 1998; CADOE, 2002),
where the derivatives of desired structural responses
with respect to design variables are calculated by us-
ing Adjoint Method (Choi, and Chang, 1994; Yeh
and Vance, 1998) or Direct Method (CADOE, 2002).
The variational analysis (VA) adopted in this paper is
of this category.

3. PROPOSED METHOD

3.1. Overview

VDIM represents a class of non-parameterized ge-
ometry by a set of distribution trajectories along
which the position of the points of an instance prod-
uct geometry can be defined by the designer by ap-
plying linguistic rules. This facilitates fast and inter-
active modeling of variances of product geometries.
VA technique approximates the displacements of a
variant shape using the Taylor series expansion of the
displacement vectors around the ones of a nominal
shape computed by the conventional finite element
analysis, The discrete nature of VDIM allows the
seamless integration of the generation of alternative

shapes and their rapid evaluation using VA, without
the need of re-meshing product geometry. VA allows
very quick estimation of structural performances of
variant shapes without additional finite element anal-
yses. The integration of these two techniques enables
the interactive design modification and evaluation by
the human designer, greatly facilitating the concept
exploration for a class of products where both prod-
uct geometry and structural responses are important
design criteria.

3.2. Vague discrete interval models
(VDIM)

For the representation of the variances of individ-
ual shapes as well as for modeling a cluster of
shapes in one single geometric model, the theory
and methodology ofvague discrete interval model-
ing (VDIM) was developed. VDIM is vague in the
sense that it models (i) a cluster of shapes with a
single representation allowing the integration of a
nominal shape with its domain of variance, (ii) de-
scribes the structural relations between shape com-
ponents, which represent the shape either completely
or incompletely, and (iii) supports manipulation of
an evolving shape by means of dedicated modeling
methods and tools. It is discrete since the represen-
tation of the geometry is composed from discrete en-
tities. Finally, VDIM is an interval modeling tech-
nique, since it describes the domain of variance of
the shape by a finite interval around a hypothesized
nominal geometry.

The fundamental modeling entity of VDIM is the
particle,π, or more precisely, coupled pairs of par-
ticles, c(π1, π2). Coupling of particles makes it pos-
sible to introduce various physical relationships and
constraints in order to provide the means for a phys-
ically based manipulation of shapes and for the in-
vestigation of their behavior as physical objects. In
a general form, a particle is represented by its refer-
ence vector,

:

r , and its metric occurrence,E. Refer-
ence vectors provide positional information and met-
ric occurrence and couplings supply morphological
information for the geometric representation. Fig-
ure 1 shows the fundamental entities of VDIM. A
vague discrete interval model is vague since the ref-
erence points of the particles are uncertainly speci-
fied. In practice it means, that a metric occurrence
is defined as a finite distribution space and merged
in the shape model represented as a particle system.
Note that a particle system contains boundary and
internal particles, but internal particles do not have

RAPID CONCEPT GENERATION AND EVALUATION 151



metric occurrences. Internal particles are not used in
the vague representation for the reason that they only
play a role in physically based modeling.

Figure 1 Fundamental entities of VDIM

Having uncertain positions for particles, introduces
weakness in the topological relationships between
the neighboring elements, since they can have dif-
ferent neighbors depending on their actual position.
In practice to use the same finite element mesh for
each instance shape generated from the same VDIM
model, the topological relationships of any neighbor-
ing particle has to be the same. To resolve this is-
sue a characteristic discreteness,ε, is established in
the vague discrete model, which is the distance be-
tween the neighboring particles. Discreteness of the
model comes from the fact that the particles them-
selves never coincide. Nonetheless, the condition of
discreteness does not assure topological robustness,
since the actual discreteness depends on the actual
positions of the particles so that a set of particles
can be neighbors with a characteristic discreteness
in a given position, but in another position they are
not. Figure 2 illustrates the problem. To resolve this
issue, the metric occurrence of the particles is gen-
erated in a way that avoids these situations. Hav-
ing topologically robust representation assures that
self-intersecting shapes are not instantiated from the
vague model, and coupling relations of particles are
the same for each instance.

The minimal and maximal overlaying surfaces are
generated on the extremes of distribution specified by
the boundary particles of the vague discrete model.
The distribution interval is a subspace that is in be-
tween the minimal and maximal overlaying surfaces.
Thus, it represents a cluster or a family of possible
shapes rather than a single nominal shape. The im-
ages (actually, image points) of the particles on the

two overlaying surfaces of the distribution interval
are connected by so-called distribution trajectories,

:

τ . This is a sort of simplification of the represen-
tation, that enables to have 1D metric occurrences.
Having a 1D metric occurrence reduces the required
information over a vague shape as well as it regulates
the discreteness of each shape that is represented in
the vague interval model.

