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Q Introduction




CFD in aerospace engineering

@ Actively used in design and analysis

@ Supplements/replaces expensive wind-tunnel tests

@ Reduces design cycle time and allows for innovative designs
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Geometry (CAD)

@ Not representative of all CFD
methods (e.g. Cartesian or
boundary-potential methods)

@ Typical use of finite volume in
industry

Error Estimation and
Mesh Adaptation
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AIAA Drag Prediction Workshop Il — 2006
@ Wing-body geometry, M = 0.75,C, = 0.5,Re =5 x 10°
@ Run on today’s state-of-the-art CFD codes
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Identification of Problem

Current CFD Practices:

@ Risk of unacceptably large errors is high

@ Heavy “person-in-the-loop” involvement is required, especially
during mesh generation

@ Difficult to apply solution-based adaptation and optimization

v

Key Problems:

@ Insufficient robustness

@ Insufficient automation
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Key Ideas

1. Simplex cut-cell meshing for high-order solutions
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Boundary-conforming mesh Simplex cut-cell mesh

2. Output-based anisotropic mesh adaptation for high-order solutions J
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Geometry (CAD)

@ Mesh generation and error
estimation performed
automatically

@ Each cycle is an adaptation
iteration

Mesh Generation (minutes)

Flow Solution (hours)
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Error Estimation and
Mesh Adaptation
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Example: Adaptation + Cut Cells

Automated

I I
‘CD error = 201 counts CD error = 102 counts

1
C,, error = 17 counts

- M, =05, Re =5000

= C,, to within 1 count
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NACA 0012 geometry

7AN /AN T\ T R
CD error = 0.3 counts CD error = 3 counts

NN
Yﬁtﬁ&"%%h
S S
m; =
A
VO]

—

K. Fidkowski (MIT) CRiB November 2, 2007 10/70



9 Discretization




8—U+V- Fi(u) =V -F(u,Vu)=0
ot N —_— 7
Inviscid Flux Viscous Flux

@ 5 conservative variables: u = [p, pu, pv, pw, pE]
@ 5 equations (conservation laws)

@ Fluxes are nonlinear functions of u

@ Interested primarily in steady-state (Ou /ot = 0)



Discontinuous Galerkin Discretization

High-order finite-element method:

@ Solution/test space: Vy = [VE]°,
Vi = {v eL?(Q):v|, € PP(x):

VK € TH}

@ Roe inviscid flux; 2" form of Bassi

and Rebay for elliptic term

@ Discrete semi-linear form:
RH (Un,vH) =0,

YWH € V4

\/>X T

H

Solution
@ Newton GMRES
@ Store full linearization

@ Initial approximate time
stepping

Motivating features:
@ High-order accuracy

@ Element-wise compact
stencil

@ Ease of implementation
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Q Output-Based Adaptation




Output-Based Adaptation

Cp = 565.7 counts
@ How accurate is this value?

@ Where is more resolution necessary to improve the accuracy?
@ How should that resolution be added?

gar
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Output-Based Adaptation (ctd.)

Implementation

1. Output error estimation and localization

J(u) = output of interest (lift, drag, etc.)

Uy € V4 = approximate solution

J(uy) — J(u) = output error

Solve for adjoint, ¢ to estimate and localize the output error

2. Automated anisotropic h-adaptation
@ Anisotropy detection via extension of Hessian analysis to p > 1
@ Goal-oriented mesh optimization
@ Re-meshing at every adaptation iteration

gar

K. Fidkowski (MIT) CRiB November 2, 2007 16/70



Output Error Estimation: Local Error Indicator

Extensive previous work
Pierce+Giles+Suli (2000),
Becker+Rannacher (2001),
Hartmann+Houston (2002),
Barth+Larson (2002)

Minor implementation differences

Error indicator for viscous case

J(U) = T(un) = Ry (Un, ¥ — ty) = Ry, (Un; U — Uy, Pyy)

Primal Residual Adjoint Residual

u — uy and v — 1 estimated via reconstruction on enriched space.
Elemental Error Indicator:

i = 5 ([Ra(un, (b — o)) + [ Ry 0 (0 — i) 50)])
Bl
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Anisotropic Adaptation

Idea: refine elements with high error; coarsen elements with low error J

Iteration O

5

Iteration 2

K. Fidkowski (MIT)

@ Use a priori output error estimate to
relate element error to size request:
€r ™ hL

@ Detect anisotropy by measuring
p + 1st order derivatives of a scalar
guantity (Mach number)

@ Optimize mesh size to meet
requested tolerance and to satisfy
error equidistribution

