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One technique for capturing shockswith high-ordermethods is through artificial viscosity. The key considerations of

this approach are 1) deciding the amount of artificial viscosity to add; 2) maintaining stability and efficiency of the

nonlinear solver; and 3) ensuring accuracy of the resulting solutions, particularly in the presence of strong shocks. To

address consideration 1, we test a switch based on intraelement solution variation as well as one based on the difference

between the solution and its low-order projection. To address consideration 2, we forego a complete linearization of the

artificial-viscosity contribution to the residual in order to keep the residual Jacobian stencil compact. To address

consideration 3, we introduce the viscosity in a piecewise-continuous fashion to avoid spurious entropy production.

Furthermore, we use output-based error estimation andmesh optimization on the drag and the total enthalpy error, as

well as with entropy variables, to minimize the output error. We test the shock capturing method coupled with mesh

optimization on aerodynamic flow applications ranging from transonic to supersonic, which are discretized using the

standard discontinuous Galerkin (DG) and hybridized DGmethods. One of our findings is that the mesh optimization

through error samplingandsynthesis algorithmdoesnot alwaysgenerate the idealmesh in thepresence of strong shocks.

Nomenclature

Ce = elemental cost
cD = drag coefficient
cp = pressure coefficient

E = total energy
EH = error in the total enthalpy
H = total enthalpy
H = combined viscous/inviscid flux
J = output of interest
M = mass matrix
M = metric tensor
P = pressure
p = state approximation order
pepsilon = artificial-viscosity approximation order

Q = discrete state gradient
q = state gradient
R = discrete residual
S = step matrix
Se = smoothness indicator
�Se = transformed smoothness indicator

u = conservative state vector
U = discrete state vector
ûh = state on the faces of the mesh
v = velocity
εe = error indicator
ϵij = artificial-viscosity tensor field

ϵ0 = smooth artificial viscosity
ϵ0e = baseline elemental artificial viscosity
ϵ̂e = elemental artificial viscosity
Λ = discrete face state
ρ = density
Ψ = discrete adjoint

I. Introduction

H IGH-ORDER methods have enabled engineering computa-
tions at strict error tolerances for a variety of computational

fluid dynamics applications requiring high accuracy.With increasing
computational power and improvements in algorithms, these meth-
ods are becoming feasible for practical computations. The discon-
tinuous Galerkin (DG) method is a popular high-order finite element
method that builds on extensive work in Riemann solvers from the
finite volume method. It enables rigorous high-order computations
on general unstructured meshes, with a relatively simple implemen-
tation. However, DG remains expensive in degrees of freedom, and
hence storage andCPU time. To tackle this, hybridized discontinuous
Galerkin methods reduce the number of globally coupled unknowns
in an implicit solution through a static condensation procedure [1–4].
Specifically, element-interior unknowns are locally eliminated in
favor of face unknowns through a highly parallelizable step.
Computational cost is only one issue, however. Another important

consideration for high-order methods is robustness. Although, at
first, a discontinuous approximation space appears well suited for
handling discontinuous features, in practice, taking advantage of
these discontinuities is difficult for general cases. The discontinuous
Galerkin method, like other high-order discretizations, suffers from
oscillations near discontinuities and other under-resolved features.
Much work exists in stabilizing DG, including Runge-Kutta discon-
tinuousGalerkin (RKDG) [5,6], weighted essentially non-oscillatory
(WENO) [7,8], and artificial viscosity [9–12]. This work is similar to
more recent studies in smooth artificial viscosity [13,14] but with
differences in the means of making the viscosity continuous, an
extension to hybridizedmethods, and couplingwithmesh adaptation.

II. Discretization

We consider conservation laws of the form

∂u
∂t

� ∇ ⋅H�u;∇u� � 0 (1)

where u�x; t� ∈ Rs is the conservative state vector, s is the state rank,
and H�u;∇u� � F�u� � G�u;∇u� is the total, inviscid, and vis-
cous flux.
We consider two discretizations: discontinuous Galerkin and

hybridized discontinuous Galerkin (HDG). In each of these, the
computational domain Ω is divided into Ne elements Ωe in a non-
overlapping tessellation Th. Inside element Ωe, the state is approxi-
mated by polynomials of order p, with no continuity constraints on
the element boundary. Formally, we write uh ∈ Vh � �Vh�s, where
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Vh � fu ∈ L2�Ω�∶ujΩe
∈ Pp ∀ Ωe ∈ Thg

and Pp denotes polynomials of order p on the reference space of

element Ωe.

A. Discontinuous Galerkin

The DG weak form of Eq. (1) is obtained by multiplying the

differential equation by test functions in the same approximation

space, integrating by parts, and coupling elements via single-valued

fluxes that are functions of the states on the two adjacent elements:Z
Ωe

wT
h

∂uh
∂t

dΩ−
Z
Ωe

∇wT
h ⋅H�uh;∇uh�dΩ�

Z
∂Ωe

wT
hĤ⋅nds

−
Z
∂Ωe

∂iw�T
h K�

ij �u�h −ûh�njds�0 ∀wh∈Vh (2)

where �⋅�T denotes transpose; K�
ij is the diffusivity tensor;

