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Abstract—We introduce confidence-weighted (CW) online
learning algorithms for robust, cost-sensitive classification. Our
work extends the original confidence-weighted optimization
framework in two important directions. First, we show how
the original value at risk (VaR) probabilistic constraint in CW
algorithms can be generalized to a worst-case conditional value
at risk (CVaR) constraint for more robust learning from cost-
weighted examples. Second, we show how to reduce adversarial
feature noise, which can be useful in fraud detection scenarios,
by reframing the optimization problem in terms of maximum a
posteriori estimation. The resulting optimization problems can
be solved efficiently. Experiments on real-world and synthetic
datasets show that our robust, cost-sensitive extensions consis-
tently reduce the cost incurred in both online and batch learning
settings. We also demonstrate a correspondence between the
VaR and CVaR constraints used for classification and uncertainty
sets used in robust optimization, leading toward a rich family of
potential extensions to CW algorithms.

I. INTRODUCTION

Online learning algorithms are an appealing choice for
many classification problems, given their ability to handle large
datasets efficiently and adapt to evolving patterns over time.
Furthermore, many important classification scenarios, such as
fraud detection and medical diagnosis, are cost-sensitive, e.g.
where the cost of a false negative is much higher than a false
positive. Traditional classifiers, however, are not sensitive to
this asymmetry and typically make poor decisions in cost-
sensitive situations, resulting in higher overall costs for users or
systems. In particular, confidence weighted (CW) linear classi-
fication is a recently introduced online learning algorithm that
achieves excellent performance on a variety of classification
tasks [1], [2], but in its standard form does not handle cost-
sensitive scenarios, or tasks where more sensitive measures of
misclassification risk are important.

In this paper, we introduce a family of CW classification
algorithms that support robust, cost-sensitive learning. To do
this, we extend the standard online CW linear classification
algorithm in two important directions. First, we show how to
reformulate the value at risk (VaR) constraint in the original
CW optimization problem to support a more general worst case
conditional value at risk (CVaR) constraint. This constraint
can be customized by the user to achieve the appropriate
level of cost-sensitivity for the task at hand, and the resulting
optimization problem can be solved efficiently. Second, we
extend our algorithm to be robust to noise injected by an
adversary into the input data. As part of our derivation, we
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show the correspondence between these VaR and CVaR con-
straints, and uncertainty sets used in robust optimization: a
connection which enables the derivation of further extensions
to CW algorithms. We validate our algorithm experimentally
on real and synthetic data.

II. RELATED WORK

There has been a great deal of work in the machine
learning community on cost-sensitive learning: one paper that
is relevant to our approach is [3], which shows that min-
imizing the cost-sensitive generalization error is equivalent
to minimizing the weighted error on an observed sample,
where the weights are proportional to the costs present in
the sample. These weights may be integrated into a learning
algorithm in a white box fashion, in which the internals of
the algorithm are modified to accomodate the cost, or in a
black box fashion, in which the algorithm is not modified.
In this paper, our goal is to propose basic changes to the
underlying objective of the standard CW algorithm, including
parameterized generalizations, and so we use a white-box
approach.

In portfolio theory there has, naturally, been much work on
minimizing the risk of loss. The seminal paper of [4] proposed
the mean/variance approach: a portfolio appropriately trading-
off the expected return on the investments and the overall risk
of loss is sought, with risk in this context being defined as
the variance of the returns. [5] extend algorithms for online
learning with expert advice to make use of the mean/variance
approach. [6] study various aspects of a relatively more recent
and sensitive measure of risk, known as conditional value at
risk (CVaR) (or expected shortfall); this risk measure is a
central part of our algorithm objective later in this paper.

These risk measures have, in turn, recently attracted the
attention of machine learning researchers. To our knowledge
the most similar related work to ours is that of [7], who
adapted the perceptron to make use of CVaR for the purpose of
cost-sensitive learning; Kashima’s approach shares our high-
level goal of robust, cost-sensitive classification, but uses a
very different learning mechanism. While our approach uses
a white-box, online, confidence-weighted learning framework,
Kashima used a black-box, meta-learning framework that
wraps existing batch-oriented classifiers.

