
Journal of Computational Physics (2019)

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Output-based mesh adaptation for multifidelity PDE-constrained optimization

Guodong Chen∗, Krzysztof J. Fidkowski

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, United States

A R T I C L E I N F O

Article history:

Keywords: Multifidelity PDE-con-
strained optimization, Discretization
error, Adjoint-based error estima-
tion, Output-based mesh adaptation,
Unstructured mesh optimization

A B S T R A C T

In this paper, we present a method to control the discretization error in PDE-
constrained optimization problems using meshes adapted via adjoint-based er-
ror estimates. The method is capable of dealing with optimization problems
containing output constraints in which the mesh is adapted and itself optimized
to predict both objective outputs and constraint outputs with appropriate accu-
racy. We use unstructured mesh optimization to maximize accuracy of the
results for a given number of degrees of freedom. The error estimates drive
a multifidelity optimization process, preventing over-optimization on a coarse
mesh, or over-refinement on an undesired design. We demonstrate the ac-
curacy and efficiency of our proposed method on several airfoil optimization
problems governed by the compressible Navier-Stokes equations. We expect
the framework to be even more important for optimization problems with com-
plex systems, dramatic design changes, or high-accuracy requirements.

c© 2019 Elsevier Inc. All rights reserved.

1. Introduction

PDE-constrained optimization refers to the optimization of a system described by partial differential equations
(PDEs). It arises in many engineering and physics applications, as many complex systems are governed by PDEs,
including the heat equation in thermodynamics, the Navier-Stokes equations in fluid mechanics, Maxwell’s equations
in electromagnetism, the elasticity equations in structural dynamics, etc. Analytic solutions to these equations are
typically not accessible, so the design or optimization process in these systems highly depends on the numerical
solution of the underlying PDEs.

The design process combines the PDE analysis with numerical optimization methods. The PDE analysis (state
problem) is to solve the PDE for the state variables, given boundary and initial conditions. The optimization process
explores the design space to minimize the objective function based on the state variables. For the optimization algo-
rithms, both gradient-based and gradient-free methods can be used. Gradient-free methods, such as genetic algorithms

∗Corresponding author.
E-mail address: cgderic@umich.edu (Guodong Chen), kfid@umich.edu (Krzysztof J. Fidkowski)

2 Chen etal / Journal of Computational Physics (2019)

and neural networks may be made robust for non-smooth or non-convex problems [1], but they are generally not as
efficient as gradient-based methods, especially for problems with a large number of design parameters. Specifically,
gradient-based algorithms converge to the optimum with fewer evaluations of the objective function and lower cost,
even when taking into account the gradient calculation [2].

With the increasing power of modern computers and highly-developed numerical methods, numerical simulation
of large PDE systems is nowadays commonly carried out in design analysis. However, the number of functional eval-
uations needed to reach the optimum with gradient-free methods is still computationally taxing for high-dimensional
problems, so that gradient-based methods are extensively used in engineering design. Gradients with respect to each
design parameter are needed at every optimization iteration, which requires an accurate and efficient method for
estimating the sensitivities. Methods such as finite differencing, complex-step derivative approximation [3], and al-
gorithmic differentiation [4] depend on the number of design parameters, while the adjoint method [2, 5, 6, 7, 8] is
largely independent of the number of design parameters.

A diagram of practical PDE-constrained optimization with gradient based methods is shown in Figure 1(a). Many
error sources exist in the PDE analysis, which means that the optimizer is working on the information with numerical
errors. There are modeling errors when the real-world system is modelled with simplification assumptions, numerical
errors during the discretization of the PDE on the computational domain, and convergence errors when solving the
discretized system of equations. Modeling errors inherent to the PDEs can be reduced by model validation or choosing
more complex models, but the estimation of these errors is not addressed by our present work. Instead, we aim to
efficiently and robustly solve optimization problems in which the chosen model is assumed to be exact. In addition,
we do not address convergence errors, which can typically be controlled by appropriate solver settings. Therefore, the
numerical errors in the PDE-constrained optimization in this paper refer to the errors caused by the discretization of
the continuous equations on a finite-dimensional space.

