Estimating Robust Query Models
with Convex Optimization

Kevyn Callins-Thompson*
Microsoft Research
1 Microsoft Way
Redmond, WA U.S.A. 98052
kevynct @r crosoft. com

Abstract

Query expansion is a long-studied approach for improvindereal effectiveness
by enhancing the user’s original query with additional rethwords. Current
algorithms for automatic query expansion can often impn@ateeval accuracy
on average, but are nobbust: that is, they are highly unstable and have poor
worst-case performance for individual queries. To addtessproblem, we in-
troduce a novel formulation of query expansion as a convéxngation problem
over a word graph. The model combines initial weights fromaadiine feed-
back algorithm with edge weights based on word similarity] antegrates simple
constraints to enforce set-based criteria such as asplectdea aspect coverage,
and term centrality. Results across multiple standardct@itctions show consis-
tent and significant reductions in the number and magnitfidgpansion failures,
while retaining the strong positive gains of the baseligoathm. Our approach
does not assume a particular retrieval model, making itieplple to a broad class
of existing expansion algorithms.

1 Introduction

A major goal of current information retrieval research isdevelop algorithms that can improve
retrieval effectiveness by inferring a more complete pietof the user’s information need, beyond
that provided by the user’s query text.qiery model captures a richer representation of the context
and goals of a particular information need. For exampleh@ language modeling approach to
retrieval [9], a simple query model may be a unigram languagdel, with higher probability given

to terms related to the query text. Once estimated, a quedehmay be used for such tasks as
guery expansion, suggesting alternate query terms to e aispersonalizing search results [11].
In this paper, we focus on the problem of automatically infeya query model from the top-ranked
documents obtained from an initial query. This task is knasmpseudo-relevance feedback or blind
feedback, because we do not assume any direct input fronmsthveother than the initial query text.
Despite decades of research, even state-of-the-art mefbpohferring query models — and in par-
ticular, pseudo-relevance feedback — still suffer from sa@erious drawbacks. First, past research
efforts have focused largely on achieving good average®pegnce, without regard for trstability

of individual retrieval results. The result is that currentdels are highly unstable and have bad
worst-case performance for individual queries. This is sigmificant reason that Web search en-
gines still make little or no use of automatic feedback méghan addition, current methods do not
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adequately capture the relationships or tradeoffs betwespeting objectives, such as maximizing
the expected relevance weights of selected words versuskiseof those choices. This is turn leads
to several problems.

First, when term risk is ignored, the result will be lessable algorithms for query models, as we
show in Section 3. Second, selection of expansion termspisally done in a greedy fashion by
rank or score, which ignores the properties of the teasa set and leads to the problem of aspect
imbalance, a major source of retrieval failures [2]. Thifelv existing expansion algorithms can
operateselectively; that is, automatically detect when a query is risky to expamd then avoid or
reduce expansion in such cases. The few algorithms we hawdlsa do attempt selective expansion
are not especially effective, and rely on sometimes compéaxistics that are integrated in a way
that is not easy to untangle, modify or refine. Finally, foriaeg task there may be additional
factors that must be constrained, such as the computatosalbf sending many expansion terms
to the search engine. To our knowledge such situations drdeamalled by any current query model
estimation methods in a principled way.

To remedy these problems, we need a better theoretical Wvarkdor query model estimation: one
that incorporates both risk and reward data about terms,dii@ct risky situations and expands
selectively, that can incorporate arbitrary additionadkdem constraints such as a computational
budget, and has fast practical implementations.

Our solution is to develop a novel formulation of query moegiimation as a convex optimization
problem [1], by casting the problem in terms of constrainegpd labeling. Informally, we seek
guery models that use a set of terms with high expected metevaut low expected risk. This idea
has close connections with models of risk in portfolio optiation [7]. An optimization approach
frees us from the need to provide a closed-form formula fonteeighting. Instead, we specify a
(convex) objective function and a set of constraints thav@dgguery model should satisfy, letting
the solver do the work of searching the space of feasibleyguedels. This approach gives a natural
way to perform selective expansion: if there is no feasiblaton to the optimization problem, we
do not attempt to expand the original query. ore generdllgivies a very flexible framework for
integrating different criteria for expansion as optimieatconstraints or objectives.