@ Meshing: BAMG in 2D, TetGen in 3D

@ Left: NACA 0012, M = 0.5,
Re = 5000, p = 2 adapted on drag

CRIiB November 2, 2007
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@ Cut Cells in Two Dimensions




What Are Cut Cells?
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Boundary-conforming mesh Simplex cut-cell mesh

@ Cut-cell meshes do not conform to geometry boundary
@ Solution only exists inside the computational domain

@ Premise: metric-driven meshing of a simple convex volume (e.g.
box) is straightforward

Bear
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@ 1979 — Purvis and Burkhalter: FV for 2D Full Potential Equations
@ 1986 — Clarke, Salas, and Hassan: FV for 2D Euler
@ 1987 — Gaffney, Salas, and Hassan: FV for 3D Euler

@ Linear cut cells

@ Agglomeration to remove
small cells

@ Uniform grids A
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History: Use in Industry Codes

@ 1986 — Boeing’s TRANAIR: FEM for 3D Full Potential Equations;
adaptation on geometry, user input, and solution; integration via
Stoke’s theorem. Still in use today.

@ 1995 — Karman'’s SPLITFLOW (Lockheed): 3D RANS; required
prismatic boundary layer mesh; outer flow via Cartesian cut cells.

Bl

TRANAIR SPLITFLOW -
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History: Recent Work

@ 1991 to present — MGAERO by Analytical Methods, Inc: finite
difference for 3D Euler; multigrid, uniform grids.

@ 1993+ — Application of adaptive refinement to Cartesian method
for Euler; DeZeeuw, Powell, Coirier.

@ 1999 to present — Cart3D: Mike Aftosmis et al , NASA,; finite
volume for 3D Euler; adaptively refined grids.
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MGAERO Cart3d
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Objective : A robust, automated mesher and efficient meshes

Cartesian cut-cell method

@ Robust and automated grid generation
@ |nability to adapt anisotropically

Simplex (triangles, tetrahedra) cut-cell method
@ Robust and automated grid generation

@ Ability to adapt anisotropically in any direction
@ Not as lean as Cartesian method

B
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Cubic splines
@ Efficient treatment of curved boundaries

@ Slope and curvature continuity at spline knots

S=Ss
max
T
C:i—_:>J
\ s=0

Spline Geometry

Farfield Boundary

B
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Implementation

@ Analytic intersections between splines and edges: cubic equation
@ Multiply-cut triangles treated as a separate cut cells

Spline-edge
intersection

= 9ac¢
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Intersection Problem (ctd.)

@ Triangles completely contained inside geometry removed from
mesh structure

@ Integration rules on cut cells/edges calculated in preprocessing

Bl
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@ High-order finite element method requires integration over:
@ Element boundaries (edges in 2D, faces in 3D)
@ Element interiors (areas in 2D, volumes in 3D)
@ Regular triangles and tetrahedra can be mapped to reference
elements, where optimal integration rules exist

@ These rules do not (in general) apply to cut cells, where areas and
volumes are of irregular shape

Bl
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Sampling points, x4, and weights, w, for
integrating arbitrary f(x) to a desired order:

/f(x)dx ~ > Wof(Xq)
" q

Key ldea
Project f(x) onto space of high-order basis functions, ¢;(x):

f(x) ~ ZFiq(x)

Choose (j(x) to allow for simple computation of | _¢(x)dx.
=} 5
 KFidkowskiuT)  CcrRB
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Area Integration (ctd.)

Set (; = V - G; and use the divergence theorem:

/de/V-Gidx/ G; - nds
JK JK J Ok

@ G; = a standard high-order basis (e.g. tensor product)
@ Line integrals over 0« using 1D edge formulas

@ Projection f(x) ~ > Fi¢i(x) minimizes the least-squares error at
randomly-chosen sampling points, X, inside the cut cell

@ OR factorization and integration over « leads to an expression for
the quadrature weights:

/ deZF/C, dx_foq ) Qqi(R /CI

.
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Example: Quadrature Points

@ NACA 0012 ‘
@ 12 Gauss points per cut edge A Av

and spline segment Nﬁé{{&

@ Over 200 interior sampling
points per element

60
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NACA 0012, M = 0.5, Re = 5000, o = 2° J

5 %
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|

Initial boundary-conforming Initial cut-cell mesh
; 711
mesh :