Discretization errors strongly affect the reliability of the optimization objective and sensitivity calculations, and
hence the quality of the optimization results. Numerical errors appear in every single design analysis during the
optimization, and the effect becomes even more severe when the optimizer sequentially uses inaccurate data from the
numerical simulations. Figure 1(b) shows a simple optimization problem constrained by one dimensional advection-
diffusion PDEs. The numerical solution is from solves on a coarse uniformly distributed discretization. There is
only one local minimum for the original continuous problem, while for the discrete numerical solution, we find
a spurious local minimum caused purely by numerical errors induced by discretization. Depending on the starting
point, the optimizer may (a) get stuck to a spurious optimum created by numerical errors, or (b) work on the numerical
errors rather than on physics and converge to an incorrect optimum. In order to avoid these undesired behaviors, the
discretization errors must be carefully controlled in the optimization.

Numerical Simulations

Converged ?

F
inite

D
ifference

Optimizer Analysis

Outputs
Evaluations

Search Direction

Line Search

Yes

Sensitivity
Analysis

C
om

lex S
tep

A
lgorithm

ic
D

ifferentiation

No

Reality
Modeling Errors

Governing
Equations

System of
Equations

Numerical
Solution/Data

Discretization Errors

Convergence Errors

A
djoint

A
nalysis

(a) PDE-constrained optimization flow chart

Design variable

O
b

je
c

ti
v

e
 f

u
n

c
ti

o
n Spurious optimum

Numerical solution

Exact solution

Inaccurate optimum

Exact optimum

(b) Example of PDE-constrained optimization with numerical error

Fig. 1. PDE-constrained optimization with numerical error

For a single fixed design, the simulation accuracy and efficiency can be dramatically improved by adaptive meth-
ods in which discretization is iteratively improved through local mesh refinement and/or approximation order incre-
ment. Residual-based and feature-based error estimates and mesh adaptation can be robust for elliptic PDEs like
those of structural elasticity [9, 10, 11, 12], and several contributions have been made to integrate these approaches to
structure optimization problems [13, 14, 15]. However for hyperbolic systems like those governing fluid dynamics,

Chen etal / Journal of Computational Physics (2019) 3

errors can propagate by the convection-dominant nature of the system, making the prediction of regions requiring
high resolution non-intuitive. An alternative and more robust way to identify the important areas for the output of
interest is through adjoint solutions, which provide the sensitivity of the output to residual perturbations. The idea to
combine output error estimation and gradient-based optimization is natural, as both methods require output adjoint so-
lutions. Even though adjoint-based error estimation and mesh adaption have been successfully demonstrated in many
engineering problems [16, 17, 18, 19, 20, 21, 22, 23, 24], their potential application to optimization problems has not
received much attention. Lu [25] incorporated adjoint-based error estimation and mesh adaptation into gradient-based
optimization. The constraints are realized as simple quadratic penalty functions added to the objective. Progressive
optimization is used with mesh adaptation based on the error of the penalized objective. Nemec and Aftosmis [26]
modified the penalty terms to avoid vanishing of constraints error when they are satisfied. Li and Hartmann [27]
eliminated the constraint by trimming with an individual design variable, and introduced a multi-target adaptation
algorithm in which mesh adaptation targets the objective and constraint outputs equally on a fixed fidelity. Hicken
and Alonso [28] used the gradient norm error as the refinement indicator, actively control the first order optimality
condition, while approximating higher-order derivatives. Chen and Fidkowski [29] adopted an efficient error estimate
for the optimization problems accounting the effects of general output constraints, and used it to drive the progressive
optimization.

In most previous works on optimization combined with error estimation, mesh adaptation has only been used to
add refinement. However, in order to control the numerical error at each fidelity (error level), the mesh may get adapted
at many areas that are important for the intermediate designs but not necessary for the final optimal design, which
may quantitatively decrease the efficiency of the high-fidelity optimization level. Building on our previous work [29],
we employ a more sophisticated spatial adaptation method, unstructured mesh optimization through error sampling
and synthesis (MOESS) proposed by Yano and Darmofal [30]. A cost-based multi-level optimization framework is
developed in this work, at each optimization level the computational cost is restricted to a certain degrees of freedom.
Within the same optimization fidelity, the mesh is optimized for each design to predict both the objective and constraint
outputs accurately. The goal is to take the best use of a given degrees of freedom, so that the overall computational
cost of the high-fidelity optimization can be reduced.