Our risk framework consists of two key parts. First, we seekitnimize an objective function that
consists of two criteria: term relevance, and term risk.nTeisk in turn has two subcomponents:
theindividual risk of a term, and theonditional risk of choosing one term given we have already
chosen another. Second, we specify constraints on whatl’gets of terms should look like. These
constraints are chosen to address traditional reasonsiéoy @rift. With these two parts, we obtain
a simple convex program for solving for the relative termgves in a query model.

2 Theoretical model

Our aim in this section is to develop a constrained optinmaprogram to find stable, effective
qguery models. Typically, our optimization will embody a ragadeoff between wanting to use
evidence that has strong expected relevance, such as emaasns with high relevance model
weights, and the risk or confidence in using that evidence.b®ggn by describing the objectives
and constraints over term sets that might be of interestsimating query models. We then describe
a set of (sometimes competing) constraints whose feagbleffects query models that are likely to
be effective and reliable. Finally, we put all these togetbdéorm the convex optimization problem.

2.1 Query model estimation as graph labeling

We can gain some insight into the problem of query model edton by viewing the process of
building a query as a two-clasabeling problem over terms. Given a vocabuldry for each term

t € V we decide to either add termto the query (assign label ‘1’ to the term), or to leave it out
(assign label ‘0’). The initial query terms are given a lab&ll’. Our goal is to find a function
f:V —{0,1} that classifies the finite sét of || = K terms, choosing one of the two labels for
each term. The terms are typically related, so that the pseérsimilarity (i, j) between any two
termsw;, w; is represented by the weight of the edge conneatingndw; in the undirected graph
G = (V, E), whereE is the set of all edges. The cost functibfif) captures our displeasure for a
given f, according to how badly the following two criteria are givienthe labeling produced by.



Figure 1: Query model estimation as a constrained grapHitegproblem using two labels (rele-
vant, non-relevant) on a graph of pairwise term relationse $quare nodes X, Y, and Z represent
query terms, and circular nodes represent potential expansrms. Dark nodes represent terms
with high estimated label weights that are likely to be adttethe initial query. Additional con-
straints can select sets of terms having desirable preseftir stable expansion, such as a bias
toward relevant labels related to multiple query termsh(ig

e The coste;.; gives the cost of labeling term with labelk € {0,1}.

e The costo; ; - d(f(3), f(j)) gives the penalty for assigning labelsi) and f(j) to items
i andj when their similarity iso; ;. The functiond(u, v) is a metric that is the same for
all edges. Typically, similar items are expected to havdlamabels and thus a penalty is
assigned to the degree this expectation is violated.

For this study, we assume a very simple metric in whi¢h j) = 1 if ¢ # j and0 otherwise. In
a probabilistic setting, finding the most probable labeltag be viewed as a form of maximum a
posteriori (MAP) estimation over the Markov random field defi by the term graph.
Although this problem is NP-hard for arbitrary configuraisy various approximation algorithms
exist that run in polynomial time by relaxing the constrainHere we relax the condition that the
labels be integers 0,1} and allow real values if0, 1]. A review of relaxations for the more
general metric labeling problem is given by Ravikumar antfdrgy [10]. The basic relaxation we
useis

maximize ch;jms;j + Z Os,jst kTs;j Ttk

7 s,t;5,k

subjectto Y ;=1 )
i

ngs;j S 1.

The variabler,,; denotes the assignment value of lapébr term s. Our method obtains its initial
assignment costs,.; from a baseline feedback method, given an observed quergaresponding
set of query-ranked documents. For our baseline expanséthad, we use the strong default feed-
back algorithm included in Indri 2.2 based on Lavrenko’sévahce Model [5]. Further details are
available in [4].

In the next section, we discuss how to specify values:fgrando, ;.. » that make sense for query
model estimation. For a two-label problem where {0,1}, the values ofz; for one label com-
pletely determine the values for the other, since they muist ® 1, so it suffices to optimize over
only thez;,;, and for simplicity we simply refer te; instead ofr;,;.

