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Abstract. We introduce perturbation kernels, a new class of similarity
measure for information retrieval that casts word similarity in terms of
multi-task learning. Perturbation kernels model uncertainty in the user’s
query by choosing a small number of variations in the relative weights
of the query terms to build a more complete picture of the query con-
text, which is then used to compute a form of expected distance between
words. Our approach has a principled mathematical foundation, a sim-
ple analytical form, and makes few assumptions about the underlying
retrieval model, making it easy to apply in a broad family of existing
query expansion and model estimation algorithms.

1 Introduction

A fundamental research problem of information retrieval is how to improve search
effectiveness by learning an extended representation of the user’s information
need, called a query model, that captures more about the context of an informa-
tion need than is available from the few words in the query itself. For example,
in performing a type of query expansion, a very simple query model might take
the form of a unigram language model over words related to the user’s query
terms. One significant problem in performing query expansion is the risk of
adding words that are unrelated to the query, causing the query model to ‘drift’
away from the user’s original intent. Thus, improving the quality and reliability
of the similarity measure used to find related terms is an important goal in itself.

With this problem in mind, we introduce perturbation kernels, which cast
estimating word similarity as an type of multi-task learning problem. Informally,
the key idea of perturbation-based kernels is that two input objects x and y, such
as words, are considered similar in the context of a given query Q if probability
distributions p(x|Q) and p(y|Q) that depend on Q are affected in similar ways
with small variations in Q.

Our approach has several advantages. First, the use of query perturbations
results in sensitivity features that give more precise word similarity relations,
which in turn can improve the stability of query expansion algorithms that use
them. Second, we make few assumptions about the nature of the underlying
retrieval model, meaning that such similarity measures may be applied in a



wide variety of existing query model estimation or expansion methods. Third,
our solution has sound theoretical justification with close connections to kernel
methods such as the leave-one-out kernel [13], robust approximation, and metric
learning. Finally, our algorithm has a simple, efficient analytical form.

2 Mathematical formulation

Let X be the input domain of interest (e.g. words) from which a training example
(query) is generated. For any x ∈ X we identify an m-dimensional vector called
a feature mapping, denoted φ : X → R

m. With this feature mapping, we define a
symmetric kernel function k(·) to measure the closeness of input points x and y

as k(x, y) = φ(x) · φ(y) where the right side of the equation is the inner product

of φ(x) and φ(y).
A perturbation to a training set of n instances x = {x1 . . . xn} can modeled by

a vector of counts α = {α1, . . . , αn} with count αi corresponding to the weight
of training example xi. For the original training set, αi = 1 for all instances
xi. To leave out the instance xi, we set αi = 0. To give xi more weight, we
set αi > 1. A perturbation strategy is a set A = {αi} of perturbation vectors.
The set A may be selected with either a random or deterministic process. We
use the following deterministic perturbation strategies in this study to define
uncertainty sets around the initial query Q:

– The leave-one-out strategy (LOO) has A = {α1, . . . , αn} where αi[j] = 0 for
i = j and 1 otherwise.

– The term-at-a-time strategy (TAT) is complementary to LOO and uses A =
{α1, . . . , αn} where αi[j] = 1 for i = j and 0 otherwise.

These strategies are extremely simple to implement, widely used for query ex-
pansion and performance prediction tasks, and fast to execute in a real-time
search environment. They both use N + 1 variants of the query, while being
somewhat complementary strategies, making them ideal for comparison. The
TAT and LOO methods are different extremes in a more general class of com-
binatorial methods that could be defined on the set of query terms. We leave
exploration of more sophisticated perturbation schemes for future work.

We denote the probability distribution of x ∈ X that results from a pertur-
bation αi as p(i)(x). In the context of information retrieval, we view a query q

as a training set of n instances of query terms {q1, . . . , qn} where qi is drawn
from X = V for vocabulary V. In the next sections, we derive the general form
of the perturbation kernel and feature mapping φ(x).