ûh � �u�h � u−h �∕2; on the element boundary ∂Ωe, �⋅�� and

�⋅�−denote quantities taken from the element or its neighbor (or

boundary condition), respectively; i, j index the spatial dimension;

and summation is implied on repeated indices.
For the normal flux Ĥ ⋅ n, we use the Roe-approximate Riemann

solver [15] unless specified otherwise and the second form of Bassi

and Rebay (BR2) [16] for the viscous flux. Choosing a basis for the

test and trial spaces yields the semidiscrete form

M
dU

dt
� R�U� � 0

whereM is the mass matrix; andU andR are the discrete state vector

and the discrete residual, respectively.
For steady cases of �∂u∕∂t� � 0, we solve the discretized system

of nonlinear equations R�U� � 0 using the Newton–Raphson

method. The linearization of the left-hand side is the residual Jaco-

bian matrix A ≡ ∂R∕∂U, which is sparse and exhibits a nearest-

neighbor block structure.
For unsteady cases, we integrate in time with a three-stage third-

order diagonally implicit Runge–Kutta (DIRK) method [17]. The

update from Un to Un�1 proceeds through a solution of nstage sys-
tems:

M�Ui−Un��ΔtaiiR�Ui��Δt
Xi−1
j�1

aijR�Uj�� 0; i� 1; · · · ;nstage

(3)

Un�1 � Un � Δt
Xnstage
j�1

bjR�Uj� (4)

where

aij �

2
664

α 0 0

1−α
2

α 0

−�6α2 − 16α� 1�
4

6α2 − 20α� 5

4
α

3
775;

bi �

2
666664
−�6α2 − 16α� 1�

4

6α2 − 20α� 5

4
α

3
777775

and α � 0.435866521508459. Equation (3) can be solved with

Newton–Raphson iterations at each stage in a similar way as in the

steady case, with a slight modification to the Jacobian matrix that

does not affect its sparsity.

B. Hybridized Discontinuous Galerkin

The starting point for the HDG discretization is the conversion of

Eq. (1) to a system of first-order equations:

q − ∇u � 0 (5)

∂u
∂t

� ∇ ⋅H�u; q� � 0 (6)

where qh ∈ �Vh�dim approximates the state gradient. Multiplying

these two equations by test functions vh ∈ �Vh�dim and wh ∈ Vh

and integrating by parts over an element Ωe yields the weak forms:Z
Ωe

vTh ⋅qhdΩ�
Z
Ωe

∇⋅vThuhdΩ−
Z
∂Ωe

vTh ⋅nûhds�0 ∀ vh∈ �Vh�dim

(7)

Z
Ωe

wT
h

∂uh
∂t

dΩ−
Z
Ωe

∇wT
h ⋅HdΩ�

Z
∂Ωe

wT
hĤ ⋅nds� 0 ∀wh ∈Vh

(8)

where ûh is a new independent unknown: the state on faces of the

mesh. The system is closed by aweak enforcement of flux continuity

across facesZ
σf

μThfĤ ⋅ njL � Ĥ ⋅ njRg ds � 0 ∀ μh ∈ Wh (9)

where Wh denotes the order-p approximation space on the faces

σf ∈ Fh of the mesh: Wh � �Wh�s, where

Wh � fu ∈ L2�σf�∶ujσf ∈ Pp ∀ σf ∈ Fhg

and the subscripts L andR refer to the left and right sides of a face. In

HDG, the face approximations are independent and generally dis-

continuous at nodes and edges in three dimensions. This increases the

size of the global system relative to the embedded discontinuous

Galerkin method [18], but it yields well-defined blocks in the Jaco-

bian matrix that simplify preconditioning.
The fluxes in Eq. (8) are one-sided, meaning that they depend only

on the state and gradient inside the element and the face state:

Ĥ ⋅ n � H�ûh; qh� ⋅ n� τ�ûh; uh;n�;

τ �
���� ∂
∂u

�F̂ ⋅ n�
����
u�
h

�uh − ûh� � ηδh ⋅ n (10)

Note that τ consists of a convective stabilization computed about the

Roe-average state u�h and a BR2 viscous stabilization [19], where η is
set to a value that is at least the number of faces and δh is the BR2

auxiliary variable driven by the state jump uh − ûh.
Choosing bases for the trial/test spaces in Eqs. (7–9) gives a

nonlinear system of ordinary differential equations:

RQ � 0;

MU dU

dt
� RU � 0;

RΛ � 0 (11)

whereMU is the mass matrix. For a steady case, the ordinary differ-

ential equations reduce to a nonlinear system of equations:

RQ � 0; RU � 0; RΛ � 0 (12)

with the Newton update system
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"
A B

C D

#2664
ΔQ

ΔU

ΔΛ

3
775�

2
664
RQ

RU

RΛ

3
775 �

2
664
0

0

0

3
775 (13)

whereQ,U, andΛ are the discrete unknowns in the approximation of
q, u, and û, respectively. �A;B;C;D� is the primal Jacobian matrix
partitioned into element-interior and interface unknown blocks. Note
thatA,B, andC contain bothQ andU components. In addition,A is
elementwise block diagonal, and hence easily invertible using
element-local operations.
Statically condensing out the element-interior states gives a

smaller system for the face degrees of freedom:

�D − CA−1B�|���������{z���������}
K

ΔΛ� �RΛ − CA−1�RQ;RU�� � 0 (14)

Solving this set of equations constitutes the global solution of the
problem. Following the global solution for ΔΛ, an element-local
backsubstitution yields the updates to Q and U.
If the unsteady term is present, we integrate in time with the same

DIRK scheme used for the DG discretization:

RQ�Qi;Ui;Λi��0;

MU�Ui−Un��ΔtaiiRU�Qi;Ui;Λi��Δt
Xi−1
j�1

aijR
U�Qj;Uj;Λj��0;

RΛ�Qi;Ui;Λi��0;

i�1;:::;nstage

(15)

Un�1 � Un � Δt
Xnstage
j�1

bjR
U�Qj;Uj;Λj� (16)

For the Newton iterations used to solve Eq. (15) at each stage, the
Jacobian matrix needs to be modified slightly from the steady case,
but this does not affect the sparsity ofK.