The CVaR-based learning objective has also arisen in the
work of [8], who showed that the E-v support vector machine
(SVM) [9] can be seen as minimizing a CVaR-based criterion;



they used this interpretation to provide a justification for the
positive empirical performance of the E-v SVM. In earlier
work, [10] introduced the minimax probability machine, which
implemented the value at risk measure (VaR). [11] derive a
variant of the CW algorithm for the setting of learning to trade.
Additionally, [12] introduce a variant of the CW algorithm
known as adaptive regularization of weight vectors (AROW):
we do not consider this algorithm in our paper, although our
methods could be extended to it as well.

III. ROBUST COST-SENSITIVE CONFIDENCE-WEIGHTED
LINEAR CLASSIFICATION

In this section, we derive a robust, cost-sensitive general-
ization of the standard CW algorithm.

We begin by reviewing the standard CW algorithm. In con-
trast to most algorithms for online learning, the CW algorithm
maintains a Gaussian distribution, with mean p and covariance
3., over linear classifiers. On each round ¢t € {1,...,T}, the
algorithm receives an example, x;, predicts its label by com-
puting sgn(u?'x;), and then updates its estimates of (pu,X)
by solving the following optimization problem:

minimize DrrWN (1, 2) (| N (pe-1,Z4-1)) (1)
subject to P(ythxt >0)>n. )

Here, Dy, is the K-L divergence, (u,3) are the parameter
estimates that we want to find on round ¢, (pt;—1,X;—1) are
the parameter estimates at the end of round ¢ —1, ¥, is the label
of example x;, w is a classifier drawn from N (u, ), P is a
distribution over misclassifications, and 7 is the user-specified
desired probability of a correct classification.

Eq. 1 is essentially a regularization term: it forces one to
find a solution, (u,X), on round ¢, that does not stray too
much from previous solutions. Eq. 2, on the other hand, can
be thought of as a data fit term: it constrains the solution to
classify the current example, (x¢,y:), correctly, confidently,
and with high probability.

The quantity y,w’x, in Eq. 2 is the margin, which
quantifies the degree of misclassification; we denote the margin
as M;. In cost-sensitive scenarios, one may pay a price, ¢ > 0,
for these misclassifications; more generally, the price may be a
function of the inputs, ¢(x) [3]. Consequently, one may require
that the learning algorithm suffer the loss ¢(x)M;, instead of
just Mt.

A. Example-level Conditional Value at Risk Constraint

Before we present our method for controlling the costs
of misclassifications in the CW algorithm, we first discuss
some techniques for minimizing potential losses that are used
in portfolio optimization. In portfolio optimization, the goal
is to find a portfolio striking an appropriate balance between
the expected return on the investments and the overall risk of
loss; a portfolio, z, can be defined as a point on the (D — 1)-
dimensional probability simplex: z & Rf, 25:1 zqg = 1,
0 < zg <1, Vd, with each component, z4, representing the
degree of investment in an asset. The portfolio loss, R, can,
in general, be defined as a function of the portfolio and the
random vector representing the returns, r: R = f(z, ).

UIn this paper, we treat losses as negative numbers.

Many risk measures exist in portfolio theory; one is value
at risk (VaR) [13], which is defined as the loss below which
the worst €% of losses lie, where € = 1 —1. € is usually set to a
small number, such as 0.05. This is equivalent to the e-quantile
of R, which can be written as

VaR((R) = mlin P(R<Il)<e

where P is the distribution over losses. If we rewrite Eq. 2
as P(M; < 0) <, then we can see that this is equivalent to
requiring VaR.(M;) = 0.

An alternative risk measure is conditional value at risk
(CVaR), which is defined as the mean of the worst €% of
losses; this is equivalent to the mean of the e-tail distribution
of R [14], which can be written as

CVaR.(R) = Eg[R<1"]

= Bl - )]

where 7* = VaR(R), and (z); = max(0, z). Unlike VaR,
CVaR is sensitive to the shape of the distribution tail, and thus
can recognize scenarios where the worst losses are skewed
toward catastrophic outcomes. This can be a useful property
when trying to control costs [6].