2.1 Canonical similarity integrals

Our formulation of perturbation-based similarity is inspired mainly by earlier
work of Baxter using auxiliary tasks for classification and function approxima-
tion, as well as a more recent followup article by Minka [11] that discussed dis-
tance measures as prior probabilities. Baxter showed that for 1-nearest-neighbor



classification, there is a unique optimal similarity measure that he called the
Canonical Distortion Measure (CDM) [3]. In the classification setting, this quan-
tity δ(x1, x2) is the expected loss of classifying x1 with x2’s label. The expecta-
tion is taken over a probability space of classifiers (tasks). To apply Baxter’s
idea to information retrieval applications, we view a task as relevance estimation
with respect to a particular query q. We call a task distribution for q a query

neighborhood of q. One way to define the query neighborhood is as a probability
measure Q(f) over task functions fq(x) where fq(x) gives a ‘soft’ label pq(x|θR)
with respect to the unknown ‘true’ Relevance Model θR for query q. The canon-
ical similarity measure ∆q(x, y) is then the expected loss over Q, given x and y

in the input domain X .

∆q(x, y) =

∫

F

ρ(f(x), f(y))dQ(f) (1)

This measure is uniquely determined by the task function f , the choice of query
neighborhood measure Q and loss function ρ(u, v). We fix the two input domain
elements x and y (words) and integrate over a probability space P of density
functions. These density functions p(α)(·) are those that result from perturba-
tions α on the training data (query), and we assume we have a measure Q(p)
over P that describes the distribution over perturbation densities p(α)(·). We
assume that the density p(α)(·) is defined for all elements of the input domain
X (although it may be zero), so that the integral exists for all pairs (u, v) ∈ X 2

with measure G(u, v|x, y). The general form of the perturbation kernel is then
defined to be an expected distance between x and y:

kq(x, y) =

∫

X 2

∫

P

ρ(p(α)(u), p(α)(v))dG(u, v|x, y)dQ(p). (2)

One natural choice for ρ(x, y) is ρ(x, y) = (
√

x−√
κ)(

√
y−√

κ) for a fixed origin
κ since this converts the integral in Eq. 2 to a form of Hellinger inner product
between vectors {p(α)(x)} and {p(α)(y)} when we set κ = p(x). This choice is
motivated by connections with Fisher kernels [13], but other choices for ρ(x, y)
are open to exploration (as well as other perturbation strategies).

2.2 Approximating the similarity integral

By writing the similarity measure in Eq. 2 as an integral we can bring to bear
general-purpose integration methods. Recall that the basic approach to evaluate
a general integral of the form I =

∫

Θ
f(θ)dµ(θ) on the domain Θ with measure

dµ is to independently sample N points X1, . . .XN in Θ according to some den-

sity function p(x), and then compute the random variable FN = 1
n

∑n

i=1
f(Xi)
p(Xi)

. A

simple importance sampling approximation to Eq. 2 can be derived by assigning
the perturbation densities {p(α)(x)} equal probability, and taking a single-sample
approximation at (x, y) in the X 2 domain, where we assume there is some sam-
pling distribution MLE p̂(x, y) and that words x and y are independent (given



relevance) so that p̂(x, y) = p̂(x) · p̂(y) for MLE p̂(x) over X , giving

kq(x, y) ≈ 1

p̂(x, y)
· 1

n

n
∑

i=1

ρ(p(i)(x), p(i)(y)) =

n
∑

i=1

φ(xi)φ(yi) (3)

so that the feature mapping vector φ(x) has entries

φi(x) =
1√
n

√

p̂(i)(x) −
√

p̂(x)

p̂(x)
. (4)

Typically, p̂(x) represents the distribution obtained using the results from the
initial query, which can be considered a null perturbation.

2.3 Algorithm

The specific steps of the perturbation kernel algorithm are given in Fig. 1. Here
we show the case where we use the language modeling approach to IR, and
estimate a unigram Relevance Model [10] pq(w|R) for a given query q and word
w ∈ V. The resulting distance matrix D, which can be viewed as a graph over
words, is then typically used as one of the inputs to a specific query model
estimation or expansion algorithm.