III. Shock Capturing

A. Euler Equations

In this work, we restrict our attention to the Euler equations
because physical viscosity is insufficient to stabilize shocks at high
Reynolds numbers on typical computational meshes: even adapted
ones. Given the state vector u � �ρ; ρv; ρE� for the Euler equations,
where ρ is the density, v is the velocity, and E is the total energy, the
pressure can be found as

P � 1

γ − 1

�
ρE −

1

2
ρjvj2

�

where γ is the specific gas constant. The inviscid flux vector is

F�u� �

2
664

ρv

ρv ⊗ v� PI

ρvH

3
775 (17)

where H � E� �P∕ρ� is the total enthalpy, and I is the identity
matrix of size dim × dim.

B. Artificial Viscosity

This section outlines the shock capturing approach using artificial
viscosity. The starting point is the general form of an unsteady
convection–diffusion partial differential equation, which is written
in index notation:

∂tuk � ∂iFik � ∂i�Kijkl∂jul� (18)

where k and l index the state rank, i and j index the spatial dimension,
Fik is the convective flux, and Kijkl is the diffusivity tensor. Both F
andK generally depend on the state and could depend on the position.
For shock capturing, we augment the physical diffusivity with an
extra tensor field:

Kstab
ijkl�x� � Tklϵij�x� (19)

where Tkl � �∂ ~uk∕∂ul�, ~uk � �ρ; ρu; ρH� is a modified state vector
that makes the stabilization term preserve total enthalpy [12], and ϵij
is an artificial-viscosity tensor field. Numerical dissipation is added
through both the convective and diffusive fluxes. The Roe flux
function [15] does not preserve total enthalpy, and hence we also
present test results for thevanLeer–Hänel flux function [20],which is
designed to preserve the total enthalpy.
The artificial-viscosity tensor field is found as

ϵij�x� � C
hij
�h
ϵ0�x� (20)

where C is an O�1� constant for adjusting the amount of stabiliza-

tion, hij∕ �h is a smoothly varying anisotropy field for which the

calculation will be described in the following, and ϵ0�x� is a smooth
scalar that comes from averaging an element-based artificial vis-
cosity to nodes.
The mesh-implied metric of a simplex element e (Me) defines a

Euclidean vector space in which all edges of the element are unit

length [21,22]; i.e., Me ∈ Sym�
d such that��������������������

viMe;ijvj

q
� 1; ∀ vi ∈ Edges�e� (21)

The metric has units of inverse distance squared, and it yields a
measure of the size of the element:

�he � �det�Me��−1∕2 dim (22)

As themetric eigenvalues have units of inverse square distance, the

smoothly varying anisotropy field ofhij∕ �h is obtained by dividing the
inverse square root of themetric by �he, i.e., taking �1∕ �he�M−1∕2

e , and
averaging this quantity from elements to nodes. When needed at an
arbitrary point in an element, the anisotropy tensor is interpolated
from the linear nodes that make up the element.
The construction of the element-based artificial viscosity ϵ̂e starts

from a baseline elemental artificial viscosity defined as

ϵ0e �
λmax

�he
p

�Se (23)

where �Se is a smoothness indicator computed from the states, which
is either the resolution or the variation indicator in this paper; λmax is
the maximum wave speed in element e; and p is the approxima-
tion order.
The calculation of artificial viscosity is followed by a Laplace

smoothing of ϵe, which simulates a diffusion effect on the elemental
smoothness indicator. The formulation is similar to a Jacobi smoother:

~ϵk�1
e ��1−cs�ϵ0e�

cs
ne

X
t∈N �e�

~ϵkt ; k� 0; · · · ;nsmooth−1 (24)

ϵe � ~ϵnsmoothe (25)

whereN �e�denotes the neighboring elements of elemente (thosewith
which it shares an edge), ne is the number of the neighboring elements,
and 0 < cs ≤ 1 is a user-defined coefficient that adjusts the amount of
diffusion. A larger cs introduces more diffusion. This is only used in
our two-dimensional experiments. Note that cs is chosen to be 1.0 for
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the transonic cases and0.9 for thehypersonic cases.Also,nsmooth � 10
was found to be sufficient for all cases.
The final step in the calculation of ε̂e is a filter used for the

hypersonic test cases presented in Sec. VI to clip away spurious

small values generated by the Laplace smoothing. We adopt the

smooth filter definition from Barter and Darmofal [12], except that

we apply it before making the artificial viscosity continuous:

ϵ̂e�ϵe��

8>>>>><
>>>>>:

0; ϵe≤θL

1

2
θH

�
sin

�
π

�
ϵe−θL
θH−θL

−
1

2

��
�1

�
; θL<ϵe<θH

θH; ϵe≥θH

(26)

where θL and θH are themaximumandminimumvalues that ϵ̂e varies
in between, and θH � λmax

�he∕p and θL � 0.01θH are used in

this paper.
For unsteady cases, the artificial viscosity is calculated at each

Newton iteration, and the updated viscosity values are used in the

calculation of the residuals and the linearizations of the state varia-

bles. The artificial viscosity is treated as constant when calculating

the linearizations. This freezing of the viscosity results precludes

Newton convergence but, in practice, does not significantly increase

the number of iterations required to obtain a solution because many

iterations are expended before the Newton convergence “bucket.”