@ Degree of freedom (DOF) vs. drag output error forp = 1,2, 3.
@ Requested tolerance is 0.1 drag counts (horizontal line).
@ Cut-cell and boundary-conforming results are similar.
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Viscous Case: Final Meshes

p = 3 adapted cut-cell mesh

p = 3 adapted boundary-conforming mesh

p = 1 meshes have approximately 50 times more elements

=
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Boundary-conforming, p = 3

p =1 and p = 2 contour lines are very similar

Cut-cell,p = 3




e Cut Cells in Three Dimensions




Extension to Three Dimensions

@ Cut-cell mesh generation becomes more difficult;

o Geometry representation is not as straightforward as in 2D

@ Harder intersection problem: volume-surface instead of area-line

@ Integration rules needed on geometry surface, cut faces, and cut
elements

@ However, generating 3D boundary-conforming meshes is much more
difficult compared to 2D:

@ Meshing around intricate 3D geometries is not trivial
@ No robust automated technique for curved geometries

B
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Geometry Definition

@ Quadratic patches, 6 nodes per patch

@ Patch surface (x) is given analytically:

X = Z (7(X)JX] /
j
X = [X,Y]: patch ref coords X

@ Water-tight representation (no holes) Patch reference space

@ Not exact; intermediate
surface representation

Yarg WY
VS
SO

geometry interrogation
from CAD via CAPRI

@ Efficient resolution of
curved surfaces

s
<SS
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i

@ Surface tesselation and
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Tetrahedron

Quadratic-patch surface

@ Analytical intersection possible

@ Enabling feature : intersection
between a plane and a quadratic
patch is a conic section (ellipse,
hyperbola, etc.) in (X,Y)

@ Robustness of cutting algorithm
relies on robustness of
conic-conic intersections

Cut-cdl "wire-frame"

Embedded face

i
5 "1D structure”

Conics in patch reference space @
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Requirements
@ 2D integration on embedded boundary faces (on patches)
@ 2D integration on cut faces (from background tetrahedra)
@ 3D integration on cut-cell interiors

Methodology

@ Gauss points on 1D edges of 2D
embedded and cut faces

@ Sampling point speckling for face
integration (as in 2D)

@ 3D extension of point speckling for
cut elements




Cut-cell mesh:

Boundary-
conforming
mesh:

November 2, 2007
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@ Inviscid, M., = 0.3 flow around a body of revolution
@ Model half the geometry

NV v VAVAR, Ave
AKX
VAVANT v AVA R A%
AR
AN AN
L N

patches

\
Initial background mesh: 2883 elements
 KFidkowskiuT)  CcrRB

Surface representation: 256 quadratic
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@ Adapted on drag, with error tolerance of 1 drag count
@ Cp measured using frontal cross-sectional area

CD error (counts)

—A—p=0

—&—p=1
I A\A\Q\A\A—&p:z

@ p = O is not practical for
accurate computation

@ p = 2 converges much faster
thanp =1
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. Geometry

Wing-Body
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@ Geometry from Drag Prediction Workshop

@ 10,000 quadratic surface patches
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Wing-Body: Adapted Meshes
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p = 2: 85,000 elements

p = 1: 300,000 elements
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@ Mach number contours shown for a p = 2 solution

@ Inviscid M. — 0.1 flow J
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G Research Directions




@ Test effectiveness of cut-cells + adaptation for highly-anisotropic
boundary layer meshes

@ Thickness of boundary layer governed by Peclet number, Pe

V. (VT) =V . (kVT) =0, Pe:%
=-k VT'n
Vo) qwi



@ Pe — 4 x 108 simulates turbulent inner layer at Re ~ 10°
@ Heat flux output: .7 = [ ;. dwds + dual consistent terms
@ Error tolerance is 1% of true heat flux

Heat Flux Error

107

—Ap=1

DOF

@ p = 1 requires a factor of 10
more degrees of freedom
thanp =3

@ p = 2 performance is similar
top=3




Pe = 4 x 10%: Adapted Meshes

T
S8

Vaavay:

‘%sggiaga“ai

K. Fidkowski (MIT) CRIB

November 2, 2007

gl

53/70



Ch = qu/(V-AT) along airfoil surface
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Diffusion Discretization on Small Elements

T ] @ Noise in derivative quantities
| \ | observed on small elements
S ] adjacent to large elements

| @ Not specific to cut-cells, but
cut-cell meshes are likely to
contain small elements

@ Problem due to viscous
discretization +
under-resolution

@ Possible solutions:

@ Merge very small elements
with neighbors

@ Seek a more robust
discretization

Small element

Airfoil boundary
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Resolution of Curved Features

@ Anisotropic features are efficiently resolved with anisotropic
elements

@ Feature curvature limits maximum element anisotropy when linear
elements are used

@ To take advantage of curved elements, solution representation
must be in mapped (curved) space

Linear elements Curved elements

B

Boundary layer feature ——
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Curved Elements