Figure 2 Topologically weak vague discrete shape

To generate interval models with robust topological
relationships, we have developed an algorithm that is
shown in Algorithm 1. The input of this algorithm is
two point sets, which define the minimal and maxi-
mal overlaying surfaces of a vague discrete interval
model. In the first step of the algorithm, the closest
points of the two point sets are looked for, and an ini-
tial distribution trajectory is generated between them.
Then ascending order of the points is computed for
each point set based on the shortest path from the end
points of this initial distribution trajectory. Follow-
ing this ascending order, distribution trajectories are
generated one by one. In case a newly generated dis-
tribution trajectory causes topological anomaly in the
structure of the interval model, then the next point is
selected as a candidate for generating a distribution
trajectory. The algorithm stops when each point in
each point-set has been assigned to at least one dis-
tribution trajectory.

To identify topological anomalies in a particle cloud,
Π, the geometric relation of the distribution trajecto-
ries is investigated between particles being closer to
each other than 2|

::

τ |. We can distinguish three rela-
tions of distribution trajectories,

:

τ1 and
:

τ2, namely,
that they: (a) are parallel, (b) intersect, and (c) are
skewed. In case

:

τ1 and
::

τ2 are parallel, the topo-
logical relation between each instance particle is the
same. If they intersect, the topological relationship
among the particles in the neighborhood of

:

τ1 and

:

τ2, is influenced by the position of the selected in-
stance particle(s), depending whether it is above or
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below the point of intersection. For skewed
:

τ1 and

:

τ2, the topological relation to the neighboring parti-
cles is influenced by the position of the instance parti-
cle relative to the joining point of the normal traversal
between

::

τ1 and
::

τ2. The problem is illustrated in Fig-
ure 3. We have to investigate whether the intersecting
point or the normal traversal of

::

τ1 and
:

τ 2 falls into
the distribution interval. Topological anomalies are
removed from the model, and new distribution trajec-
tories are searched for those points that are not part
of any other distribution trajectory.

Figure 3 Occurrence of topological anomalies (points
connected by the dark triangle are in differ-
ent neighboring relations below and above the
normal traversal)

3.3. Variational Analysis (VA)

Variational Analysis (VA) (CADOE, 2002) in lin-
ear static analysis1 is a type of reanalysis method
based on Talylor series approximation of the dis-
placement vector with respect to key design vari-
ables. The uniqueness of the VA over the other
Taylor-series based reanalysis methods is the use
of symbolic derivatives of the element stiffness ma-
trices in computing the derivatives of the displace-
ment vector. This allows scalable computational ef-
ficiency, approximation accuracy, and numerical sta-
bility, compared to the other methods that numeri-
cally evaluate derivatives such as finite differencing.

Let u(x) be the nodal displacement vector of the finite
element model of a product geometry represented by
design variablex, andx0 be the value of design vari-
able representing the nominal product geometry. VA
estimates the nodal displacement vectoru(x0 + ∆x)
of a modified geometryx0 + ∆x using Taylor series

1While the description and case study in this paper assumes
linear static structural analysis, VT can generalize to other type
of analyses (CADOE, 2003).

Algorithm 1: Generating interval from two point-sets (P1and P2)
based on topologically closest points

Match Basedon TopologicalRelations(P1, P2, Π)
If(Π empty) πc=Find GeometricallyClosestPoints(P1, P2)
Elseπc=Find ShortestDistribution Trajectory(Π)
P12= P1+ P2

RemovePointsIf In ParticleCloud(P12, Π)
Sort PointsAscendingBy ShortestPath(P12, from πc)
For p=eachpoint of P12

Pn=CollectCloseNeighbors(p, P1 (if p ∈ P1), P2 (if p ∈ P2))
Πn= CollectParticlesThatContainPoints(Πsgn)
Pm=CollectMatchedPointsOfCloseNeighbors(If pn=rn return

pm=rn + τn; If pn=rn + τn return pm=rn)
Pm=CollectCloseNeighbors(pm, P1 (if pm ∈P1),

P2 (if pm ∈P2))
Sort PointsAscendingBy Distance(Pm, from p)
For pm=eachpoint of Pm