1. Given initial query q, generate N query perturbations q(i), i = 1 . . . N .
2. Run q to generate a corresponding Relevance Model p̂(w) = p(w|R), and similarly

run each q(i) to generate Relevance Model p(i)(w|R).
3. Compute matrix A, which has one row φ(w) for each word w in vocabulary V,

with the i-th entry φi(w) of the row computed using Eq. 4.
4. Compute the final word-word distance matrix D having entry

dij = gii + gjj − 2gij where gij are the entries of the Gram matrix G = AAT.

Fig. 1: The perturbation kernel algorithm (Relevance Models).

2.4 Visualizing perturbation similarity

Plotting words in feature mapping (perturbation) coordinates shows useful local
and global distance properties. An example is shown in Figure 2. The x-axis
plots log φ1(w) and the y-axis plots log φ2(w) where the feature mapping φ(w)
is given in Eq. 4, and the perturbation strategy uses LOO query variants. Words
with similar relative changes in relevance model p(w|R) to the same query per-
turbations are close in this space. The mutual proximity of the query terms gives
an indication for how phrase-like their behavior is, while the global position of
clusters from the origin is related to their relevance to the query. Here, the
‘japanese wave’ query seeks information about tsunamis; the irrelevant ‘Pearl
Harbor’ noise cluster has been successfully separated from the other terms and
placed in the NE quadrant, while the SE quadrant brings together words much
more closely related to ‘japanese’, such as ‘asian’ and ‘prefecture’.
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(b) Visualization example

Fig. 2: (a) The matrix of probability vectors for a discrete input space (here representing
a word vocabulary). Each column represents the discrete parametric or non-parametric
probability distribution across all words estimated from a particular perturbation of
the training data (i.e. query). The rows φ(xi) give the probability estimates across
all perturbations for a given word xi. (b) Visualization showing how the perturbation
kernel is effective at term clustering for the top 20 expansion terms for TREC topic 491
‘japanese wave’. The first two co-ordinates in perturbation space are plotted as x and
y axes. Terms whose probabilities respond similarly to the same query perturbations
are close in this space. Close words have been jittered apart for clarity.

3 Evaluation for query expansion

Since our focus here is on making expansion algorithms more stable, we introduce
risk-reward tradeoff curves to visualize and compare the risk profile of query
expansion algorithms [5]. The x-axis gives a measure of downside risk or variance
of the expansion algorithm, by counting the net loss of relevant documents for
queries whose initial results are made worse by using the expansion algorithm
(which we call R-Loss). The y-axis gives the actual relative gain or loss from using
expansion, as measured by Mean Average Precision (MAP) gain over all queries.
The eleven points on each curve show how the risk-reward tradeoff changes as
the query model for the initial query is interpolated using parameter α with the
expansion model: from α = 0 at the origin (initial query only) to α = 1.0, where
the query model consists entirely of the expansion model. The curves for six
standard TREC topic sets are shown in Figure 3, with the number of queries in
the topic set given in parentheses.
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(a) TREC 1& 2 (n=150)

Effect of kernel: trec7a
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(b) TREC 7 (n=50)

Effect of kernel: trec8a
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(c) TREC 8 (n=50)

Effect of kernel: wt10g
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(d) wt10g (n=100)

Effect of kernel: robust2004
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(e) Robust 2004 (n=250)

Effect of kernel: gov2
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(f) gov2 (2004-2006, n=150)

Fig. 3: Risk-reward tradeoff curves for six TREC topic sets, showing how the pertur-
bation kernel can improve the risk profile of an expansion algorithm. The solid line is
the curve given by the expansion algorithm using the perturbation kernel. The dashed
line uses the same expansion algorithm and parameter settings, but substitutes a Jac-
card kernel that does not use sensitivity information. Tradeoff curves that are higher
and to the left give a better risk-reward tradeoff. Curves are plotted with points at
α-increments of 0.1, starting with α = 0 at the origin and increasing to α = 1.0.