The remainder of this paper proceeds as follows. We describe general PDE-constrained optimization problems
in Section 2 and the discontinuous Galerkin discretization in Section 3. Details of the error estimation and mesh
adaptation are given in Section 4 and Section 5 respectively. Section 6 presents the coupling of gradient-based
optimization with error estimation and mesh adaptation. The primary results are shown in Section 7, and Section 8
concludes the present work and discusses potential future work.

2. Optimization formulation

2.1. Continuous and discrete optimization
In general, the optimization problem can be stated as a search for the design x over the design space X that

minimizes a given objective function J ,

min
x

J (u, x), u ∈ U , x ∈ X

s.t. Re(u, x) = 0

Rie(u, x) ≥ 0

(1)

where J :U × X → R represents a scalar objective function, Re :U × X → Rne and Rie :U × X → Rnie denote ne

equality and nie inequality constraints, respectively. The objective and constraints are always defined by the outputs
(responses) of the PDEs, which consequently depend on the state variables u. The state u is the solution of the
governing equations, lying in the solution space U , which can be an infinite-dimensional space. In a variational
setting, the governing PDEs can be represented by a semi-linear from,

R(u, v; x) = 0, ∀ v ∈ V (2)

where V denotes an appropriately-defined test space for the given PDEs, and the semi-linear residual map R :U ×V→
R corresponds to the weak formulation of the PDEs. The state u ∈ U is solved within the design space X to satisfy
the governing PDEs, which implicitly defines u as a function of x: u = u(x). Moreover, the optimal deign x has to be

4 Chen etal / Journal of Computational Physics (2019)

in the feasible space F (X) = {x ∈ X : Re(u, x) = 0,Rie(u, x) ≥ 0} that satisfies the constraints. Depending on the
optimization algorithm, intermediate designs in an iterative process may not be in the feasible set.

Consider an infinitesimal state perturbation δu, added to the weak statement in Eqn. (2). An adjoint solution ψ ∈ V
can be defined as the sensitivity of the output of interest to the residual perturbation by the following relationship,

δJ = J (u + δu) − J (u) = δR = −R(u + δu,ψ) (3)

The infinitesimal state and residual perturbations can be related via residual linearization,

R(u + δu, v) = R′[u](δu, v), ∀ v ∈ V (4)

where the prime denotes the Fréchét derivative with respect to the arguments in the square brackets. Also linearizing
the output, we have

δJ = J ′[u](δu) = −R(u + δu,ψ) = −R′[u](δu,ψ) (5)

where Eqn. (3) and Eqn. (4) are used in the second and third equalities, respectively. For these linearizations to exist,
both the semilinear residual form and the output are assumed to be differentiable. In order for Eqn. (5) to be true for
any perturbations, the adjoint ψ ∈ V must be the solution of the continuous adjoint equation,

J ′[u](w) + R′[u](w,ψ) = 0, ∀ w ∈ U (6)

However, we cannot solve the PDEs in Eqn. (2) analytically most of the time, so we discretize the PDEs on the
computational domain, then the original PDEs and adjoint equation can be reformulated as: determine uh ∈ Uh and
ψh ∈ Vh such that

Rh(uh, vh) = 0, ∀ vh ∈ Vh (7)

J ′h [uh](wh) + R′h[uh](wh,ψh) = 0, ∀ wh ∈ Uh (8)

where Uh and Vh are finite dimensional functional spaces. The subscript h indicates a discretization of the PDEs,
including the approximation order and the spatial discretization. To simplify the analysis, we transfer the variational
statements into vector form, assuming the trial and test spaces are the same. Consider a complete basis set on the
state space and adjoint space, U = V = span{φi, i = 1, ...,N}, where N denotes the dimension of the functional space.
Then the state and adjoint solutions can be rewritten as linear combinations spanning over their approximation space,
uh =

∑N
i=1 Uh,i φi, ψh =

∑N
i=1 Ψh,i φi, so that uh and ψh can be uniquely defined by their associated coefficient vectors

Uh = [Uh,i]N
i=1 and Ψh = [Ψh,i]N

i=1. We can also define the residual vector as Rh = [Rh(uh, φi)]N
i=1 and the output as

