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Topology Optimization of Actuators Using Structural Flexibility

Shinji Nishiwaki, Emílio Carlos Nelli Silva, Kazuhiro Saitou, and Noboru Kikuchi
The University of Michigan

1. Abstract
A mechanical structure obtains additional functions such as the kinematic function if we can specify the deforme
at the specified portion of the mechanical structure. This flexible structure is used as a new type of mechanism
are called compliant mechanisms. A mechanical resonator can be designed by extending the concept of complia
anisms to the dyanmic case. We can also design an actuator or a mechanical sensor by combining the flexible
with energy converting devices such as piezoceramic. In this study, we shall discuss the topology optimization
which provides a mechanical structure with the kinematic function for the design of the flextensional actuators a
nators in MEMS. First, we formulate the kinematic function and its sensitivity with respect to a design variable
we formulate the multi-objective optimization problem in order to obtain an optimal solution incorporating this fun
and stiffness. Based on these formulations and the homogenization method, the optimization procedure is con
Finally, some design examples are presented to confirm that the design method proposed here satisfy the probl

2. Keywords
Topology optimization, The homogenization method, Flextensional actuators, MEMS (Micro-Ele
Mechanical-Systems)

3. Formulation of Kinematic Function
The kinematic function is formulated using a mutual energy concept. This concept is based on the so-called re
theorem (or Betti’s theorem). This formulation is extended to the dynamic case for the design of resonators in M

Kinematic Function for the Design of Flextensional Actuators
Consider a linear elastic domain, Ω, which has the piezoelectric effect as shown in Figure 1 (a). Suppose that the d
is fixed at boundary Γd, and the electric potential is set to zero at boundary Γφ. Let us consider the two cases, Case (
and Case (b). In Case (a), the domain is subjected to surface charge q 1 at boundary , and in Case (b), it is subjecte
to boundary traction t2 at boundary . Body forces applied to the elastic domain are ignored for simplicity in the
mulation. The displacement field is u1, and the electric potential is φ1 in Case (a), and u2 and φ2, respectively, in Case
(b). We assume that traction t2 is a unit dummy load. Then, the following linear form defined as the mean transdu
can be interpreted as the measure of the kinematic function:

(1)
If  is sufficiently large, then sufficient flexibility in the direction of t2 due to electric charge is obtained. Furthe
more, the sensitivity of  with respect a design variable A is obtained as follows:

(2)

where ε(u) is the infinitesimal strain with respect to displacement field u, E is the elasticity tensor, ep is the piezoelectric
strain tensor, and eS is the free-body electric tensor.

Kinematic Function for the Design of Resonators in MEMS
Consider a linear elastic domain, Ω, as shown in Figure 1 (b). Now, consider the two cases, Case (a) and Case 
Case (a), the elastic domain is subjected to boundary traction t1 at boundary , and in Case (b), it is subjected 
boundary traction t2 at boundary . Body forces applied to the elastic domain are ignored for simplicity in the fo
lation. The displacement field are u1 in Case (a), and u2 in Case (b). We suppose that tractions t1 and t2 are harmonic
excitations to the elastic domain, and displacement fields u1 and u2 are also harmonic in the steady state. That is, tr
tions, t1 and t2, and displacement fields, u1 and u2, are assumed to be described as , , 
and , where ω stands for an excitation frequency, t stands for time, and T1, T2, U1, and U2 stand for ampli-
tudes of t1, t2, u1, and u2, respectively. Here, the linear form implying the mutual mean compliance in the dynamic
defined by

(3)

can be interpreted as the measure of the kinematic function in the dynamic case. If the absolute value of 
ficiently large, then sufficient flexibility in the direction of t2 due to traction t1 is obtained. Furthermore, the sensitivity o

 with respect a design variable A is obtained as follows:
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where ρ is the mass density.

4. Homogenization Design Method
The homogenization design method is a topology optimization method which uses a concept of an extende
domain D shown in Figure 2 (a) and the following characteristic function:

(5)

where x is a specified position in the design domain, and Ωd is an original design domain. Using this function, the orig
nal structural design problem is replaced with the material distribution problem. The homogenization method is 
for the relaxation of the extended design domain. Figure 2 (b) shows a microstructure which is formed inside a
rectangle in a unit cell, where α, β, and θ are regarded as the design variables.

5. Formulation of Multi-objective Optimization Problem

Design of Flextensional Actuator
Suppose that the original design domain Ωd is fixed at boundary Γd, and the electric potential is set to zero at bounda
Γφ in the piezoceramic device. The piezoceramic device is subjected to surface charge q1 at boundary , as shown in
Figure 3 (a). We design a flextensional actuator which deforms in the specified direction t2 at boundary  due to sur-
face charge q1 at boundary , and has sufficient stiffness at boundary  in order to a reaction force cause
workpiece. The kinematic function is obtained by maximizing the mean transduction, posed by traction t2 and the dis-
placement field u1 due to surface charge q1 (Case(a)). Sufficient stiffness is obtained by minimizing the mean com
ance at boundary  posed by traction -t2, while the electric potential is set to zero at boundary  (Case (
Therefore, the optimization problem is formulated as follows:

(6)
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(7)
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 Figure 1. Definition of kinematic function

χΩ

Ω
Ω

x
x

x
( ) =

∈
∈





1         if  

0        if   \
d

d
D

1

1

α

β

θ

Extended design domain D

Original design domain Ωd

 Figure 2. Extended design domain and microstructure

(a) Fixed and extended design domain (b) Microstructure

Γ
q1

Γ
t 2

Γ
q1 Γ

t 2

Γ
t 2

Γ
q1

maximize  and minimize 
,  and ,  and α β θ α β θ, ,

, ,l d l d
t t

t u t u t u t u2 1 2 1 3 3 3 3
2 2

= • = •∫ ∫Γ Γ
Γ Γ

t t3 2= −



       

uc-
(6), the

        

-

        

vely. The
 

         

ini-

   

r,
by trac-

   

4), the

    
equilibrium equations (8)

(9)

(10)

(11)

where ρv is the volumetric density, and Ωs is the total volume constraint of the solid material forming the porous str
ture. In order to obtain an appropriate optimal configuration incorporating the two functions defined by Equation 
following multi-objective function is proposed:

(12)

more generally,

(13)
where W is a weighting coefficient such that .