πm =GenerateDistributionTrajectory (pm, p)
addπm to Πn

Πanomalies =CheckTopologicalAnomalies(Πn)
If (Πanomalies <>0)
removeπm from Πn

go to next point in Pm

Else
addπm to Π
go to next point in P12

end for
end for

approximation:

u(x0 + ∆x) = u(x0) +
n

X

i=1

1

i!
u

(i)(x0)∆x
i + O(∆x

n+1) (1)

where u(i)(x0) is the i-th order derivative ofu(x)
evaluated atx = x0. The displacement vectoru(x0)
of the nominal designx0 is obtained by solving the
static equilibrium equation:

K(x0)u(x0) = f(x0) (2)

where K(x0) andf (x0) are the global stiffness matrix
and the global load vector, respectively, of the nomi-
nal designx0.Note that bothK andf are the functions
of design variablex.

To evaluate the right hand side of Equation (1), the
derivativeu(i)(x0) needs be computed. In VA, this
is done by exploiting the mathematical properties of
the equilibrium equation, instead of numerically esti-
mation. By differentiating the both sides of the equi-
librium equation for arbitraryx, one can obtain:

K
(1)(x)u(x) + K(x)u(1)(x) = f (1)(x)

K
(2)(x)u(x) + 2K(1)(x)u(1)(x) + K(x)u(2)(x) = f (2)(x)

...
n−1
P

i=0

„

n
i

«

K
(n−i)(x)u(i)(x) + K(x)u(n)(x) = f (n)(x)

(3)
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or equivalently:

K(x)u(1)(x) = f (1)(x) − K
(1)(x)u(x)

K(x)u(2)(x) = f (2)(x) − K
(2)(x)u(x) − 2K(1)(x)u(1)(x)

...

K(x)u(n)(x) = f (n)(x) −
n−1
P

i=0

„

n
i

«

K
(n−i)(x)u(i)(x)

(4)

It can be seen from Equation (4) that:
1. The left hand sides of all equations are in the form

Kv (a vectorv multiplied by the stiffness matrix),
same as the original equilibrium equation (2).

2. The right hand side of thei-th equation (the equa-
tion with K (x)u(i)(x) in the left hand side) de-
pends only onf (i)(x), K (i)(x), and u(j)(x), j
=1,. . . ,i-1.

The first observation leads to the efficient solution
of Equations (4) by utilizing the decomposed stiff-
ness matrix obtained while solving Equation (2). The
second observation leads to the efficient evaluation
of the right hand sides of Equations (4), by recur-
sively substitutingu(j)(x0), j = 1, 2, . . . ,i-1 to the
i-th equation starting withi = 1, oncef (i)(x0) and
K (i)(x0) are obtained.

The calculations off (i)(x0) andK (i)(x0) are done by
evaluating the analytic equations of thei-th deriva-
tives of the boundary and loading conditions and the
element stiffness matrix, respectively, with respect to
design variablex. As an illustration, let us consider
a two-dimensional constant strain triangle (CST) el-
ement and suppose the design variablex is the nodal
coordinates:

x = (x1, y1, x2, y2, x3, y3)
T (4)

The element stiffness matrix of a CST element is
given by (Chandrupatla and Belegundu, 1997):

K e(x) = tA(x) BT (x) D B(x) (5)

wheret andA(x) are the thickness and area of the
element, respectively,B(x) is the strain-displacement
matrix, andD is the stress-strain matrix. They are
given as:

A(x) =
1

2
|∆| (5)

B(x) =
1

∆





y23 0 y31 0 y12 0
0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12





(6)

D =
E

1 − ν2





1 ν 0
ν 1 0
0 0 (1 − ν)/2



 (7)

where:

∆ = x13y23 − x23y13

xij = xi − xj

yij = yi − yj

(8)

Using Equations (5)-(8), the first derivative of the el-
ement stiffness matrixK e(x) with respect tox1, for
example, is given as:

∂Ke(x)

∂x1
= t

∂A(x)

∂x1
B

T (x)DB(x)

+ tA(x)
∂B

T (x)

∂x1
DB(x)

+ tA(x)BT (x)D
∂B(x)

∂x1

(9)

where

∂A(x)

∂x1
=

{

y23 if ∆ > 0
−y23 otherwise

(10)

∂B(x)

∂x1
=

1

∆2

0

B

B

B

B

B

@

−y23y23 0 −x32y23

0 −x32y23 −y23y23

−y31y23 0 ∆ − x13y23

0 ∆ − x13y23 −y31y23

−y12y23 0 −∆ − x21y23

0 −∆ − x21y23 −y12y23

1

C

C

C

C

C

A

T

(11)

Basic steps for computingu(x0 + ∆x) for given∆x
can be summarized as follows:
1. Solve Equation (2) to obtain the displacement

vectoru(x0) for the nominal product shape.
2. For i = 1, 2, . . . ,n, compute thei-th derivative

∂iK e(x)/gxiof the element stiffness matrix and
the i-th derivative∂if(x)/gxi of the load vector,
using analytical equations.