Our goal is to find a set of weights = (z1,...,zx) where eachs; corresponds to the weight
in the final query model of ternw; and thus is the relative value of each word in the expanded
query. The graph labeling formulation may be interpretec@sbining two natural objectives:
the first maximizes the expected relevance of the selectaeasteand the second minimizes the
risk associated with the selection. We now describe eachexfet in more detail, followed by a
description of additional set-based constraints that aedulifor query expansion.



2.2 Relevance objectives

Given an initial set of term weights from a baseline expamsi@thod: = (¢, . . ., ¢k ) theexpected
relevance over the vocabulary” of a solutionz is given by the weighted sum- = = 3, cpzp.
Essentially, maximizing expected relevance biases thevaat’ labels toward those words with the
highestc; values. Other relevance objective functions are also plessas long as they are convex.
For example, ifc andz represent probability distributions over terms, then waldoeplacec - «
with K'L(c||x) as an objective since KL-divergence is also convexamdz.
The initial assignment costs (label valuesjan be set using a number of methods depending on
how scores from the baseline expansion model are normalibedhe case of Indri’'s language
model-based expansion, we are given estimates of the RelewWodelp(w|R) over the highest-
rankingk documents. We can also estimate a non-relevance medel N) using the collection to
approximate non-relevant documents, or usingltweest-ranked & documents out of the top 1000
retrieved by the initial query). To setc,.;, we first compute(R | w) for each wordw via Bayes
Theorem,

p(w|R) @
w|R) + p(w|N)
assuming(R) = p(N) = 1/2. Using the notation(R|Q) andp(R|Q) to denote our belief that

any query word or non-query word respectively should habella, the initial expected label value
is then

p(Rlw) = o

Cl:{ﬂRQ%Hl—MMQDmUW%)seQ
T WRIQ) - p(Rlw,) s¢Q

for the ‘relevant’ label. We usg(R|Q) = 0.75 andp(R|Q) = 0.5. Since the label values must sum
to one, for binary labels we havg.) = 1 — ¢4.1.

®3)

2.3 Risk objectives

Optimizing for expected term relevance only considers angedsion of the problem. A second
critical objective is minimizing the risk associated withparticular term labeling. We adapt an
informal definition of risk here in which the variance of thepected relevance is a proxy for un-
certainty, encoded in the matr with entriess;;. Using a betting analogy, the weights= {x;}
represent wagers on the utility of the query model terms sRyristrategy would place all bets on the
single term with highest relevance score. A lower-risktsgg would distribute bets among terms
that had both a large estimated relevance and low redungeanogver all aspects of the query.

Conditional term risk. First, we consider theonditional risk ¢;; between pairs of terms; and
w;. To quantify conditional risk, we measure the redundancghafosing wordw; given thatw;
has already been selected. This relation is expressed sitigpa symmetric similarity measure
o(w;,w;) betweenw,; andw,, which is rescaled into a distance-like meastfe;, w,;) with the
formula

Oij = d(wla wj) = ’yexp(—p ’ J(wia w])) (4)
The quantitiesy and p are scaling constants that depend on the output scate aifid the choice
of ~ also controls the relative importance of individual vs. dibional term risk. In this study, our
o(w;,w;) measure is based on term associations ove? the contingency table of term document
counts. For this experiment we used the Jaccard coeffidignire work will examine others.

Individual risk. We say that a term related to multiple query terms exhieits centrality. Previ-
ous work has shown that central terms are more likely to besraffective for expansion than terms
related to few query terms [3] [12]. We use term centralitgt@ntify a term’s individual risk, and
define it for a termw; in terms of the vectod; of all similarities ofw; with all query terms. The
covariance matrix: then has diagonal entries

o = dill3 = Y d?*(wi,wg) (5)

we€Q

'We use the symbolR and N to represent relevance and non-relevance respectively.
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Figure 2: Three complementary criteria for expansion temigitting on a graph of candidate terms,
and two query term andY. The aspect balance constraint (left) prefers sets of esiparterms

that balance the representation’fandY. The aspect coverage constraint (center) increases recall
by allowing more expansion candidates within a distancesttold of each term. Term centering
(right) prefers terms near the center of the graph, and thur tiikely to be related to both terms,
with minimum variation in the distances 6 andY’.