The lack of an exact linearization, however, preserves the compact

stencil, which is crucial for efficiency of the solver.

C. Smoothness Indicators

Both the resolution indicator and the variation indicator measure

the smoothness of a selected quantity, which is chosen to be the

density for our experiments so that more artificial viscosity is added

where discontinuities appear in the solution. The one-dimensional

results presented are generated with the resolution indicator; whereas

for the two-dimensional cases, both indicators are used, and the type

of indicator is specified in each case.

1. Resolution Indicator

The resolution indicator takes advantage of the fact that for a

smooth solution, the coefficients of the Fourier series decay rapidly.

It is defined as the difference between a pth-order quantity and its

least-squares projection onto the space of �p − 1�th-order polyno-
mials:

�Se �
f2

f� 1
; f � Se

S0
; Se �

R
Ωe

�u − ~u�2 dΩR
Ωe

u2 dΩ
(27)

where u is the chosen scalar for measuring regularity, ~u is its

�p − 1�th projection, S0 � 10−c0−cpp is an order-dependent variation
scale, and c0 and cp are constants that adjust the amount of stabiliza-

tion. The bigger both of the constants are, the more stabilization is

added. When the resolution indicator is used, the amount of stabili-

zation is controlled by both c0 and cp in a nonlinear mapping as well

as the coefficient C in Eq. (20) in a linear way. We did not attempt to

fine-tune all three at the same time for this paper. C � 1 is used, and
c0 and cp are tuned for all one-dimensional examples because we

tested for different polynomial orders for each case. For the two-

dimensional examples, c0 � 0 and cp � 1 are used, and C is tuned

whenever more stabilization is needed.

2. Variation Indicator

The variation indicator is based on the intraelement variation of a

selected quantity:

�Se�

8>>>>><
>>>>>:

0; Se <S
�−ΔS

Se
2

�
1�sin

�
π

2ΔS
�Se−S���

�
; S�−ΔS≤Se≤S��ΔS

Se; Se >S��ΔS

(28)

Se �
�

1

jΩej
Z
Ωe

�
u

�ue
− 1

�
2

dΩ
�
1∕2

(29)

where u is the chosen scalar for measuring regularity, and

�ue �
1

jΩej
Z
Ωe

u dΩ

S� and ΔS are user-defined parameters. The smooth scaling was
presented by Persson and Peraire [10] and used in combination with
the variation indicator by Ching et al. [14]. It preserves large values
and clips down small ones. S� is chosen to be 0.75 for our transonic
cases and 1.25 for the hypersonic cases.ΔS is set to 0.25 throughout.

IV. Mesh Adaptation

A. Output Error Estimation

The mesh adaptation process used in this work is driven by the
estimation of the output error. Let H denote the current, “coarse,”
approximation space; and let h denote a fine space obtained by
increasing the polynomial order by one on each element. An estimate
of the error between the coarse and fine spaces for our output of
interest J can be found using the adjoint-weighted residual [23,24].
We use discrete adjoint solutions for this purpose. For DG, the output
error estimate reads

Jh�UH
h � − Jh�Uh� ≈ −δΨT

hRh�UH
h � (30)

whereUH
h is the coarse state prolongated into the fine space, and δΨh

is obtained by subtracting the coarse-space adjoint from the fine-
space adjoint. For HDG, the output error estimate includes terms
associated with the gradient and weak flux continuity equations:

Jh�UH
h �−Jh�Uh�≈−�δΨQ

h �TRQ
h −�δΨU

h �TRU
h −�δΨΛ

h �TRΛ
h (31)

The localized error contributions on each element can be used as
error indicators to drive the mesh adaptation process. For DG, the
error indicator on element e is

εe ≡ jδΨT
h;eRh;e�UH

h �j (32)

The HDG error indicators εQe and εUe can be found in a similar way,

but finding εΛe requires special considerations. A detailed discussion
of the solution of the adjoint equations and the treatment of the error
localization for HDG was presented in previous work by Fidkowski
and Chen [18].
We also tested the entropy variables in place of the output adjoint

for the Euler equations [25]. They are defined by V ≡ ∂U∕∂u, where
U is the entropy function chosen as

U � −
ρ�ln P − γ ln ρ�

γ − 1
(33)

More details and discussions on entropy-adjoint adaptation can be
found in the referenced work.