Jh(Uh) = Jh(uh), now the state and adjoint equations can be written as

Rh(Uh) = 0 (9)(
∂Jh

∂Uh

)T

+

(
∂Rh

∂Uh

)T

Ψh = 0 (10)

Consequently, a fully discretized form of the original optimization problem, which augments the constraints with the
state equations, can be stated as

min
x

Jh(Uh, x), Uh ∈ RN , x ∈ X

s.t. Rh(Uh, x) = 0
Re

h(Uh, x) = 0

Rie
h (Uh, x) ≥ 0

(11)

The equality and inequality constraints are also vectorized in the equation above. In this paper, continuous and discrete
optimization refer to the optimization governed by PDEs in continuous and discretized form, while in other contexts
these terms may refer to the optimizations with continuous and discrete design spaces.

Chen etal / Journal of Computational Physics (2019) 5

2.2. Optimization via the adjoint

Inactive inequality constraints Rie
ia, do not affect the optimization explicitly, while the active ones Rie

a behave
like equality constraints. We omit the subscript h here for simpler exposition. In general, the inequality constraints
can also be transformed into equality constraints with non-negative slack variables [31]. For simplicity, we only
consider the active inequality constraints and the equality constraints, put together into one vector of trim constraints,
Rtrim = [Re Rie

a]T ,
Rtrim(U, x) = Jtrim(U, x) − J̄trim = 0 (12)

where J̄trim is a set of target trim outputs, for example, the target load in a structure optimization problem or the target
lift in an airfoil drag minimization problem. In order to distinguish the trim outputs from the objective output, we
denote the latter by Jadapt, as the objective output is directly targeted for adaptation.

The adjoint-based optimization is equivalent to searching for the stationary point of the Lagrangian function that
augments the governing equations with trim constraints,

L(U, x, λ,µ) = Jadapt(U, x) + λT R(U, x) + µT Rtrim(U, x) (13)

where λ,µ are the Lagrange multipliers associated with the state equations and the trim constraints, respectively.
By requiring stationarity with respect to the design variables x, the states U, and the Lagrange multipliers λ and

µ, we arrive at the first order necessary condition for optimality, or the Karush-Kuhn-Tucker condition,

∂L
∂x

=
∂Jadapt

∂x
+ λT ∂R

∂x
+ µT ∂Rtrim

∂x
= 0 (14a)

∂L
∂U

=
∂Jadapt

∂U
+ λT ∂R

∂U
+ µT ∂Rtrim

∂U
= 0 (14b)

∂L
∂λ

= R(U, x) = 0 (14c)

∂L
∂µ

= Rtrim(U, x) = 0 (14d)

The above optimality condition can be a large, coupled, nonlinear system, at least larger and more coupled compared
to the state and adjoint equations, especially for high-dimensional optimization problems. Solving this system in the
full space is intractable for complex systems, when the governing PDE solve is already challenging. One popular
alternative is to reduce the system size by eliminating the states U and the Lagrange multipliers λ and µ, correspond-
ingly, state and adjoint equations. The resulting system thus becomes a manageable one only with respect to the
design variables x. These kind of methods are termed as reduced space methods in contrast to the full space methods,
where the whole system is solved simultaneously. In this paper, we used the former approach for several reasons.
First of all, the PDE solver for large-scale state and adjoint equations have been developed for decades and are now
very efficient and robust. Another reason is that the whole system is often very ill-conditioned, whereas the four sub-
systems are typically better conditioned individually [32]. Additionally, most of the standard optimization packages
fail with very high dimensional systems.

In the reduced space method, we solve the state equations for a given deign each time, in other words, Eqn. (14c)
is always satisfied during the optimization. Then we can choose λ such that Eqn. (14b) is enforced after each states
solve,

λT = −

(
∂Jadapt

∂U
+ µT ∂Rtrim

∂U

)
∂R
∂U

−1

= (Ψadapt +Ψtrimµ)T (15)

Eqn. (15) gives a coupled adjoint variable λ that incorporates the adjoints of both the objective and the trim outputs,
Ψadapt and Ψtrim, which satisfy the discretized adjoint equation in Eqn. (10)

∂R
∂U

T

Ψadapt +
∂Jadapt

∂U

T

= 0,
∂R
∂U

T

Ψtrim +
∂Jtrim

∂U

T

= 0 (16)

