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1. Abstract

A mechanical structure obtains additional functions such as the kinematic function if we can specify the deformed shape
at the specified portion of the mechanical structure. This flexible structure is used as a new type of mechanisms which
are called compliant mechanisms. A mechanical resonator can be designed by extending the concept of compliant mech-
anisms to the dyanmic case. We can also design an actuator or a mechanical sensor by combining the flexible structure
with energy converting devices such as piezoceramic. In this study, we shall discuss the topology optimization method
which provides a mechanical structure with the kinematic function for the design of the flextensional actuators and reso-
nators in MEMS. First, we formulate the kinematic function and its sensitivity with respect to a design variable. Next,
we formulate the multi-objective optimization problem in order to obtain an optimal solution incorporating this function
and stiffness. Based on these formulations and the homogenization method, the optimization procedure is constructed.
Finally, some desigh examples are presented to confirm that the design method proposed here satisfy the problem.
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3. Formulation of Kinematic Function
The kinematic function is formulated using a mutual energy concept. This concept is based on the so-called reciprocal
theorem (or Betti’'s theorem). This formulation is extended to the dynamic case for the design of resonators in MEMS.

Kinematic Function for the Design of KktensionalActuators

Consider a linear elastic domat, which has the piezoelectric effect as shown in Figure 1 (a). Suppose that the domain
is fixed at boundary 4, and the electric potential is set to zero at bounfigry-et us consider the two cases, Case (a)
and Case (b). In Case (a), the domain is subjected to surface qﬁalgboundaryrqj , and in Case (b), it is subjected

to boundary tractiot? at boundaryl . . Body forces applied to the elastic domain are ignored for simplicity in the for-
mulation. The displacement fieldug, and the electric potential i in Case (a), and? and¢?, respectively, in Case

(b). We assume that tractiohis a unit dummy load. Then, the following linear form defined as the mean transduction
can be interpreted as the measure of the kinematic function:
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If I(tz,u1> is sufficiently large, then sufficient flexibility in the directiontbfiue to electric charge is obtained. Further-
more, the sensitivity oi<t2 ,u1> with respect a design varidbkeobtained as follows:
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whereg(u) is the infinitesimal strain with respect to displacement fighl is the elasticity tensoe” is the piezoelectric
strain tensor, anefis the free-body electric tensor.

Kinematic Function for the Design of Resonators in MEMS

Consider a linear elastic domai, as shown in Figure 1 (b). Now, consider the two cases, Case (a) and Case (b). In
Case (a), the elastic domain is subjected to boundary tra&t'mmboundaryrt] , and in Case (b), it is subjected to
boundary traction? at boundaryl', . Body forces applied to the elastic domain are ignored for simplicity in the formu-
lation. The displacement field ané in Case (a), and? in Case (b). We suppose that tractithandt? are harmonic
excitations to the elastic domain, and displacement fididsdu? are also harmonic in the steady state. That is, trac-
tions, t* andt?, and displacement fields! andu?, are assumed to be describedtas T'e'® t? T2 u' = U ,
and u? =U2%“ , wherew stands for an excitation frequentgtands for time, and?, T2, UL, andu? stand for ampli-

tudes oft?, t2, ul, andu?, respectively. Here, the linear form implying the mutual mean compliance in the dynamic case
defined by

I(T,u") = [ T?eUkdr (3)

can be interpreted as the measure of the kinematic function in the dynamic case. If the absolut(a(VélUJé)of is suf-
ficiently large, then sufficient flexibility in the directiontéfdue to traction® is obtained. Furthermore, the sensitivity of
I(TZ,Ul) with respect a design varialbids obtained as follows:
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Figure 1. Definition of kinematic function

4. Homogenization Design Method
The homogenization design method is a topology optimization method which uses a concept of an extended design
domainD shown in Figure 2 (a) and the following characteristic function:
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X)= 5

XW=h g x0OD\Q, ®)
wherex is a specified position in the design domain, @gds an original design domain. Using this function, the origi-
nal structural design problem is replaced with the material distribution problem. The homogenization method is utilized

for the relaxation of the extended design domain. Figure 2 (b) shows a microstructure which is formed inside an empty
rectangle in a unit cell, wherg 3, andf are regarded as the design variables

/Original design domair®,

::\ Extended design domain

(a) Fixed and extended design domain (b) Microstructure

Figure 2. Extended design domain and microstructure

5. Formulation of Multi-objective Optimization Problem

Design of FlatensionalActuator

Suppose that the original design dom@jpis fixed at boundary 4, and the electric potential is set to zero at boundary
I'pin the piezoceramic device. The piezoceramic device is subjected to surfaceqﬂ:hﬂrtgeundaryr , as shown in
Flgure 3 (a). We design a flextensional actuator which deforms in the specified dl?eatlmundaryr due to sur-

face chargey® at boundaryl,; , and has sufficient stiffness at boundary in order to a reaction force caused by a
workpiece. The kinematic functlon is obtained by maximizing the mean transduction, posed by tfactibthe dis-
placement fieldi® due to surface chargg (Case(a)). Sufficient stiffness is obtained by minimizing the mean compli-
ance at boundaryr,  posed by tractioh while the electric potential is set to zero at boundbgy (Case (b)).
Therefore, the optimization problem is formulated as follows:
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equilibrium equations (8)
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wherep, is the volumetric density, arfd is the total volume constraint of the solid material forming the porous struc-
ture. In order to obtain an appropriate optimal configuration incorporating the two functions defined by Equation (6), the
following multi-objective function is proposed:

m%i';nr]jieze f,= |<'[3,U3> (12)
more generally,
maximize f, = Wiog(1(t?,u’)) - (1-W) g1 {t",)) (13)

whereW is a weighting coefficient such thatc W<1

Design of Resonator

Suppose that the original design domain of a flexible stru€tyis fixed at boundary 4 and is subjected to the period-

ically oscillating boundary traction® = Tlel« , wheteis an excitation frequency ands time, as shown in.Figure 3