CVaR can be computed by a Monte Carlo approximation
for arbitrary distributions over losses, P [6]; however, this
approach can be problematic in settings in which a rapid
response is essential, such as online learning. If we instead
make some weak assumptions on the nature of P, then Prop.
2 in [15] allows us to compute CVaR in closed form, under
the assumption of a Gaussian distribution over losses, and
also in the worst case, under the increasingly non-commital
assumptions of a symmetric, symmetric and unimodal, and an
arbitrary distribution, known only up to the first and second
moments.

We replace Eq. 2 in the standard CW optimization problem
with the cost-sensitive margin c(x;)M;, and a CVaR risk
measure over this random variable; this leads to the following
optimization problem:

minigice  Dico (N 3) || Nt 1,8 1)) O
subject to CVaR(c(x¢) M) > 0. %)

Next, we solve this problem under the assumption that the
model parameters are modeled with a Gaussian distribution,
with the distribution of cost-sensitive margin losses also be-
ing Gaussian; other solutions under alternative distributional
assumptions for the margin loss, such as might result from the
nature of the data distribution, follow similarly by using the
results from Table I as described later.

Eq. 3 is the K-L divergence between two Gaussians, which
can be written as
1 det Zt_1
Z(log( —Zt=1
2108 gers
(i1 — )" 1 (1 — p) = D)

) + trace(2; 4, X) + (5

where D is the dimensionality of p. Let us denote the mean of
the margin as M; = ytuTxt, and its variance as v; = xtTExt.



Applying Prop. 2, Eq. 22 in [15], with f > 0, p, = c(x;) M,
and o, = /v;, allows us to write Eq. 4 as
1 1 _

———exp(—= (711 —€))H)o? — e(x)M; <0 6

T P57 (1= )0k —elx)M <0 ©
where ®~1(-) is the standard normal inverse cumulative dis-
tribution function; we have squared o, in Eq. 6 in order to
make this constraint convex in 3.

Putting Egs. 5 and 6 together yields the following revised
convex optimization problem:

1 det 3;_
miﬂigim §(log(ﬁ) + trace(X; 1, 2) +
(e-1 = 1) Be1(pe-r — p) = D)
subject to wevr — c(x)Mp—1 <0 @)

where we have defined w, =

L exp(—3(871(1 - 0))?).
The Lagrangian of Eq. 7 is

1 det X,

L BN = Flog(— =) + trace(S; !, 5) +
(pe—1 — H)thﬂ(ﬂpl —p)— D)+
AMwevy — e(xy) My). 8)

Solving Eq. 8 for the optimal p yields
B= p—1 + Ae(Xe) Y i 1X¢. ©)
Solving Eq. 8 for the optimal 37! yields
»l= 27_11 + ZAwextXtT

which can be inverted using the Sherman-Morrison-Woodbury
identity:

2w,
14+ 2 wevi_q
Plugging Eqgs. 9 and 10 back into Eq. 8, setting this quantity

equal to zero, rearranging, and omitting terms without a
dependence on A yields

Y=3 - % XtTEtfb (10

2w,

c(x¢) M1 + c(xt)Q)\vt_l = WVp_1 — wevf_lHi (11

2AWeVi—1

which is quadratic in A. Complementary slackness implies A >
0, and hence the optimal A is

A = max(0,v)

where ¢ is the positive root of Eq. 11 equal to

p= 1

dwec(Xt)ve—1

V/(elxe) + 2w M, _1)? — 8 (c(xe) Myt — wevr—1)).

(12)

(—(c(x¢) + 2weMy—1) +

To summarize, the solution to the optimization problem in
Egs. 3, 4 can be obtained by Egs. 12, 9, and 10. If we make
alternate assumptions on the margin distribution, then only w.
changes; Table I presents the value of w, for different margin
distribution assumptions, based on results from [15].