With this specific choice of λ, we can evaluate the gradient of the Lagrangian function with respect to the design

6 Chen etal / Journal of Computational Physics (2019)

variables, starting with Eqn. (14a),

∂L
∂x

=
∂Jadapt

∂x
+ λT ∂R

∂x
+ µT ∂Rtrim

∂x

=
∂Jadapt

∂x
+ (Ψadapt)T ∂R

∂x
+ µT

[
∂Rtrim

∂x
+ (Ψtrim)T ∂R

∂x

]
=

dJadapt

dx
+ µT dJtrim

dx

(17)

The last equality is obtained via adjoint-based sensitivity analysis, where d(·)/dx denotes the total derivative with
respect to design variables by considering the states as an implicit function of x, U(x).

Now the optimization problem has been reduced to finding an optimal design x and the corresponding Lagrange
multipliers µ satisfying,

∂L
∂x

=
dJadapt

dx
+ µT dJtrim

dx
= 0

∂L
∂µ

= Rtrim = 0
(18)

However, since in a practical calculation, on a finite-dimensional space, the discretization error appears in both the
flow equations and the adjoint equations, optimality cannot be guaranteed even when Eqn. (18) is satisfied. The
present work focuses on controlling the error in the optimization problem via error estimation and mesh adaptation.

3. Governing equations and discretization

Evaluation of the objective and the constraints at each optimization step relies on the numerical simulation of the
system. The governing PDE considered here is transport in conservation form

∂u
∂t

+ ∇ · ~F(u,∇u) + S(u,∇u) = 0 (19)

which encompasses scalar advection-diffusion and the compressible Navier-Stokes equations. For the latter, u is the
conservative state vector composed by the flow variables, ~F denotes the total invicid and viscous flux vectors, and S
represents the source term required when modeling turbulence. When running Reynolds-averaged turbulent cases, we
use the Spalart-Allmaras one-equation model, with a negative turbulent-viscosity modification [33].

We discretize Eqn. (19) with the discontinuous Galerkin (DG) finite-element method, which is suitable for high-
order accuracy and hp-refinement [34, 35, 36]. The computational domain Ω is divided into a shape-regular mesh
Th consisting of Ne non-overlapping elements Ωe, Th = {Ωe :

⋃Ne
e=1 Ωe = Ω,

⋂Ne
e=1 Ωe = ∅}. In DG, the state is

approximated by piece-wise polynomials lying on the approximation space V p
h , with no continuity constraints imposed

on the approximations between adjacent elements. The approximation space consists of element-wise polynomials
and is defined as V p

h = {vh ∈ L2(Ω) : vh|Ωe ∈ P pe ,∀Ωe ∈ Th}, where P pe denotes polynomials of order pe on element
Ωe, a distribution that is not necessary uniform throughout the mesh. The weak form of Eqn. (19) follows from
multiplying the equation by test functions (taken from the approximation space), integrating by parts, and coupling
elements via unique inter-element fluxes. We use the Roe approximate Riemann solver [37] for the invicid flux, and
the second form of Bassi and Rebay (BR2) for viscous flux [38]. Choosing a basis for the test and trial spaces yields
a system of nonlinear, algebraic equations in the form of Eqn. (9)

RH(UH , x) = 0 (20)

Here, RH is the residual vector, a nonlinear function of the discrete state vector UH and the design variables x. For
the steady state problems considered in this work, RH is the discrete spatial residual vector. The subscript H refers to
discretization fidelity of the approximation/test space with respect to the approximation order and mesh refinement.

Chen etal / Journal of Computational Physics (2019) 7

4. Objective error estimation

4.1. Adjoint-based error estimation

In practice it is not possible to obtain the true numerical error for an output, whereas the difference between a
coarse space and fine space solution serves as an acceptable surrogate,

output error: δJ ≡ JH(UH) − Jh(Uh) (21)

In this expression, J represents the output of interest, and the subscripts h and H denote the fine and coarse spaces,
respectively. In the present work, the fine space is achieved by increasing the elements’ approximation order pe, to
pe + 1. We do not solve the nonlinear fine-space flow problem for the error prediction, and instead we use the linear
fine-space adjoint solution, Ψh. The adjoint weights the residual perturbation to produce an output perturbation,