B. Mesh Optimization Through Error Sampling and Synthesis

We outline the mesh optimization through error sampling and
synthesis (MOESS) algorithm used in this paper in this section.
The algorithm and a detailed discussion of its extension to HDG
can be found in previous works by Fidkowski and Chen [18,22],
which built on the earlier work of Yano [21].
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To form a continuous optimization problem, the information about
the size and stretching of elements in a mesh, which is discrete, is
encoded using a continuous Riemannian metric M�x� ∈ Rdim× dim.
The idea of the MOESS algorithm is to optimize the change in the
current mesh-implied metric M0�x� through a step matrix

S ∈ Rdim× dim as

M � M1∕2
0 exp�S�M1∕2

0 (34)

given a target cost Ctarget so that the estimated output error is

minimized.
The step matrix field S�x� is represented by values at the mesh

vertices Sv in the implementation of the MOESS. The optimization
process in theMOESS is iterative. In each iteration, an error reduction
to the cost introduction ratio is calculated at each vertex, the trace of
the step matrices are modified so that the vertices with the largest
values of this ratio are refined, the vertices with the smallest values of
the ratio are coarsened, the trace-free part of the step matrices is
updated tomodify the element shapewith the desired anisotropy, and
finally the step matrices are manipulated to constrain the total cost.
The process then repeats with the updated step matrices.
The rates of change of the total error and the cost with respect to the

step matrices, ∂ε∕∂Sv and ∂C∕∂Sv, are calculated from element-
based models that relate the error indicator εe and elemental cost
Ce to the step matrix on an element e. For DG, the error convergence
model is

εe � εe0e
tr�ReSe� (35)

where εe0 is the current error on element e, and Re is an element-
specific error rate tensor determined through an error sampling

process. For HDG, εe � εUe � εQe � εΛe , and

εUe � εUe0e
tr�RU

e Se�; εQe � εQe0e
tr�RQ

e Se�; εΛe � εΛe0e
tr�RΛ

e Se� (36)

whereRU
e ,R

Q
e , andRΛ

e are also found through error sampling. The
cost model is related to the trace of the step matrix, which indicates
the decrease of the area of an element. The local cost on element e is

Ce � Ce0e�1∕2�tr�Se� (37)

where Ce0 is the current cost on element e, before refinement,
measured by the number of degrees of freedom.
The updated Riemann metric field at the end of the optimization is

used as the input to the bidimensional anisotropic mesh generator
[26] to generate the updatedmesh. In practice, several iterations of the
mesh optimization and flow/adjoint solution are performed, and the
convergence of the targeted output is monitored.

V. One-Dimensional Results

A. Steady Linear Advection

We start by showing an example of a steady case of the linear
advection equation:

a
du

dx
� f (38)

The source term f is chosen so that the exact solution is

u�x� � tanh�256�x − 0.4�� � 3

2
(39)

which contains a sharp variation at x � 0.4.
The DG solutions of different polynomial orders on a uniform

mesh are shown in Fig. 1. The boundary values are fixed. The upwind
flux is used for advection, and the continuous artificial viscosity is
tested for stabilization. The artificial viscosity is able to reduce the
overshoots in the solutions, even at very high orders, up to p � 14
tested. The amount of the artificial viscosity can be tuned by changing
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Fig. 1 DG solutions for steady advection: a � 1.0, c0 � 1.8, and cp � 0.3, with and without artificial viscosity (AV).
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Fig. 2 DG and HDG solutions for unsteady advection: t � 1.0, Δt � 0.001, c0 � 1.0, and cp � 0.4.
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Fig. 3 DG and HDG solutions to the Burgers equation: N � 8, p � 9, t � 0.2:, Δt � 2 × 10−4, c0 � 2.0, and cp � 0.4.
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Fig. 4 Error convergence for DG and HDG solutions to Burgers equation.
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c0 and cp in Eq. (27) to further reduce the oscillations, but this comes

at the cost of the sharpness of the discontinuity. A tradeoff needs to be

made when deciding the amount of the artificial viscosity to add.

B. Unsteady Linear Advection

We demonstrate the ability of the continuous artificial viscosity to

stabilize a transient solution with an example of the Zalesak “wave

basket” [27] traveling with a constant speed of a � 1. The initial
condition is imposed by a least-squares projection of the analytical

solution to the order p approximation space. The solutions on a

uniform mesh after one period of the wave traveling are shown in

Fig. 2. The oscillations in the initial conditions, plotted as “IC,” are

caused by the least-squares initialization. In this case, we test DG and
HDG; and both methods preform similarly. The oscillations in the

solutions are greatly reduced by the addition of the artificial viscosity.

C. Unsteady Inviscid Burgers

We compare the use of the continuous piecewise linear artificial
viscosity to the discontinuous piecewise constant artificial viscosity

through an example of the one-dimensional inviscid Burgers equa-

tion

∂u
∂t

� u
∂u
∂x

� 0 (40)

with an initial sinusoidal wave

u0�x� � sin�2π�x − 0.5�� � 1 (41)

and periodic boundary conditions. A shock wave will start to form at

t � �1∕2π� as thewave propagates in space.We run the test case on a
uniform mesh. The Godunov scheme [28] is used for the advec-

tion flux.
In Fig. 3, we show the solution values and first derivatives for the

Burgers equation example. The derivatives of the solutions with the

discontinuous artificial viscosity aremore oscillatory for both theDG
and HDG cases.
Given the implicit characteristics solution u�x; t� � u�x − ut�, the

exact solution ue can be found iteratively at each point in space. We

define the L1 error of the solution asZ
1

0

ju − uej dx

and the L2 error of the solution as���������������������������������Z
1

0

�u − ue�2 dx
s

The convergence of the L1 and L2 errors is shown in Fig. 4. At
t � 0.05, the solution is smooth, and both DG and HDG show error
convergence of the corresponding orders of the methods. At t � 0.2,
a shock has formed, and the orders of error convergence for both DG
andHDGdrop to one. The errors for the piecewise constant artificial-
viscosity cases at t � 0.2 are, in general, bigger than those of the
continuous artificial-viscosity cases.
It is worth mentioning that the discontinuous artificial viscosity

tends to reduce the stability of the Newton–Raphson iterations when
the time step taken is relatively large. Although this instability can be
alleviated by smaller time steps or under-relaxation of the Newton–
Raphson iterations, it makes the solution with the discontinuous
artificial viscosity more costly (about 20% as compared to the p �
1 artificial viscosity for this test case). This is a more serious issue
when more artificial viscosity is added.
Moreover, if the amount of artificial viscosity is tuned downwithin

the reasonable range so that the capturing of the shock is sharper but
more oscillatory, the difference between the errors for the piecewise
constant and the piecewise linear artificial viscosities increases
further.

