
Initial Results with Structured Queries and Language
Models on Half a Terabyte of Text

Kevyn Collins-Thompson Paul Ogilvie Jamie Callan
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213

{kct, pto, callan}@cs.cmu.edu

1. INTRODUCTION
The CMU Distributed IR group’s experiments for the
TREC 2004 Terabyte track are some of the first to use
Indri, a new indexing and retrieval component developed
by the University of Massachusetts for the Lemur Toolkit
[2]. Indri combines an inference network with a language-
modeling approach and is designed to scale to terabyte-
sized collections.
Our goals for this year’s Terabyte track were modest: to
complete a set of simple baseline runs successfully using
the new Indri software, and to gain more experience with
Indri’s retrieval model, the track’s GOV2 corpus, and
terabyte-scale collections in general.

2. COLLECTION AND TASK SUMMARY
The Terabyte track this year used the GOV2 corpus, which
is made up of about 25 million Web documents crawled
from the .gov Web domain, comprising about 426 Gb of
document source.
The task for the Terabyte track is ad-hoc retrieval. There
are 50 queries or ‘topics’. Each topic is presented in the
usual TREC format, as a tagged document with three fields
that summarize the information need at different levels of
detail: a short ‘title’ consisting of just a few terms, a longer,
more detailed ‘description’ field, and a multi-sentence
‘narrative’ field.

3. INDEXING ENVIRONMENT
We indexed all of the GOV2 corpus documents, submitting
complete documents to the indexer. We did no special
processing for titles or other document structure. After
running each document through Indri’s HTML parser and
stripping out tags, terms were normalized by removing
punctuation, converting to lowercase, and performing
Krovetz stemming [6]. Indri has a utility to extract anchor
text, but a working version of this was not available at the
time of our experiments, so no anchor text (or other link-
derived features) was included. We did not use an index-
time stop list or acronym list.

We partitioned the GOV2 corpus into six roughly equal-
sized pieces and built a separate index for each subset.
There were two reasons for doing this. First, it was our
intent to distribute retrieval for the corpus across multiple
machines: Indri has a facility for transparently federating
retrieval results across the network. Second, it helped
reduce the time to find and fix problems with interim Indri
releases (typically, pathological HTML cases that would
cause the parser to crash).
For various reasons, we ended up using a single PC for
both indexing and retrieval (though not at the same time).
The PC had dual Xeon 3.2GHz CPUs with 2Gb RAM
running Red Hat Linux release 9. The file system used an
ACNC SATA Raid array, specifically Jetsor III
Raid/150869 with 128mb dual SCSI host 16 slots, with
8x250GB RAID-5 drives in the box and 6x146GB RAID-5
disks internal to the PC. All disks were 7200 RPM.
We used a modified version of Indri build 20040830-1620
to build the index set. (The changes were to work around
various parsing bugs which have since been fixed.) Total
indexing time was 20.1 hours and the resulting index files
were 138 Gb in size. The index referenced 25,205,168
documents. Indri also generated a compressed version of
the tokenized collection, which for the GOV2 corpus was
107 Gb in size.

4. RETRIEVAL ENVIRONMENT
4.1 Topic Processing and Query Formation
We converted topics to Indri structured queries as follows.

For title-only runs, we parsed each title field into its
constituent unigrams and removed stop words using a stop
list of 447 words derived from the standard list used with
INQUERY [5]. The remaining terms were simply
combined using the Indri #weight operator, with all terms
given equal weight. (These prior weights are in addition to
any term weighting done by the retrieval model.)

For runs using all three topic fields, we tried a very simple
heuristic term matching scheme to identify unigrams,

bigrams, and trigrams that recurred across fields – the idea
being that concepts occurring in multiple fields would be
more likely to be central to the information need. There
were three phases: 1) extracting candidate terms (unigrams,
bigrams, and trigrams) from each field, 2) matching up
candidates across fields while computing a weighted score
for each candidate, and 3) selecting the top N candidates
with scores above an empirically derived threshold. For
scoring, fields were associated with weights giving a rough
prior estimate of their importance, as follows: title: 0.50,
narrative: 0.35, and description: 0.15. The combined score
for a candidate term was obtained by summing the weights
for the fields in which it occurred. Scores for all
candidates were then normalized so that the highest-scoring
candidate(s) were given a weight of 1.0. We used the same
term selection threshold of 0.200 for all our experiments,
since this value seemed to give the best relative
performance in most cases. While our algorithm here was
simplistic, it may be easily generalized to a more powerful
translation model in which approximate term matching is
done with scores obtained via a translation cost function.