3. Fori = 1, 2, . . . ,n, assemble∂iK e(x)/gxi to thei-
th derivative∂iK (x)/gxiof the global stiffness ma-
trix.

4. Fromi = 1 throughi = n, recursively solve Equa-
tions (4) by using the decomposed global stiffness
matrix K (x) obtained in step 1, and by substitut-
ing u(j)(x0), j = 1, 2, . . . ,i-1 to the right hand
side of thei-th equation.

5. Computeu(x0 + ∆x) by substitutingu(x0) ob-
tained in step 1 andu(i)(x0), i = 1, 2, . . . ,n, ob-
tained in step 4, into Equation (1).
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Since the global matrix is solved only once at step
1 and the subsequent steps are only assembling ma-
trices and evaluating polynomials,u(x0 + ∆x) can
be obtained with far smaller computational cost than
solving Equation (1) forx = x0 + ∆x.

The choice ofn depends on the desired accuracy in
Equation (1), whichn = 2 to 4 is reported as suffi-
cient in most cases. Since the derivation of the an-
alytical equations up to then-th derivative can be
extremely tedious and complex (especially for ele-
ments with large DOF), higher order derivatives can
be approximated by a numerical method such as fi-
nite differencing.

4. EXAMPLES

VDIM and VA have been implemented as computer
software, and a case study with a two-dimensional
cross section of the seats of chairs is conducted to
demonstrate the feasibility of the method. The finite
element analysis and VA are implemented for CST
elements withn = 2. CST elements are chosen as
a first attempt since they are relatively simple to im-
plement VT due to the small DOF and compatible
to the triangulated surfaces in the shape instances of
VDIM.

4.1. VDIM

As an application of VDIM, three popular designs of
the seats of chairs have been reproduced, and their
2D cross sections have been tested. The photos of
Figure 5 illustrate the targeted seats. To produce the
targeted shapes with VDIM, first a vague model was
created as a composition of planar point-sets. The
vague model had to be carefully chosen to be able
to derive each targeted shape from it. This required
generating a large interval. The left top image of Fig-
ure 5 presents the vague model of a seat. In the next
step a number of regions have been selected by using
a so called 3D cursor. Figure 4 shows the 3D cursor
in action. Particles, that are in contact with the the 3D
cursor during the selection procedure are assigned to
a region. The selected regions represent various fea-
tures of the targeted shapes. To derive the instance
shapes, shape formation rules of curving, offsetting,
and tilting were applied to the regions. Interested
readers are referred to (Rusák and Horv́ath 2005) for
details on shape instantiation based on shapes forma-
tion rules. The derived instance seats are presented
on Figure 5.

Figure 4 Region selection with a 3D cursor

Figure 5 Vague shape model of a seat and some in-
stance shape variances

4.2. VA

The structural performances the shape alternatives
instantiated from VDIM are examined by using VA.
As an initial implementation, 2D cross sections of
the seats are used for estimation and the results by
VA are compared with the finite element analysis in
terms of accuracy and speed.
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Figure 6a shows the cross-section of the VDIM of
seats in Figures 4 and 5, and its nominal shape.
The dimension of the seats is modeled as approxi-
mately 700 mm in length and height, and 500 mm
in width. As seen in Figure 6a, the shape intervals
are defined only to the points on the seating surface,
with the range between 15 mm and 30 mm. Figure 6b
shows the boundary and loading conditions used for
the evaluation of structural responses. These condi-
tions intend to mimic the loads exerted by the person
with 70 kg of weight sitting on the chair. For sim-
plicity, the loads are assumed constant during the in-
stantiation of different shape alternatives,i.e., f (i)(x)
≡ 0 in Equation (4).