δJ = JH(UH) − Jh(Uh)

= Jh(UH
h) − Jh(Uh) =

∂Jh

∂Uh
δU

= −ΨT
h δRh = −ΨT

h [Rh(UH
h) − Rh(Uh)]

= −ΨT
h Rh(UH

h)

(22)

where Uh is the (hypothetical) exact solution on the fine space, and UH
h is the state injected into the fine space from

the coarse one, which generally will not give a zero fine space residual, Rh(UH
h) , Rh(Uh) = 0. The derivation

of Eqn. (22) originates from the small perturbation assumptions, and is valid for outputs whose definition does not
change between the coarse and fine spaces, JH(UH) = Jh(UH

h).

4.2. Error estimation for optimization problems

Normally, error estimation is applied only to the output in which we are most interested, i.e. the objective. How-
ever, our optimization problem requires the simultaneous solution of flow equations and constraints, i.e. trim outputs.
The numerical error of the trim outputs may indirectly affect the calculation of the objective [39]. To take this effect
into account, the coupled adjoint should be used for the error estimation.

Consider a given design x, and suppose that the error of the objective only comes from the inexact solution UH
h .

We can estimate the error in the objective with the linearization given by Eqn. (14b),

δJadapt = −λT
h δRh − µ

T
h δR

trim
h = −λT

h Rh(UH
h) − µT

h δR
trim
h

= −(Ψadapt
h +Ψtrim

h µh)T Rh(UH
h) − µT

h (Jtrim
h (UH

h) − Jtrim
h (Uh))

= δJadapt − µT
h (Ψtrim

h)T Rh(UH
h) − µT

h δJ
trim

= δJadapt

(23)

This is consistent with the previous analysis without the trim conditions, since we keep the design fixed between
the coarse and fine spaces, and because we assume that the error only comes from the inexact state solution UH

h . In
general, however, we need to deal with both the objective error and the constraints error. The problem becomes worse
if we have high accuracy in the objective while little confidence in the constraint outputs, or vice versa. If we run the
optimization on the fine space and the coarse space, even with the same target constraint outputs, we will generally
obtain different designs. This difference may come from the deviation of both the design parameters and the flow
states, and separate error estimation and mesh adaptation for the objective and trim outputs can be inefficient.

If we consider the optimal design on the coarse space (UH , xH) and the fine space (Uh, xh), since the optimality
conditions Eqn. (14a) and Eqn. (14b) both hold now, the error comes from the inexact solution UH

h as well as the
deficient design xH ,

δJadapt
opt = −λT

h δRh − µ
T
h δR

trim
h = −λT

h Rh(UH
h , xH) − µT

h Rtrim
h (UH

h , xH)

= −(Ψadapt
h +Ψtrim

h µh)T Rh(UH
h , xH) − µT

h (Jtrim
h (UH

h , xH) − J̄trim)

= δJadapt(xH) + µT
h δJ

trim(xH) − µT
h (Jtrim

h (UH
h , xH) − J̄trim)

(24)

8 Chen etal / Journal of Computational Physics (2019)

Since the definition of the outputs is often the same on the coarse and fine spaces, we have that

Jtrim
h (UH

h , xH) = Jtrim
H (UH , xH) = J̄trim = Jtrim

h (Uh, xh) (25)

Hence, the last term in Eqn. (24) is often negligible for the optimal design, resulting a simpler form for the error of
the optimal objective,

δJadapt
opt = −(Ψadapt

h +Ψtrim
h µh)T Rh(UH

h , xH) = δJadapt(xH) + µT
h δJ

trim(xH) (26)

The error without the subscript opt is the output error without the trim constraints. Eqn. (26) gives a prediction of
optimal objective error on the coarse space due to the spatial discretization. With the advantages of adjoint-based
error estimation, we avoid the expensive solves of both the the optimal design xh and flow states Uh, i.e. the whole
optimization process on the fine space. However, the estimation requires the fine-space adjointsΨh as well as the fine-
space Lagrange multipliers µh. In our implementation, the fine-space adjoints Ψh are approximated by reconstructing
the coarse-space adjoints ΨH [23], while the Lagrange multipliers are extracted from the optimizer on the coarse
space.