The final all-field structured queries were formed by
combining the selected candidate terms and their scores
with the #weight operator. Within the #weight operator,
phrases were mapped to proximity operators. We tried
different window sizes ranging from 3 words up to 20
words. We settled on an unordered proximity window of 8
words for both bigrams and trigrams since this appeared to
give slightly better accuracy in the cases we tried. An
example of the resulting query is shown in Figure 1.

<top>
<num> Number: 452
<title> do beavers live in salt water
<desc> Description:
Describe the normal habitat for
beavers; note exceptions, if any.
<narr> Narrative:
Relevant documents describe the
habitat range as well as references to
specific areas and bodies of water.
</top>

#weight(

1.000 beavers
0.695 habitat
0.571 water
0.305 #uw8(beavers live)
0.305 #uw8(live salt water)
0.305 #uw8(beavers live salt)
0.305 #uw8(live salt)
0.305 #uw8(salt water)
0.305 salt
0.305 live
)

Figure 1: Original TREC topic 452 (top), and corresponding
structured query (bottom)

4.2 Language Model Smoothing
We used Dirichlet smoothing [8] for all submitted runs,
with µ = 2500, using the WT10g collection [3] to estimate
optimal values for µ and other retrieval parameters. Indri
allows different smoothing settings for term and window
language models, but for our baseline we used the same
setting for all language models. We also looked briefly at
learning query-specific µ values (see Section 5).
More details on the Indri retrieval model are available in
the UMass TREC 2004 paper [1].

4.3 Query Expansion
We used the default pseudo-relevance feedback algorithm
in the Indri runquery utility (as of build 20040909-1720) to
perform query expansion. This algorithm is a variant of a
language-modeling approach to pseudo-feedback described
by Lafferty and Zhai [7]. The final query is a weighted
combination of the original and expanded queries, which in
our experiments were weighted equally. We filtered the
expansion terms by using a modified stop list that included
Web-specific noise terms such as ‘pdf’, ‘http’, ‘www’, and
so on. The best performance on WT10g given the other
query processing parameters was obtained using the
document count (‘docs’) and term count (‘terms’)
parameters shown in Table 1.

5. EXPERIMENTS
We submitted two title-only runs, with and without pseudo-
relevance feedback (cmutufs2500 and cmutuns2500
respectively), and one run using all topic fields with
feedback (cmuapfs2500). A summary of the runs and their
performance is given in Table 1. Our best performing run
was cmuapfs2500, which ranked 3rd overall out of 71 runs
in terms of MAP, R-precision, and bpref [4] scores.

Results for the WT10g collection on topics 451-550 are
also given, in Table 2, showing the effects of adding
various enhancements to the baseline method. The most
significant improvements came from switching to Dirichlet
smoothing with tuned µ parameter, and using terms from
all fields instead of just the title. The best performing run
used all fields, unigram terms, Dirichlet smoothing, and
pseudo-feedback and obtained a MAP of 0.2524. Our
heuristic phrase selection algorithm appeared to give
slightly worse results than using unigrams. Investigating
the reasons for this and finding improvements to our topic
analysis, is the subject of future work.

We did some preliminary investigation into varying µ for
each query as a function of simple features such as number
of non-stopwords and mean log frequency of the query
terms in general English, but the results were inconclusive.

Run Fields
Used Terms QE

parameters

MAP

cmutuns2500 Title Unigrams No
expansion 0.2071

cmutufs2500 Title Unigrams docs=5,
terms=10 0.2481

cmuapfs2500 All Phrases docs=5,
terms=20 0.2843

Table 1: Submitted runs for the GOV2 corpus using TREC

topics 701-750 and top 10,000 documents. All runs used
Dirichlet smoothing with µ = 2500.