Design of Resonator
Suppose that the original design domain of a flexible structure Ωd is fixed at boundary Γd and is subjected to the period
ically oscillating boundary traction , where ω is an excitation frequency and t is time, as shown in.Figure 3
(b).We design a resonator which deforms along a direction specified by unit dummy vector T2, where , and
has sufficient stiffness at boundaries  and  in order to resist an applied force and a reaction force, respecti
kinematic function is obtained by maximizing the absolute value of mutual mean compliance, posed by tractiont2 and
the displacement field u1 due to boundary traction t1(Case(a)). Sufficient stiffness at boundary  is obtained by m
mizing the absolute value of mean compliance posed by traction t1, while boundary  is fixed (Case (b)). Moreove
sufficient stiffness at boundary  is obtained by minimizing the absolute value of the mean compliance posed 
tion -t2, while boundary  is fixed (Case (c)). Therefore, the optimization problem is formulated as follows:

(14)

subject to

(15)

(16)
equilibrium equations (17)

(18)

(19)

(20)

In order to obtain an appropriate optimal configuration incorporating the three functions defined by Equation (1
following multi-objective function is proposed:

(21)

where ws is a weighting coefficient such that .
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 Figure 3. Design Specifications
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6. Optimization Procedure
Figure 4 shows a flowchart of the optimization procedure. First, the homogenized coefficients for elasticity tensorEH are
calculated using the homogenization method. Next, the extended design domain D is discretized using the finite ele-
ments. In this discretization scheme, we approximate that the configuration of the microstructure is the same in
element. Therefore, we have three design variables, αi, βi, and θi, for i=1,...,n where n is the number of the elements. Th
objective functions, constraints, and their sensitivities with respect αi and βi, are computed using FEM. The sequenti
linear programming (SLP) is utilized to solve the optimization problem. This is because SLP can handle nu
design variables (more than 10,000), and it requires only the sensitivities of the objective functions and con
although the fast convergence cannot be expected. Finally, the angle θi is practically updated to the principal direction o
the stress to minimize the mean compliance, , in the case of the flextensional design, and is practically 
to the principal direction of the stress to minimize the larger mean compliance between  and 
the multi-loading criterion which was proposed by Suzuki and Kikuch iin the case of the resonator design

7. Numerical Examples

Design of Flextensional Actuator
Figure 5 (a) shows a design domain of a actuator. The deformations at points P2 in the directions of dummy loads F2 is
maximized when surface charge q1 is uniformly applied at the upper boundary of the piezoceramic while the stiffne
point P2 is maximized. Figure 5 (b) shows the optimal configuration.

l t u3 3,
l T U3 3, l T U4 4,

 Figure 4. Flowchart of optimization procedure
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 Figure 5. Design of a flextensional actuator

(a) Design domain (b) Optimal configuration
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Figure 6 (a) shows a design domain of a twisting actuator. The deformations at points P21, P22, P23, and P24 in the direc-
tions of dummy loads F21, F22, F23, and F24, respectively are maximized when surface charge q1 is uniformly applied at
the upper boundary of the piezoceramic while the stiffnesses at point P21, P22, P23, and P24 are maximized. Figure 6 (b)
shows the optimal configuration. An image of a real structure is extracted from the optimal configuration as sh
Figure 6 (c). Figure 6 (d) shows the deformed shape of the actuator.

Design of Resonator
Figure 7 (a) shows a design domain. We consider that the resonance condition which has to occur along a direc
ified by a dummy load F2 at point P2, when the periodically oscillating force along a direction specified by F1 is applied
at point P1. Table 1 shows the weighting coefficient, W in Equation (21), set in the optimization and the lowest eigen-f
quencies of the optimal configurations. It is confirmed the lowest eigen-frequency of each optimal configurati
matches the specified excitation frequency. Figure 7 (b), (c), and (d) show the optimal configurations in the 
ω=80, 200, and 400(Hz), respectively. 
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 Figure 6. Design of a twisting flextensional actuator

(a) Design domain
(b) Optimal configuration

Piezoceramic

Piezoceramic

(c) Extracted image (d) Deformed shape
Original Shape

Deformed Shape

ω/2π (Hz) Initial configuration W Lowest eigen-frequency (Hz)

0 Uniform 0.5 29.39

80 0Hz 0.05 80.40

120 0Hz 0.05 119.28

160 120Hz 0.1 159.91

200 120Hz 0.2 200.32

240 120Hz 0.3 239.78

280 240Hz 0.4 280.80

320 240Hz 0.3 321.26

360 320Hz 0.3 359.62

400 320Hz 0.3 400.07

Table 1. Weighting coefficient W in Equation (21) and the lowest 
eigen-frequencies of the optimal configurations



  

eloped.
osed in
 can be

  

geniza-

    

. 

        
8. Conclusions
The topology optimization method for the design of the flextensional actuators and resonators in MEMS was dev
The kinematic function was formulated using a mutual energy concept. A new multi-objective function was prop
order to obtain an appropriate optimal configuration. Design examples confirmed that the method presented
applied to the design of the flextensional actuators and resonators.
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