@ DG boundary-conforming meshes employ curved elements to
adequately represent curved boundaries
@ Curved features may exist away from boundaries:
@ Unsteady shear layers
@ Curved shocks
@ Ideally, elements should be curved based on the solution, not
necessarily/just on the geometry
@ Globally curving mesh elements while respecting geometry
boundaries is a challenging task
@ Cut cells with curved background meshes offer an alternative
approach, more suitable for automation

Bl
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2D Cut Cells with Curved Elements

Spline/Curved Edge

Intersection A E

- <= \
=>

y Aty

[ |-

X X

@ Spline/curved-edge intersections obtained by applying
Newton-Raphson method to the system of nonlinear equations
@ Area integration rule derived in the element ref. space (X, Y)
@ Solution is polynomial in (X,Y)
@ Inverse of nonlinear mapping (A1) is required to transform spline
guadrature/intersection points into (X, Y) space
@ Aside from cutting/integration, no fundamental code changes are
required to incorporate curved cut cells
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2D Cut Cells with Curved Elements (ctd.)

Q = 1 versus Q = 2 boundary-layer cut-cell meshes

|
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xlc

p = 2 solutions

@ Convection diffusion for a Joukowski airfoil: output from cut Q = 2
mesh shows marked improvement over cut Q = 1 mesh
@ Meshes were created manually - automated generation and

adaptation of curved-element background meshes and extension
to 3D is an ongoing research topic
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ﬂ Conclusions




Conclusions

@ Cut-cells offer an automated alternative to boundary-conforming
mesh generation, which is very often the bottleneck in CFD
analysis and design

@ Simplex cut cells allow for anisotropic meshes, which are
necessary for practical viscous computations

@ Adaptation with an output error estimator removes user
guesswork from geometry-to-solution analysis process

@ Curved background elements are more efficient at resolving
curved anisotropic features; a robust adaptive scheme needs to
be developed to take advantage of this efficiency

@ Further work is required in making the viscous discretization more
well-behaved on small elements
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Questions?




Additional Research Directions

@ Decreasing computational cost of cut cells

@ Reduce number of sampling points by more sophisticated (not
random) selection; e.g. electric charge analogy
@ Allow for geometry approximation when background mesh is coarse

@ Improving conditioning of 3D volume integration rules at hi gh
orders

@ Seek better support for integrand basis functions
@ Other polyhedra as alternatives to fitted bounding-box

@ Smoother geometry representation in 3D

@ Investigate feasibility of intersection with more continuous geometry
representations
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Curved mesh (i)—Element curvature\ [Curved mesh (i+1i

+U(i)  -u(i) Elasticity solve: T(i+1)--,

. |
Linear mesh (i) i?;cﬁt;??e—» M :atric —{ Linear mesh (i+1)}

Shift metric, iterate




@ Xy must lie inside the cut cell to keep the integrand evaluations
physical for non-linear problems

@ Currently choosing x4 randomly via ray-casting:

First
intersection

Ray

@ Clusters of sampling points are undesirable in terms of QR
conditioning = use oversampling




Hessian Matrix

@ Based on measuring degree and direction of quadratic variation.
@ Standard practice in finite volume and linear FEM.
@ Not reliably applicable to high-order solutions.

Example: u = 1.0 + (x? + 16y?) + ¢(64x° +y3), e<<1
The Hessian matrix is

U Uy | |2 0
H_[ny UW]_[032}+O(6)

Ignoring O(¢) terms, Hessian analysis predicts

Ay Bl
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L, Interpolation Error
AR | p=1 | p=2

0.25 | 2.31E-1 | 2.19E-7
1.0 | 5.91E-2 | 1.42E-6
40 | 2.37E-2 | 1.14E-5

For high-order (p > 1) anisotropy measures

@ Use direction and magnitudes of (p + 1) derivatives.

@ Directions of min/max. H.O. derivatives no longer guaranteed to
be orthogonal.

@ Currently employ a brute-force search for max H.O. derivative.

B
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Original Grid
\ \ |
£,=10 £,=160 |
Standard Ref. Pred. Modified Ref. Pred.

Assumed ¢, ~ h!

Standard Refinement Prediction : 34 elements
Modified Refinement Prediction : 25 elements




The Cut-Cell Advantage

Boundary-conforming mesh generation
@ Common bottleneck in geometry-to-solution process
@ Difficult (not robust) for complex 3D geometries
@ Prone to failure on curved boundaries

Negative area Valid cut cell

Curved

""""""""""""""" < boundary >

a) Boundary-conforming b) Cut-cell

@ Naturally handle curved boundaries and complex geometries
@ Burden of robustness transferred to computational geometry
@ Fully-automated mesh generation is possible
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