We also calculated an oracle run for the all-field topics by
selecting the individual values for µ giving the best
performance for each query. (µ was varied from 500 to
5000 in increments of 500.) This oracle run obtained a
MAP of 0.2618. The comparable run with best fixed
µ=2500 obtained a MAP of 0.2304.

6. CONCLUSIONS
The GOV2 collection was the largest processed by the
CMU DIR group to date. We achieved our main goal for
this track, which was to obtain a set of baseline results with
Indri, a new indexing and retrieval component in the
Lemur Toolkit [2]. These results made basic use of Indri’s
combined language modeling-based retrieval and inference
network features. Indri provides a much richer set of query
operators than we used for our experiments. For example,
it has the ability to build language models for arbitrary
fields, including fields for document structure. This should
prove quite useful for many IR tasks and future work.

The only significant problem we encountered was the slow
speed of long, expanded queries on a collection of this size,
with such queries taking several minutes to complete. We
believe this problem had two causes: first, because of
system constraints, we ended up using an inefficient
configuration, i.e. federated retrieval with multiple
collection partitions on a single machine instead of multiple
machines. Second, some significant speed improvements
have since been made in Indri’s query processing. We
expect speed to be less of an issue in future experiments.
Other problems, such as handling the wide range of HTML
in such a large corpus, were relatively minor and an
expected part of adopting early builds of complex software.

Overall, Indri proved to be reliable and scalable for this
task, and we believe it represents a promising new tool for
future large-scale retrieval experiments.

 Title All
fields

Baseline: Unigrams, no QE,
Jelinek-Mercer smoothing,
(λ = 0.4)

0.1290 0.1734

+ Dirichlet smoothing
 Best fixed µ = 2500 0.2016 0.2376

+ Phrases (bi-grams, tri-grams) 0.1988 0.2188
+ QE (docs = 5, terms = 10)
 w/ Unigrams 0.2162 0.2506

 QE (docs = 5, terms = 20)
 w/ Phrases 0.2102 0.2304

 QE (docs = 5, terms = 20)
 w/ Unigrams 0.2160 0.2524

Table 2: Mean average precision results on WT10g, using
TREC topics 451 – 550 and top 1000 documents.

7. ACKNOWLEDGEMENTS
This work was supported by Dept. of Education grant
R305G03123. Any opinions, findings, conclusions, or
recommendations expressed in this material are the
authors’, and do not necessarily reflect those of the
sponsors. The authors thank Trevor Strohman and Don
Metzler for their extensive help with Indri.

8. REFERENCES
[1] N. Abdul-Jaleel, J. Allan, W.B. Croft, F. Diaz, L. Larkey, X.

Li, D. Metzler, M.D. Smucker, T. Strohman, H. Turtle, C.
Wade. UMass at TREC2004: Notebook. TREC 2004
Conference Notebook, NIST Special Publication, 2004.

[2] J. Allan, J. Callan, K. Collins-Thompson, B. Croft, F. Feng,
D. Fisher, J. Lafferty, L. Larkey, T. N. Truong, P. Ogilvie, L.
Si, T. Strohman, H. Turtle, and C. Zhai. The Lemur toolkit
for language modeling and information retrieval.
http://www.cs.cmu.edu/˜lemur

[3] P. Bailey, N. Craswell, and D. Hawking. Engineering a
multi-purpose test collection for Web retrieval experiments.
Information Processing and Management, 39(6): 853-871,
November 2003.

[4] C. Buckley and E. M. Voorhees. Retrieval evaluation with
incomplete information. Proc. of SIGIR 2004, Sheffield,
U.K. pp. 25 – 32.

[5] J. P. Callan, W.B. Croft, and S. M. Harding. The INQUERY
retrieval system. Proceedings of the Third International
Conference on Database and Expert Systems Applications,
Valencia, Spain, 1992, pp. 78 – 83.

[6] R. Krovetz. Word Sense Disambiguation for Large Text
Databases. Doctoral thesis, Univ. of Mass., Amherst, 1995.

[7] J. Lafferty and C. Zhai. Document language models, query
models, and risk minimization for information retrieval.
Proc. of SIGIR 2002, New Orleans, U.S.A., pp. 111 – 119.

[8] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad-hoc information retrieval.
Proc. of SIGIR 2002, New Orleans, U.S.A. pp. 334 – 342.