Other definitions of centrality are certainly possible,.edgpending on generative assumptions for
term distributions.

We can now combine relevance and risk into a single objectivd control the tradeoff with a single
parameter;, by minimizing the function

L(z) = —c'z + ngZm. (6)

If 3 is estimated from term co-occurrence data in the top-retdedocuments, then the condition
to minimizez” Y2 also encodes the fact that we want to select expansion téahsute not all in
the same co-occurrence cluster. Rather, we prefer a setpaineion terms that are more diverse,
covering a larger range of potential topics.

2.4 Set-based constraints

One limitation of current query model estimation methodthat they typically make greedy term-
by-term decisions using a threshold, without considerireggualities of the set of terms as a whole.
A one-dimensional greedy selection by term score, espgda@la small number of terms, has the
risk of emphasizing terms related to one aspect and not®thgmis in turn increases the risk of
query drift after expansion. We now define several usefustraints on query model termaspect
balance, aspect coverage, andquery term support. Figure 2 gives graphical examples of aspect
balance, aspect coverage, and the term centrality obgectiv

Aspect balance. We make the simplistic assumption that each of a query’'sserpresents a
separate and unique aspect of the user’s information need:r¥dte the matrixd from the vectors
or(w;) for each query terngy, by settingAy; = ¢ (w;) = o In effect, Az gives the projection
of the solution modet on each query term’s feature vecty. We define the requirement thabe
in balance to be that the vectdr: be element-wise close to the mean vegtaf the ¢y, within a
tolerance(,,, which we denote (with some flexibility in notation) by

Az = i+ (. (7

To demand an exact solution, we ggt= 0. In reality, some slack is desirable for slightly better
results and so we use a small positive value(fpsuch asl.0.

Query term support. Another important constraint is that the set of initial guéerms@ be
predicted by the solution labeling. We express this mathieadty by requiring that the the weights
for the ‘relevant’ label on the query terms.; lie in aranged; < x; < u; and in particular be above
the threshold; for z; € Q. Currentlyl; is set to a default value @95 for all query terms, and zero
for all other termsu; is set to 1.0 for all terms. Term-specific values fomay also be desirable to
reflect the rarity or ambiguity of individual query terms.



minimize —clz + ngEa: Relevance, term centrality & risk 9)

subjectto Az < pu+ ¢, Aspect balance (10)
gtz > ¢, w; € Q Aspect coverage (11)
i <a; <wy, i=1,....K Query term support, positivity (12)

Figure 3: The basic constrained quadratic program QMOD &meguery model estimation.

Aspect coverage. One of the strengths of query expansion is its potential dbrisg the vocabu-
lary mismatch problem by finding different words to exprdss $ame information need. Therefore,
we can also require a minimal level afpect coverage. That is, we may require more than just that
terms are balanced evenly among all query terms: we may tang ¢he absolute level of support
that exists. For example, suppose our information source$egdback terms, and we have two
possible term weightings that are otherwise feasible mwiat The first weighting has only enough
terms selected to give a minimal non-zero but even coveongjltaspects. The second weighting
scheme has three times as many terms, but also gives an exeningo Assuming no conflicting
constraints such as maximum query length, we may prefetb@s weighting because it increases
the chance we find the right alternate words for the quengmtally improving recall.

We denote the set of distances to neighboring words of qeenyd; by the vector;. The projection
g;"x gives us the aspect coverage, or how well the words selegtélebsolutionz ‘cover’ term

¢;- The more expansion terms negithat are given higher weights, the larger this value becomes
When only the query term is covered, the valugggfz = ;. We want the aspect coverage for
each of the vectorg; to exceed a thresholg, and this is expressed by the constraint

gtz > (. 8)

Putting together the relevance and risk objectives, angtcaining by the set properties, results in
the following complete quadratic program for query modéinaation, which we call QMOD and is
shown in Figure 3. The role of each constraint is given irdsal

3 Evaluation

In this section we summarize the effectiveness of using thEDQ convex programs to estimate
guery models and examine how well the QMOD feasible set ibredied to the empirical risk of
expansion. For space reasons we are unable to include aeengehsitivity analysis of the effect
of the various constraints. The best risk-reward tradeoffénerally obtained with a strong query
support constraint( near 1.0) and moderate balance between individual and thomali term risk.
We used the following default values for the control pararets = 1.0, v = 0.75, ¢, = 1.0,

¢; = 0.1, u; = 1.0, andl; = 0.95 for query terms and; = 0 for non-query terms.