VI. Two-Dimensional Results

The two-dimensional test cases that we present are steady Euler
cases with artificial viscosity, which are solved on unstructured
triangular meshes with orders ofpε � 1 andp � 2. Laplace smooth-
ing is used for all cases unless specified otherwise.

A. Transonic Airfoil

We demonstrate the solver’s shock capturing ability and the effect
of Laplace smoothing with a transonic case at a freestream Mach
number ofM � 0.8 past a NACA 0012 airfoil at an angle of attack of
α � 1.25 deg. We run the case with both the resolution indicator
(C � 2) and the variation indicator (C � 0.5), with and without
Laplace smoothing, for more than 10 adaptive iterations based on
the drag adjoint. The drag convergence over the adaptive iterations is
shown in Fig. 5. The adapted mesh and solution for the resolution
indicator with Laplace smoothing are shown in Fig. 6. One main
shock appears above the airfoil, and a weak one appears below. Thin,
anisotropic elements are placed along the shock interface by themesh
adaptation process.
Because the refined elements of the unstructured mesh are not

perfectly alignedwith the shock, the nonlinear smoothness indicators
can cause oscillations in the artificial-viscosity values along the
shock. Therefore, oscillations can form along the shock in the sol-
utions. Laplace smoothing of the artificial viscosity has the potential
to alleviate this effect. To compare the solutions, a line probe is taken
of the entropy field behind the shock for the solutions on the final
adapted meshes. Figure 7 shows the entropy measured along the line
probe. Laplace smoothing is able to reduce the oscillations in the
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Fig. 5 Drag coefficient convergence for the transonic airfoil case.
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entropy for both the resolution and the variation indicators. Note that
the Laplace smoothing is for the elemental artificial viscosity, and it
happens during the process of setting up of the linear system for each
Newton–Raphson iteration. The increase in computational time due
to the smoothing iterations is negligible.
Figure 8 shows the pressure coefficient plots on the upper surface

of the airfoil. The difference between the location of the shock
determined with the resolution and the variation indicators is less
than 0.1% of the chord length for both DG and HDG. The resolution
of the shock improves as the mesh is refined.

B. Transonic Gaussian Bump

We investigate the errors in the total enthalpy generated by the
numerical scheme with a test case of M � 0.7 channel flow with a
smooth Gaussian bump geometry. The resolution indicator is used
with C � 4 for all the results presented for this case. The channel is
bounded in the region �−1.5; 1.5� × �0; 0.8�. The bump on the bottom
of the channel is defined by

y � 0.0625e−�x∕0.2�2 (42)

The total enthalpy should be conserved across the shock for an
exact inviscid solution.However, the added artificial viscosity aswell
as the inviscid flux function can serve as sources of total enthalpy.
Figure 9 shows a convergence study of the L2 error in the total
enthalpy, which is defined as

EH �
������������������������������������������R
Ω �H∕H∞ − 1�2 dΩR

Ω dΩ

s
(43)

on uniformly refined meshes. The modification of the state vector in
the stabilization term [i.e., a nonidentity tensor Tkl in Eq. (19)]
improves the total enthalpy solutions as well as the convergence rate.
However, due to the nonlinearity of the shock capturing method, the
convergence rate is still lower than one. The van Leer–Hänel flux
function further reduces the total enthalpy generation. However, the
use of the van Leer–Hänel flux function is found to impair the
stability of the numerical scheme.
In the results in Fig. 10, we comparemesh adaptation with the drag

adjoint andwith the entropy variables. The drag coefficient is defined
as

d
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Fig. 7 Line probe of entropy behind the shock.

Fig. 6 Transonic airfoil DG solution with the resolution indicator and Laplace smoothing; DOFs� 1 × 104.
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CD �
R
bottom�P − P∞�nx dl
�γ∕2�P∞M

2
∞h

(44)

wherenx is the horizontal component of the outward-pointing normal

vector, and h � 0.025 is the height of the bump. The drag coefficient

and the error in the total enthalpy both converge as the adaptation

progresses when using the drag adjoint, and they eventually hover

around the optimal values. However, when the entropy variables are

used for adaptation, the drag coefficient and the error in the total

enthalpy both eventually begin to increase after one point despite the

effort of the adaptation to put elements along the shock. This seems to

be relieved when the degrees of freedom increase, especially for the

drag coefficient.

Figure 11 displays the meshes for the two adaptive iterations

marked in Fig. 10. The mesh for iteration 9 contains more refined

elements along the shock, whereas the mesh in the rest of the flow

region is significantly coarsened. This iteration corresponds to the

higher error in both drag and total enthalpy. This observation suggests

that adaptation based on the entropy variables leads to meshes overly

focused on the shock, causing insufficient resolution in the rest of the

flow domain, and eventually results in inaccurate output values.