This completes our derivation of a CVaR-based chance
constraint for cost-sensitive CW classification. In the next
section, we give an additional refinement whose goal is to
increase robustness of the classifier by estimating the empirical
distribution over example costs in the data.

B. Cost-Sensitive Tolerance for Misclassification

Fig. 1 plots the value of the Lagrange multiplier A com-
puted by Eq. 12 as a function of the desired misclassification
probability, €, and the example cost level, ¢(x), under the
assumption of a Gaussian margin distribution; for simplicity,
we set My = 0 and v; = 1. Across a variety of cost levels,
we can see that smaller values of € lead to larger values of ),
which may yield overly aggressive updates to g and 3.

0.4 0.6 0.8

€
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Figure 1.  Sensitivity of the Lagrange multiplier A as a function of the
desired misclassification probability, €, across several different example cost
levels, ¢(x), showing one curve per choice of ¢ = 0.5,...,10, under the
assumption of a Gaussian margin distribution.

In general, we want to ensure that the desired probability of
misclassification ¢ is connected to the expected empirical cost
of misclassification: if an example is very costly compared to
the overall population, tolerance for misclassification should
be low (small €), whereas average-cost examples may allow
higher tolerance for misclassification (higher €). To implement
this idea, we introduce a history buffer B, for estimating the
empirical distribution over example costs.

With this empirical distribution, we can identify when an
individual example is relatively high cost, or not, by making ¢
depend on this relative cost. In this study we define a simple
two-level function defined by Eq. 13. The result is that to
correct the most costly mistakes, we only make updates to A,
1, and X using a small desired misclassification probability o«
for examples with the highest costs, c¢(x). We use a second,
larger, allowed misclassification probability, 5, to make up-
dates on examples with lower costs. More general definitions
of Eq. 13 are certainly possible and a subject of future work.
In our current algorithm below, as learning progresses, we
accrue the example costs, c¢(x;), in the buffer, B;; we then
compute ¢* = CVaR.,(B;) over the buffer, where 7 specifies
the percentile of the cost distribution that is to be considered
highest relative cost. The desired misclassification probability
€ is then as follows:

if ¢* < e(xy)

«
€= { I5) otherwise. 13)



Table 1.

VALUES OF UPDATE FACTOR we FOR VARIOUS MARGIN DISTRIBUTION ASSUMPTIONS.

MARGIN DISTRIBUTION ASSUMPTION We
GAUSSIAN 1/ev2m -exp(—3 (@' (1 —€))?)
SYMMETRIC 1/v2e FOR € € (0,1/2]; 1/v/2¢- /T — e FOR € € [1/2,1)
SYMMETRIC AND UNIMODAL 2/3\/e FOR € € (0,1/3]; V/3(1 — €) FOR € € [1/3,2/3]; 1/3¢ - 24/T — e FOR € € [2/3,1)
ARBITRARY V1—¢/\/e€

We then update A, u, and X, based on we, as in Egs. 12, 9,
and 10.

We refer to the algorithm making use of the update rules
in Egs. 13, 12, 9, and 10 as CW-CVaR; this algorithm is
summarized in Alg. 1.

Algorithm 1 CW-CVaR.

Input: desired misclassification probability for highest-cost
examples, «; for lowest-cost examples, [; cost-sensitive
misclassification tolerance 7.
Initialize: buffer By = &; classifier parameters, po = O,
So=1
for t =1 to T rounds do

receive (x;, Y, c(x¢)), yr € {—1,1}

add c¢(x;) to buffer: By = B;_1 U c(xy)

compute ¢* = CVaR(B;)

compute € by Eq. 13, using ¢*

predict g, = sgn(pi_ ;%)

update:

e compute A by Eq. 12, using w,

o = pyp—1 + Ac(x)y Be—1%¢ (Eq. 9)

o I =3 - DXy, X B (Eg. 10)
end for

C. Sensitivity of Classifier Updates to Margin Distribution
Assumptions

Fig. 2 plots the value of the Lagrange multiplier A as
a function of the example cost level, ¢(x), and the desired
misclassification probability, €, under different assumptions on
the margin distribution; we again set M; = 0 and v; = 1. We
can see that for high-cost examples, there is little difference
between the value of A\ for the most restrictive distribution
assumption (Gaussian) and the least restrictive (arbitrary).
However, as the cost level decreases, the ratio curves show
a more pronounced difference, especially for lower desired
misclassification probabilities. Thus, we may surmise that
although the updates A, and consequently to p and X, are
sensitive to the margin distribution assumption, this sensitivity
is diminished at higher cost levels.