3.1 Robustnessof Model Estimation

In this section we evaluate the robustness of the query rmadtimated using the convex program
in Fig. 3 over several TREC collections. We created a histagof MAP improvement across sets
of topics. This is a fine-grained look that shows the distighuof gain or loss in MAP for a given
feedback method. Using these histograms we can distingeisteen two systems that might have
the same number of failures, but which help or hurt queriesday different magnitudes. The
number of queries helped or hurt by expansion is shown, birnethe loss or gain in average
precision by using feedback. The baseline feedback herénslas2.2 (Modified Relevance Model
with stoplist) [8]. The robustness histogram with resulbsnbined for all collections is shown in
Fig. 4. Both algorithms achieve the same gain in averagagioacover all collections (15%). Yet
considering the expansion failures whose loss in averageigion is more than 10%, the robust
version hurts more than 60% fewer queries.
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Figure 4. Comparison of expansion robustness for four TRE@ctions combined (TREC 1&2,
TREC 7, TREC 8, wtl0g). The histograms show counts of quehased by percent change
in average precision. The dark bars show robust expansidarpgnce using the QMOD convex
program with default control parameters. The light barsishaseline expansion performance using
term relevance weights only. Both methods improve averageigion by an average of 15%, but
the robust version hurts significantly fewer queries, ad@vi by the greatly reduced tail on the left
histogram (queries hurt).

3.2 Calibration of Feasible Set

If the constraints of a convex program are well-designedsfable query expansion, the odds of an
infeasible solution should be much greater than 50% forigaehat are risky. In those cases, the
algorithm will not attempt to enhance the query. Converstlg odds of finding a feasible query
model should ideally increase for thoese queries that are amaenable to expansion. Overall, 17%
of all queries had infeasible programs. We binned thesei@giaccording to the actual gain or loss
that would have been achieved with the baseline expansaymaiized by the original number of
gueries appearing in each bin when the (non-selective)ihasexpansion is used. This gives the
log-odds of reverting to the original query for any givenrghiss level.

The results are shown in in Figure 5. As predicted, the QMQOdo@hm is more likely to decide
infeasibility for the high-risk zones at the extreme endthefscale. Furthermore, the odds of finding
a feasible solution do indeed increase directly with thei@dbenefits of using expansion, up to a
point where we reach an average precision gain of 75% ancthigt this point, such high-reward
gueries are considered high risk by the algorithm, and tkeditiood of reverting to the original
query increases dramatically again. This analysis maless that the selective expansion behavior
of the convex algorithm is well-calibrated to the true exgian benefit.

4 Conclusions

We have presented a new research approach to query modehtsti, showing how to adapt convex
optimization methods to the problem by casting it as comstthgraph labeling. By integrating
relevance and risk objectives with additional constraiotselectively reduce expansion for the most
risky queries, our approach is able to significantly redde= downside risk of a strong baseline
algorithm while retaining its strong gains in average psexi.

Our expansion framework is quite general and easily accamesdfurther extensions and refine-
ments. For example, similar to methods used for portfolitrjzation [6] we can assign a compu-
tational cost to each term having non-zero weight, and addétconstraints to prefer more efficient
expansions. In addition, sensitivity analysis of the caists is likely provide useful information
for active learning: interesting extensions to semi-suiged learning are possible to incorporate
additional observations such as relevance feedback frenusler. Finally, there are a number of
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Figure 5: The log-odds of reverting to the original query assult of selective expansion. Queries
are binned by the percent change in average precision ifibasxpansion were used. Columns
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higher-level control parameters and it would be intergstm determine the optimal settings. The
values we use have not been extensively tuned, so that fynginiermance gains may be possible.
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