Adaptation based on the drag output, on the other hand, is able to

balance the resolution addition throughout the domain, producing

more accurate output values and better total enthalpy preservation.

C. Hypersonic Flow past a Cylinder

The last test case that we present is hypersonic (M � 5) flow past a

cylinder. A strong bow shock forms in front of the cylinder and

stresses the high-order shock capturing. Part of the flow region

behind the shock is subsonic, bounded within the M � 1 contour

lines. Supersonic outflow boundary conditions are used at the out-

flow boundaries. The definition of the error in the total enthalpy

varies slightly from the previous test case:
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DOF1/2

10-5

10-4

10-3

E
H
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Roe, constant H T
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Fig. 9 Total enthalpy error convergence on uniformly refined meshes
for the bump case using different diffusivity tensor transformations, as
defined in Eq. (19) (T = Jacobian matrix in Eq. (19); H = total enthalpy;
vLH = van Leer–Hänel flux).
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Fig. 8 Pressure coefficient distributions on the upper surface of the airfoil in transonic flow.
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Fig. 10 Drag and total enthalpy convergence during adaptation for the bump case.
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EH � 1

D

������������������������������������������Z
Ω
�H∕H∞ − 1�2 dΩ

s
(45)

where D � 2 is the diameter of the cylinder. Because the primary
source of enthalpy error is the region behind the shock, the length
scale that is of our concern is the cylinder diameter instead of the area
of the flow region.
We compare the DG and HDG performances by running both

discretizations on the same mesh, starting from M � 4.5 solutions.
The results are listed in Table 1. Compared to DG, HDG reduces the
degrees of freedom (DOFs) and the number of nonlinear iterations
required for convergence. However, the computational time does not
improve for this case of p � 2. Because HDG requires static con-
densation and backsubstitution solutions before and after each sol-
ution of the linear system, the advantage of HDG over DG in terms of
computational time is usually achieved with higher polynomial
orders, when the reduction in degrees of freedom from DG to HDG
is more drastic. In addition, HDG suffers from a weaker block-based
preconditioner due to its smaller, more numerous blocks relative to
DG; and this can increase the number of iterations taken by the linear
solver.
We compare the results obtained by adapting on the total enthalpy

output EH with those obtained by adapting using the entropy varia-
bles. The Gaussian bump test case demonstrated that the entropy
variables can intensively target the shock. The adaptive solutions
were run formore than 15 iterations, starting froman initial structured
mesh, until the outputs started oscillating about fixed values. The DG
results with the resolution indicator are shown in Fig. 12. The same
effect of the entropy variables is observed for the cylinder test case.
The total enthalpy adjoint targets the shock and refines in the region
behind the shock at the same time, whereas the entropy adjoint
focuses extensively on the shock wave.
The errors in the drag coefficient and the total enthalpy are shown

in Fig. 13. The drag coefficient is defined as

CD �
R
cylinder�P − P∞�nx dl
�γ∕2�P∞M

2
∞D

(46)

where nx is the horizontal component of the outward-pointing
normal vector. The values for drag and EH are found by averaging
the output values of the last five adaptive iterations. The DOF
counts plotted for both DG and HDG are the element-interior
degrees of freedom because that is what the MOESS algorithm
targets. The “exact” value of the drag was obtained with adaptation
onEH andDOFs � 38;400. The linear coefficientC in Eq. (20) has
to be tuned to achieve convergence, as listed in Table 2. With a
strong shock and the effect of the Laplace smoothing that smears

the values to some extent, we resort to larger stabilization values

than in the transonic cases. The variation indicator in general is

more robust and requires less tuning. Moreover, the iterative

convergence of HDG appears to be more sensitive to the amount

of the stabilization, and so the coefficient valuewas lowered on the

coarsest mesh.

Table 1 Time and iterations required to
converge to aM � 5 solution from aM � 4.5 one

DOFs Nonlinear iterations CPU time, s

DG 2400 2803 3.9405 × 102

HDG 1875 2670 8.2952 × 102

Fig. 11 Meshes adapted using the entropy variables for the bump case. The corresponding iterations are marked with the same circle marks in Fig. 10.
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Fig. 12 Adaptive DG results for M � 5 inviscid flow past a cylinder.
DOFs � 2400.
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The errors for a series of structured shock-fitted meshes are also

plotted in Fig. 13 for comparison. The shock-fittedmeshes are shown

in Fig. 14. To generate these meshes, the shock geometry is taken to

be theM � 3.5 contour line. Uniform spacing is used in the tangent

direction, and tanh spacing centered at the shock location is used to

find the grid point locations along the radial direction. The tanh

spacing is created with a transformation function that is applied to

a linear spacing, which is defined as

xtanh �
5

8
arctanh�xlinear� � 1 (47)

where xlinear ∈ �tanh�−1.6�; tanh�2.4��, and xtanh ∈ �0; 2.5�. The

radial locations of the mesh points are found as

r

R
� xtanh

�rs − R�
R

� 1 (48)

where rs is the location of the shock for a particular tangential

direction, and R � D∕2 is the radius of the cylinder. After finding
the grid points, the neighboring points are connected; and the

elements are divided in half to form a triangular mesh. The flow
solution is then found on the newly generated mesh, and the

mesh generation and solution process are repeated several times.