IV. ROBUSTNESS TO ADVERSARIAL FEATURE NOISE

In certain cost-sensitive scenarios, one may wish to be
resistant to noise injected by an adversary into the input data:
for instance, in a loan approval scenario, an adversary may
falsify parts of their loan application in order to deceive the
system into approving their loan. In this section, we further
extend CW-CVaR to be robust to this kind of noise.

We assume that we are given some prior knowledge of the
features =4 that might be corrupted; we encode this knowledge
in a prior distribution P(u|v, Y), with mean v and covariance

kgaussian / karbitrary

o
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Figure 2. Sensitivity of the ratio A\gaussian /aitary ag 5 function of

desired misclassification probability €, showing one curve per choice of
¢ = 0.5,...,10. The curves demonstrate the effect on A of assuming a
Gaussian assumption over margin losses, compared to assuming an arbitrary
distribution, and how this difference varies with cost-sensitivity.

Y, over p: if a feature x4 is suspected to be corrupt, then its
corresponding weight in the prior mean, v4, can be set to a
diminished value.

Multiplying the prior by the likelihood, P(w|u, ), and
normalizing yields the posterior:

1
P(plw,v,%,7T) = ZP(W|“72)P(“|V7 T)

where Z is a normalization constant.

If we assume that the prior is Gaussian, then, by conju-
gacy, the posterior will also be Gaussian, with mean g and
covariance X, where

S~ (rl )
p o= (Y vz lw).

We set w = u, which can be estimated via Alg. 1.

(14)
s)

[ is essentially an average of v and u, weighted by
the respective covariances Y and 3. As t — oo, and
Y4i/Xqqa — oo (assuming that ¥ and X are diagonal), [ig
will be increasingly dominated by p4, as opposed to v4: in
other words, as more data is seen, the effect of the prior can
be diminished.

We refer to the algorithm which first estimates p and X
as in Alg. 1, then uses these estimates to compute £z and 3



as in Eqgs. 15 and 14, and finally uses f& to make predictions,
as CW-robust; this algorithm is summarized in Alg. 2.

Algorithm 2 CW-robust.

Input: desired misclassification probability for highest-cost
examples, «; for lowest-cost examples, [; cost-sensitive
misclassification tolerance 7; prior mean v; prior covariance
T
Initialize: buffer By, = O; classifier parameters, py = 0,
Sog=1
for t =1 to T rounds do

receive (xy, yi, c(xy)), yr € {—1,1}

compute By, c*, €, \, ps, and X, as in Alg. 1

predict §; = sgn(ff 1 x¢)

update:

o N =(Yl4tx 7!

[ ] i:'/t = Et(T_lll + tE;lut)
end for

V. CONNECTIONS TO ROBUST OPTIMIZATION

In this section, we demonstrate a correspondence be-
tween the risk measures used in the standard CW and CW-
CVaR optimization problems and uncertainty sets. Our purpose
in including these results here is two-fold: first, to provide
an alternate perspective on our CVaR robust optimization
problem; and second, to suggest a mechanism that may enable
users who wish to incorporate prior knowledge on p to derive
a corresponding risk measure for use in the CW optimization
problem, and vice-versa. [16] have used a similar approach to
derive new robust algorithms for portfolio optimization.

Thm. 1 shows the VaR constraint in the CW optimization
problem is equivalent to a constraint that places an ellipsoidal
uncertainty set around .