The risk-aware query expansion framework we use is described in detail in [4].
For a baseline word similarity measure, we wanted a method that could be
calculated from just the initial set of top-retrieved documents. Recall that we
are deriving term association statistics from a set of documents that is already
biased toward the query terms, so that the number of documents not containing



a query term is frequently zero, or close to zero. We chose the Jaccard measure
for this study since it is a simple, widely-known term association measure that
ignores this non-relevant negative information.

For four of the six collections (TREC 7, TREC 8, wt10g, and gov2) the
perturbation kernel improved the risk profile of the query expansion algorithm,
particularly in the typical operational zone from α = 0 to α = 0.5. At a setting
of α = 0.5, the improvements are largest for TREC 8 and gov2. For TREC 8,
the perturbation kernel gives a MAP gain of 14.5% with R-Loss of 262, while
the Jaccard kernel gives a MAP gain of 8.68% with R-Loss of 307. For the gov2
collection, the perturbation kernel MAP gain is 9.78% with R-Loss of 2555, while
the Jaccard kernel has MAP gain of 8.13% with R-Loss of 2605. For two of the
collections (TREC 1&2 and Robust 2004), the performance of the two kernels is
almost identical: TREC 1&2 shows only a tiny advantage for the perturbation
kernel for α ≥ 0.6. We found that LOO perturbation had a small but consistently
dominance in performance over TAT for all experiments and so we report only
LOO experiments here. The results suggest that the perturbation kernel gives
the potential for useful gains on some collections, with little downside risk.

4 Related Work

Recent research on kernels has developed a broad family based on inner products
over probability distributions. When we assign each input point xi a probability
distribution over input space, we can integrate over input space – in the discrete
case, the columns of A shown in Figure 2a, instead of the rows of A. This
type of similarity measure includes probability product kernels [8]; the leave-
one-out (LOO) kernel [13]; and marginalized kernels [14]. Fisher kernels [7], a
special case of marginalized kernel, compare the sufficient statistics of generative
models and are well-suited to query model problems, because they can exploit
unlabeled data: the similarity of two data items is not only a function of the
items themselves but also their context. There are also interesting connections
to information diffusion kernels [9] and statistical translation models such as
those developed by Dillon et al. [6], where word similarity is defined in terms
of the probability that two words have the same context.

In multi-task learning, in addition to Baxter [3], Ando et al. used a multi-task
learning framework [2] in a preliminary TREC genomics study [1] where they
noted the connection between multi-task learning and using auxiliary queries.
For Web retrieval, Sahami and Heilman [12] proposed a kernel for comparing
text snippets using the inner product of the query expansions that result by
considering each text snippet as a Web query. None of these methods, however,
explored the use of sensitivity information or framed the similarity problem in
terms of multi-task learning to improve stability of the ‘client’ algorithm.



5 Conclusions

The perturbation kernel is a useful tool for comparing the similarity of elements
in a domain X , such as words, when we have a probability distribution over X
whose functional form may be unknown and/or highly complex and which is
estimated based on a very small training set over elements from X . Similarity
between elements is induced with respect to small perturbations in the training
data, so that each input point is identified with multiple probability densities
evaluated at that point that are integrated over probability density space. We
showed how casting word similarity estimation as a multi-task learning problem
of this type can exploit knowledge from multiple ‘tasks’ in the form of query
perturbations. Our initial evaluation suggests that the perturbation kernel is a
more stable replacement for similar baseline measures that ignore sensitivity.
More generally, it represents a step in a fruitful research direction: exploring
how information retrieval algorithms can exploit higher-level risk or variance
information to improve their performance [5]. Further improvements may be
possible with more sophisticated perturbation strategies for the query, such as
those learned from Web query logs or user profiles.
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