(b).We design a resonator which deforms along a direction specified by unit dummyT@ea\lbere t*=T%*“ , and

has sufficient stiffness at boundarfes  and in order to resist an applied force and a reaction force, respectively. The
kinematic function is obtained by maximizing the absolute value of mutual mean compliance, posed byttrntion

the displacement field! due to boundary tractiah(Case(a)). Sufficient stiffness at bounddry is obtained by mini-
mizing the absolute value of mean compliance posed by trattinile boundaryr, is fixed (Case (b)). Moreover,
sufficient stiffness at boundary,  is obtained by minimizing the absolute value of the mean compliance posed by trac-
tion -t2, while boundaryr, is fixed (Case (c)). Therefore, the optimization problem is formulated as follows:

maximize|I<T2,U1>

=[f 2o udr|, minimize |(T2,U%) =|f TS~ U],
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subject to
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T4 =-T?2 (16)
equilibrium equations a7)
O<a<1 (18)
0<pB=<1 (19)
alp,) = [, P0Q-Q =] (1-aB)dQ-Q,<0 (20)

In order to obtain an appropriate optimal configuration incorporating the three functions defined by Equation (14), the
following multi-objective function is proposed:
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wherews is a weighting coefficient such thak w, <1
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Figure 3. Design Specifications



6. Optimization Procedure

Figure 4 shows a flowchart of the optimization procedure. First, the homogenized coefficients for elasticlﬂ'/*teresor
calculated using the homogenization method. Next, the extended design dbisadiscretized using the finite ele-

ments. In this discretization scheme, we approximate that the configuration of the microstructure is the same inside the
element. Therefore, we have three design variabjeg;, and 6, fori=1,...n wheren is the number of the elements. The
objective functions, constraints, and their sensitivities with respentd 5, are computed using FEM. The sequential

linear programming (SLP) is utilized to solve the optimization problem. This is because SLP can handle numerous
design variables (more than 10,000), and it requires only the sensitivities of the objective functions and constraints,
although the fast convergence cannot be expected. Finally, theGaisgteactically updated to the principal direction of

the stress to minimize the mean compliank{e?,u3) , in the case of the flextensional design, and is practically updated
to the principal direction of the stress to minimize the larger mean compliance be(wé,eﬂ |<T‘and> using
the multi-loading criterion which was proposed by Suzuki and Kikircthe case of the resonator design

#| Calculate homogenized elasticity coefficients using HEM

v

Calculate mutual mean compliance, mean complignce,
total volume, and objective function using FEM

Convergence

Calculate sensitivities of mutual mean compliance|
mean compliance, total volume, and objective fungtion

Solve SLP problem with respect &g and;

Update angle8;

Figure 4. Flowchart of optimization procedure

7. Numerical Examples

Design of FlatensionalActuator

Figure 5 (a) shows a design domain of a actuator. The deformations at paimtsddirections of dummy load? is
maximized when surface chargjeis uniformly applied at the upper boundary of the piezoceramic while the stiffness at
point P, is maximized. Figure 5 (b) shows the optimal configuration.
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Figure 5. Design of a flextensional actuator



Figure 6 (a) shows a design domain of a twisting actuator. The deformations at ppiRts,AP,3, and B4 in the direc-

tions of dummy loads2%, F22 F23 andF2“ respectively are maximized when surface chagtgs uniformly applied at

the upper boundary of the piezoceramic while the stiffnesses at pgifB, P,3, and B4 are maximized. Figure 6 (b)

shows the optimal configuration. An image of a real structure is extracted from the optimal configuration as shown in
Figure 6 (c). Figure 6 (d) shows the deformed shape of the actuator.
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Figure 6. Design of a twisting flextensional actuator

Design of Resonator

Figure 7 (a) shows a design domain. We consider that the resonance condition which has to occur along a direction spec-
ified by a dummy loa? at point B, when the periodically oscillating force along a direction specifidélll:iy applied

at point R. Table 1 shows the weighting coefficiettjn Equation (21), set in the optimization and the lowest eigen-fre-
quencies of the optimal configurationk is confirmed the lowest eigen-frequency of each optimal configurations
matches the specified excitation frequency. Figure 7 (b), (c), and (d) show the optimal configurations in the case of
w=80, 200, and 400(Hz), respectively.

Table 1. Weighting coefficieMV in Equation (21) and the lowest
eigen-frequencies of the optimal configurations

Wy2mt(Hz)  |Initial configuration W Lowest eigen-frequency (Hz)

0 Uniform 0.5 29.39
80 OHz 0.05 80.40
120 OHz 0.05 119.28
160 120Hz 0.1 159.91
200 120Hz 0.2 200.32
240 120Hz 0.3 239.78
280 240Hz 04 280.80
320 240Hz 0.3 321.26
360 320Hz 0.3 359.62
400 320Hz 0.3 400.07
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Figure 7. Design of a resonator

8. Conclusions

The topology optimization method for the design of the flextensional actuators and resonators in MEMS was developed.
The kinematic function was formulated using a mutual energy concept. A new multi-objective function was proposed in
order to obtain an appropriate optimal configuration. Design examples confirmed that the method presented can be
applied to the design of the flextensional actuators and resonators.
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