(a) (b)

Figure 6 (a) cross-section of the VDIM of seats and (b)
boundary and loading conditions

Figure 7 shows a snapshot of the developed software
implementing VA. The upper left window shows the
displacement of the nominal shape obtained by the
conventional finite element analysis, and the rest of
the windows show the displacements of the shape al-
ternatives derived from the VDIM in Figure 6a, esti-
mated by VA utilizing up to the second-order terms
in the Taylor series expansion. For clarification, dis-
placements are magnified to 5 times. Although not
shown in the figure, stress values estimated by VA
can also be visualized. Using this user interface, a
designer can quickly examine the structural perfor-
mances of alternative shapes at virtually no compu-
tational overhead.

In order to statistically access the accuracy and speed
of VA, samples of 100 shape variants are randomly
instantiated from the VDIM in Figure 6a, and the es-
timation by VA are compared to the results of the fi-
nite element analyses. The comparisons are made by
calculating the displacement errorseu and von Mises
stress errorseσ averaged over all nodes in a sample
shape variant:

eu = 1
6m

6m
∑

i=1

|ui−vi|
vi

eσ = 1
m

m
∑

i=1

|σi−si|
si

(12)

wherem is is the number of elements in the FE mesh,
uiand vi are thei-th element of the (global) nodal
displacement vectors obtained by VA and FEM, re-
spectively, andσi andsi are von Mises stresses of
the i-th CST element obtained by VA and FEM, re-
spectively. Table 3.3 showseu andeσ averaged over
the 100 samples. It also shows the CPU time of the
100 runs for VA and FEA on a Windows laptop.

Figure 7 Developed software visualizing the displace-
ments of the nominal shape (upper left), and
shape variants (rest).

The statistics show that von Mises stresses have 22%
error on average, whereas the nodal displacements
have error as large as 45%. While the error in von
Mises stress is within an acceptable range (as stan-
dard FE is known to have an error as large as 10-
20%), the displacement error is fairly large, with the
notably large standard deviation (250%!).

Figures 8 and 9 show the displacement errors and
von Mises stress errors of the 100 samples, plotted
against the average and maximum coordinate devia-
tions from the nominal shape. In these figures, the
square and triangle points indicate the average coor-
dinate deviation and the maximum coordinate devia-
tion, respectively. The plots show no obvious corre-
lation between the errors in structural responses and
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Table 1 Comparison of VA and FEA for 100 random
samples

quantities avg of 100
samples

stddev of
100 samples

Average displacement
error [%] 45 250

Average von Mises
stress error [%] 22 34

CPU time for VT [ms]
560 35

CPU time for FEA [ms]
3900 97

the deviations from the nominal shape. On the other
hand, Figure 8 shows the several (6) samples with
extremely large errors, with the rest of samples in
one small cluster. These extreme samples are a likely
cause of very large standard deviation (250%) of the
displacement errors.

Figure 8 Average displacement errors vs. average co-
ordinate deviations (squares) and vs. max-
imum coordinate deviations (triangles) from
the nominal shape

The close examination of each sample shape reveals
that that the large errors in the displacements occur
near the horizontal seat of the chair where the mag-
nitude of displacements is almost zero compared to
the size of the chair. For the sample shapes with
relatively large shape variations at the seat, the dis-
placement errors of the nodes on the seat can be very
large sincevi ≈ 0 in Equation (12). The errors in von
Mises stresses in the element on the seat, on the other
hand, are not as large, since the stress is constant in a

Figure 9 Average von Mises stress errors vs. average
coordinate deviations (squares) and vs. max-
imum coordinate deviations (triangles) from
the nominal shape

CST element, which seems to average out the effects
of errors in nodal displacements.

In terms of computational speed, VA clearly shows
the advantage over FEA, with 7-fold improvement in
the average CPU time. Since VA requires only one
FE analysis of the nominal shape and the estimations
for the shape variants are done by evaluating poly-
nomials, this speed gain is expected to scale up well
with the number of nodes in the finite element model.

5. CONCLUSION AND FUTURE WORK

The paper proposed the integration of the vague dis-
crete interval models (VDIM) and the variational
analysis (VA) technique, in order to realize a design
environment for rapidly generating alternative shapes
and evaluating their structural responses. While the
accuracy of VA has some concern in the presented
examples, it is likely due to the naı̈ve implemen-
tation by the authors, considering the reported ac-
curacy of the highly-tuned, commercial 3D imple-
mentation of the technique (CADOE, 2002). Since
VDIM was originally developed for 3D (Rusák and
Horváth, 2005), its integration with the 3D version
of VA, possibly using a commercial code, will prove
to be a very effective tool for concept exploration for
practical designs.
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