Theorem 1. Eq. 2 in the standard CW optimization problem is
equivalent to enforcing a deterministic margin constraint for
all values of w € &, where £ is an ellipsoid centered around

o

Proof: Assume that, instead of Eq. 2, we want the fol-
lowing deterministic constraint to hold instead: ytv's'/Txt >0,
vYw € &, where &£ is an ellipsoid centered around . This
constraint is equivalent to

min_ g (p — Qu)"x,

[lu][2<1
= yp"x¢ —y max u'QTxy
[lull2<1
= ytHTXt - yt||QTXtH2 (16)

where Q € R¥™4 If Q = ®~1(n)/y; - £x;, and we omit the
square root in Eq. 16, then this constraint is equivalent to Eq.
2. [ |

Thm. 2 shows the CVaR constraint in the CW-CVaR op-
timization problem is equivalent to a constraint that places a
polyhedral uncertainty set around w.

Theorem 2. Eq. 4 in the revised CW-CVaR optimization
problem is equivalent to enforcing a deterministic margin
constraint for all values of W € P, where P is a polyhedron
defined by alw < b;, Vi € {1,....1}, Vi € {1,...,I},
wg >0, Vd e {1,...,D}.

Proof: First, assume that, w.l.o.g., ¢(x;) = 1. Next, as-
sume that instead of Eq. 2, we want the following deterministic
constraint to hold: ytv"vTxt > 0, Yw € P, where P is a
polyhedron defined by al'w < b;, Vi € {1,...,I}, wq > 0,
Vd € {1,..., D}. This constraint is equivalent to

min Wl xy (17)

s.t. al'w <b;, Vie{l,...,I}
wg >0, Vde{l,...,D}

The dual of Eq. 17 is

I
b 1
n}\e:x ;)\lbl (18)
I
s.t. Z Niaig < yrxeq, Vd € {1,..., D},
i=1

A >0, Vied{l,..., I}
CVaR.(M;) can equivalently be written as [6]

S
* 1 ~r(s)
rﬁzg M,; - ;pth (19)
s.t. MP) > Mp - MP ¥se{1,...,S}

ME >0, Vse{l,...,S}

where M} = VaR.(M;), Mt(s) = y,w®Tx,, w(®) are draws
from N (p, X), and p; is the probability of each draw.

The dual of Eq. 19 is

S
: (s)
min Z s M, (20)

s
s.t. ZAsgps,VSe{l,...,S}
As >0, Vse{l,...,S}.

If a;q = sgn(ys i) YeTia€/ps, by = fMt(s), I =S, and strong
duality holds, then Eq. 17 is equivalent to Eq. 19. ]

In future work we intend to use the connection between risk
measures and uncertainty sets to derive further adaptations of
our online learning framework to specific problems.

VI. EXPERIMENTAL EVALUATION

In this section, we describe our experimental results with
the cost-sensitive CW-CVaR algorithm on two real cost-
sensitive data sets, as well as with the adversarial noise
resistant CW-robust algorithm on a synthetic data set.

A. Real Data Sets

We experimented with CW-CVaR under a variety of margin
distribution assumptions, as well as with the standard CW
algorithm. In order to understand the contributions of the
example-level CVaR constraint described in Sec. III-A and
the stream-level CVaR-based costs buffer described in Sec.
II-B, we also experimented with the CW algorithm with the
example costs, ¢(x), incorporated into the update rules, which
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Figure 3. Learning curves for algorithms on real and synthetic data, in the
online learning setting (averaged over 100 trials; error bars omitted to reduce
clutter).

we denote as CW-costs, and CW-CVaR without the buffer,
which we denote as CW-nobuffer.

We experimented with all these algorithms in an online
learning setting, in which we tracked the cumulative cost
incurred by each algorithm as it learns, as well as in a batch
learning setting, in which we computed the cost incurred by
each algorithm on a fixed test set after learning.

Each algorithm’s hyper-parameters, €, «, [, and the as-
sumed margin distribution, were set by following the same
protocol as in [1]: we fixed each hyper-parameter to the value?
for which the algorithm incurred the least cumulative cost in
the online learning setting on a single, randomly generated
trial of the data. We used a fixed value of 7 = 0.05 for all
experiments. All algorithms used a diagonal approximation to
the full covariance matrix, X, as described in [1].