For the shock-fitted meshes, the elements are less skewed. C � 32
and C � 16 are used for DG and HDG, respectively, with

the resolution indicator; and C � 6 is used with the variation

indicator.
The mesh adaptation is evidently able to reduce the errors in both

the total enthalpy and the drag, achieving convergence rates close to

two for adaptation on EH. The adaptation with the entropy variables

shows worse convergence of EH . However, the error in drag is

reasonable. The drag does not seem to be affected too much by the

lack of resolution behind the shock. Finally, the resolution and the

variation indicator perform similarly for this case.
We also attempted mesh adaptation with the drag adjoint for this

case. However, the adaptation focuses on the adjoint features and

not as much on the shock, leading to an under-resolved shock and

spurious solutions. To see the refinement along the shock more

clearly, we show an example of a M � 2 case where the shock
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Fig. 13 Convergence plots for the cylinder case.

Fig. 14 Shock-fittedmeshes generated for comparison withmesh adap-
tation for the hypersonic cylinder case.

Table 2 C values in Eq. (20) for the
hypersonic cylinder case

Indicator DG HDG

Resolution 256 128 (coarsest)/256 (otherwise)
Variation 6 6
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is further away from the cylinder and the shock and the drag

adjoint features are more distinguishable. The adapted meshes

with p � 2 are shown in Fig. 15. From DOFs � 4800 to

DOFs � 9600, the mesh is not refined along the shock but only

on the adjoint features.

To determine whether this is a problem caused by the MOESS

algorithm or the output-based mesh adaptation, we ran the same case

with hanging-node adaptation [29,30]. The adaptation decides which

elements to refine based on the error indicators presented in Sec. IV.

Each adaptive iteration is governed by a fixed growth factor that is

chosen to be 1.3. The adapted meshes are shown in Fig. 16. With

hanging-node adaptation, the drag adjoint indicator leads to more

refinement behind the shock and close to the cylinder boundary as

compared to the total enthalpy adjoint indicator, but it does not

overemphasize the drag adjoint features.

This suggests that the shock under-resolution observed with the

MOESS may be due to a noisy error indicator that leads to a larger

spread of error magnitudes, an inaccurate error convergence rate

calculation via MOESS sampling in certain parts of the flow, and/or

an error indicator that does not respond well to refinement due to

singular adjoint features. A comparison of the distributions of the

adaptation error indicators between the drag adjoint and the total

enthalpy adjoint is shown in Fig. 17. The large error indicator values

for the dragadjoint case are localized to elements that are already small,

suggesting that theMOESS is fixatedoncertain primal/adjoint features

or their interaction. The adjoint features are specific to the drag output.

The enthalpy adjoint appears smoother, and this likelymakes the error

indicator more spread out. As the MOESS optimizes the mesh to

equidistribute the marginal error-to-cost ratio, large error indicators

in certain consistent regions will lead the MOESS to gravitate mesh

resolution to those regions, at the cost of lower resolution elsewhere.

Hanging-node adaptation is not as sensitive to the relative error mag-

nitudes because it only uses the magnitudes to select a fraction of

elements to refine, andhence it doesnot suffer the sameover-resolution

as long as the fixed fraction is sufficiently large. From Fig. 17, the

regions of overly high resolution for the MOESS appear to be the

Fig. 15 Adapted meshes with MOESS forM � 2 flow past a cylinder using the drag adjoint.

Total enthalpy adjointDrag adjoint

a) DOFs = 7605 b) DOFs = 12,105 c) DOFs = 5211 d) DOFs = 9306

Fig. 16 Adapted meshes with hanging node adaptation for M � 2 flow past a cylinder.
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leading-edge stagnation streamline and the intersection of the bow
shock and the adjoint “shock” (domain of influence boundary). Mit-
igating this output-based indicator disparity in the presence of strong
shocks, through smoothing of the adjoint or adjustments to the adjoint-
weighted residual calculation, is a topic for our future work.

VII. Conclusions

In this paper, the ability of the continuous artificial viscosity to
capture shocks in an adaptive-mesh setting for both the DG and HDG
discretizations was demonstrated through one-dimensional and two-
dimensional simulations. Results were presented that support generally
agreed upon ideas about the implementation of artificial-viscosity shock
capturing. It was found that the continuous artificial viscosity works
better than piecewise constant artificial viscosity in reducing oscillations
near discontinuities. In the case of hypersonic flow, continuous artificial
viscosity can potentially stabilize the cases that piecewise constant
artificial viscosity cannot.Moreover, the use of themodified state vector
in the added diffusion term is necessary to yield better total enthalpy
preservation when dealing with the Euler equations.
It was discovered that the variation indicator can result in faster

convergence most of the time because the resolution indicator relies
on a low-order projection and is more nonlinear. However, the
resolution indicator distinguishes the shock better from the other
variations in the flowfield, e.g., expansion waves.
In the current experiments, the mesh adaptation with the entropy

adjoint tends to focus too much on the shock, at the cost of reducing
the degrees of freedom in other areas that are key to total enthalpy
preservation and accurate output computation. Adaptation on the L2

error of the total enthalpy or an integrated force can lead to better
results in many cases.
Lastly, DG and HDG perform similarly in terms of the shock

capturing quality for the experiments presented, with the exception
that HDG is more sensitive to the amount of the artificial viscosity
added. HDG has the potential to reduce the cost of the solution
without compromising the solution quality.
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