We experimented with the cost-sensitive GERMAN CREDIT
and KDD Cup 1998 data sets. Tables II and III present the
cost incurred by each algorithm, and CVaR computed at ¢ =
0.05 on each algorithm’s empirical margin distribution on the
test data, on these data sets, in the online and batch settings.
The margin distribution assumption set by the hyper-parameter
search procedure described earlier is indicated in bold. Fig. 3
shows the learning curves for each algorithm on these data sets
in the online setting.

a) GERMAN CREDIT Data Set: The goal in this data
set is to approve or deny a loan request for an individual,
where x represents the requestor’s profile. The cost, ¢(x), of
approving a loan for a requestor who will ultimately default
(false positive) is 75% of the requested amount, as requestors
typically pay back part of the loan; false negatives have zero
cost in this setup.

Table II shows that simply incorporating an example’s cost
into the standard CW algorithm’s update rules can result in
overly aggressive updates in the online learning setting, as
the performance of CW-costs is actually worse than that of
CW; in the batch learning setting, this modification leads
to a 3% decrease in cost incurred over the CW algorithm?.
Introducing an example-level CVaR constraint further reduces
the cost incurred by CW-nobuffer (arbitrary margin distribution
assumption) over CW-costs by 8% in the online setting, and
1.44% in the batch setting. Finally, introducing a stream-level
buffer reduces the cost incurred by CW-CVaR (arbitrary) over
CW-nobuffer by 42% in the online setting, and 33% in the
batch setting. CW-CVaR (arbitrary) ultimately reduces the cost
incurred over CW by 38% in the online setting, and 36% in
the batch setting, which outperforms all other algorithms in the
online and batch settings; the performance of CW-CVaR under
alternate margin distribution assumptions is similar. Table III
shows that the CVaR incurred by the algorithms incorporating
an example-level CVaR constraint is, naturally, better than that
incurred by the other algorithms.

b) KDD CuUP 1998 Data Set: In this data set, the goal
is to identify potential donors. Candidates are sent an invitation
to donate, which costs ¢ = $0.68 to assemble and send. The
algorithm incurs the additional opportunity cost of a missed

2¢, «, and B were allowed to

{0.01,0.05,0.1,0.2,...,0.8,0.9,0.99}.
3Note that the test data used in the online and batch settings is not identical,
and hence the range of cost incurred may differ.

assume values in the set



Table II.

COST INCURRED BY ALGORITHMS ON THE GERMAN CREDIT AND KDD CUP 1998 DATA SETS, IN THE ONLINE (O) AND BATCH (B) LEARNING

SETTINGS (AVERAGED OVER 100 AND 10 TRIALS, RESPECTIVELY). LOWER COST IS BETTER. BOLD INDICATES THE MARGIN DISTRIBUTION ASSUMPTION
CHOSEN BY THE HYPER-PARAMETER SEARCH PROCEDURE DESCRIBED IN THE TEXT.

DATA SET CW CW-CoSTS CW-CV-ARB-NOBUF CW-CV-GAUSS CW-CV-SYMUNI CW-CV-SYym CW-CV-ARB
GERMAN (O) 35,002 + 172.80 40,070 £ 108.80 36,976 + 126.78 22,132 +47.95 21,923 +41.39 21,971 £ 44.41 21,621 + 44.11
GERMAN (B) 3,252.20 +41.02  3,140.90 + 29.38 3,095.80 + 27.07 2,290.50 £ 35.39 1,999.70 £ 28.35  2,154.50 £ 29.97 2,074.90 £ 34.58
KDD Cup (O)  $1,620.90 £ 1.54  $1,621.40 + 1.54 $1,621.20 + 1.53 $1,532.30 + 1.97 $1,506.80 = 1.90  $1,505.20 £ 1.88 $1,480.30 + 2.11
KDD Cup (B) $214.82 + 1.83 $215.9 +£1.77 $216.04 + 1.77 $202.82 + 1.77 $174.06 + 1.39 $173.11 + 1.66 $171.22 + 1.45
Table III. CVAR COMPUTED AT € = 0.05 ON EACH ALGORITHM’S EMPIRICAL MARGIN DISTRIBUTION ON THE TEST DATA IN THE GERMAN CREDIT

AND KDD CuUP 1998 DATA SETS, IN THE ONLINE (O) AND BATCH (B) LEARNING SETTINGS. HIGHER CVAR IS BETTER. BOLD INDICATES THE MARGIN
DISTRIBUTION ASSUMPTION CHOSEN BY THE HYPER-PARAMETER SEARCH PROCEDURE DESCRIBED IN THE TEXT.

DATA SET CW CW-CosSTS CW-CV-ARB-NOBUF CW-CV-GAUSS CW-CV-SYMUNI CW-CV-Sym CW-CV-ARB

GERMAN (O) -7.65 + -7.65 -10.65 £ -10.64 -8.30 &+ -8.29 -2.82 +-2.82 -3.20 +-3.20 -3.28 +-3.28 -3.56 + -3.56
GERMAN (B) -0.40 &+ -0.40 -0.31 +-0.31 -0.30 +-0.29 -0.31 +-0.31 -0.23 +-0.22 -0.24 +-0.24 -0.27 + -0.26
KDD Cup (O)  $-3.47 £ -3.47 $-4.32 £+ -4.32 $-3.09 + -3.09 $-2.34+-2.30 $-1.87 +-1.87 $-1.82 + -1.81 $-1.53 £ -1.52
KDD Cup (B) $-0.18 £-0.17 $-0.25 £ -0.24 $-0.16 £ -0.16 $-0.11 £-0.10 $-0.07 + -0.07 $-0.08 + -0.07 $-0.06 + -0.06

donation if a candidate is not sent a mailing when they would
have provided a donation (false negative); false positives only
incur the cost of sending the mailing.

Tables II and III show similar trends as in the GERMAN
CREDIT data set: CW-CVaR reduced the cost incurred over
CW by 9% in the online setting, and 20% in the batch setting.
This improvement is somewhat less pronounced than in the
GERMAN CREDIT data set, and may be due to the small
number of donors present in the data set (5%), as well as
the small potential upside to classifying a candidate correctly
(the maximum donation amount was $200).

B. Synthetic Data Set

We generated a synthetic data set for robust, cost-sensitive
binary classification as follows. First, we drew 400 points
comprising the positive class from a Gaussian with mean
(5,5), and 400 points comprising the negative class from a
Gaussian with mean (0,5); both Gaussians had covariance 21.
We then drew 200 points from a Gaussian with mean (0,0)
and randomly assigned 50% of them to the positive class, and
the rest to the negative class: this models unreliability in x
in the feature vector (x1,x2). To account for this unreliability
in CW-robust, we encouraged a weight of O for x5 in the
posterior by setting v = —pus9, and Y = diag(oo, 1). Fig. 3(c)
presents the learning curves for CW, CW-CVaR, and CW-
robust in the online learning setting, and shows that CW-
robust outperforms the other algorithms by incorporating prior
knowledge on feature corruption.

VII. CONCLUSION

We presented a new, robust, cost-sensitive, confidence
weighted (CW) online learning algorithm that replaced the
value at risk (VaR) constraint in the original CW optimization
problem with a worst case conditional value at risk (CVaR)
constraint. This constraint can be customized by the user
to achieve the appropriate level of cost-sensitivity for
the task at hand, and led to consistent reductions in cost
incurred over the standard CW algorithm and cost-sensitive
CW baselines. The new algorithm is also able to incorporate
prior knowledge on adversarial feature corruption, which
led to further improvements in classification performance.

Finally, we showed a connection between the VaR and
CVaR constraints used by the CW and CW-CVaR algorithms
and robust optimization, which may enable the derivation of
new cost-sensitive CW algorithms.
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