Eqn. (26) provides the objective error estimate of the optimal design, which does not always hold during the
optimization process. Thus, it is neither the error of the objective nor the error of the constraints when the design is
away from optimal. However, it couples the objective error and constraints error, giving a better error level for the
whole optimization problem, so it is expected to serve as a better adaptation indicator for the optimization or constraint
problems. Moreover, in the multifidelity optimization framework, when most of the mesh adaptation happens after
a successful optimization on the current fidelity, Eqn. (26) works better than the objective error without constraints.
In this paper, we allow violation of the constraints during the optimization process, the constraints are only enforced
for the optimal design, while for the methods requiring the exploration path to be always feasible, Eqn. (25) holds for
every iteration, thereby the objective error estimate in Eqn. (26) is valid for all the intermediate designs.

5. Mesh refinement and optimization

5.1. Adaptation indicator

For a single output of interest, the error estimate can be localized in each element and serves as an indicator for
mesh adaptation. A common approach is to keep track of the elemental error contribution, taking its absolute value
as the indicator.

E = JH(UH) − Jh(Uh) = −ΨT
h Rh(UH

h) = −

Ne∑
e=1

ΨT
h,eRh,e(UH

h), εe ≡
∣∣∣ΨT

h,eRh,e(UH
h)

∣∣∣ (27)

where E denotes the total output error estimate, εe ≥ 0 is the error indicator for element Ωe.
For the optimization problem, the error estimate in Eqn. (26) can also be localized in each element and guides the

mesh adaptation.

εe =
∣∣∣∣−(Ψadapt

h,e +Ψtrim
h,e µh)T Rh,e(UH

h , xH)
∣∣∣∣ =

∣∣∣∣δJadapt
h,e + µT

h δJ
trim
h,e

∣∣∣∣ ≤ εadapt
e +

∣∣∣µT
h

∣∣∣ ε trim
e = εe,con (28)

where εe allows cancellations between objective and constraints error indicators, while εe,con provides a more conser-
vative error indicator.

A naive adaptation strategy is to adapt a fixed fraction of the mesh at each adaptation cycle, in which the elements
with highest errors are flagged for refinement. However, such a strategy cannot detect strong directional features,
such as shocks or boundary layers in flow problems. In order to provide anisotropic resolution, we have to include
the solution anisotropy with the error estimate in the adaptation techniques. We consider two anisotropic adaptation
strategies here: solution Hessian-based anisotropic mesh adaptation, mesh optimization via error sampling and error
synthesis (MOESS).

Chen etal / Journal of Computational Physics (2019) 9

5.2. Metric-based remeshing
A Riemannian metric field, M(~x), is a smoothly varying field of symmetric positive definite (SPD) tensors that

can be used to encode anisotropic information of the computational mesh, including desired mesh sizes and stretching
directions. At any point in the physical space, ~x, the metric tensor M(~x) provides a “yardstick” for measuring the
distance from ~x to another point infinitesimally far away, ~x + δ~x. The distance under the Riemannian metric is given
by

δl =
√
δ~xTM(~x)δ~x (29)

After choosing a Cartesian coordinate system and basis for d-dimensional physical space, M can be represented as
a d × d SPD matrix. The set of points at unit metric distance is an ellipse in 2D or an ellipsoid in 3D: eigenvectors of
M gives its principal axes, while the length of each axis (stretching) is the inverse square root of the corresponding
eigenvalue.

A mesh that conforms to a metric field is one in which all the edges have unit length under the metric, to some
tolerance. The metric-conforming mesh is not unique; however, a family of metric-conforming meshes have simi-
lar approximation properties [40]. The metric-conforming mesh generator used in this work is the Bi-dimensional
Anisotropic Mesh Generator (BAMG) [41]. BAMG requires a metric field which is specified at vertices of a back-
ground mesh to generate a new mesh described by the continuous metric field. For a desired new d-dimensional
simplex mesh, the mesh-implied metric can be obtained by solving a linear system for the d(d + 1)/2 independent
entries of Me at each element. The equations in this system enforce that each of the d(d + 1)/2 edges has unit
metric length. Then the discontinuous elemental metric field is averaged to the surrounding vertices using an affine-
invariant algorithm [42]. The metric-conforming mesh and mesh-implied metric give a way of converting between an
anisotropic mesh and a Riemannian metric field, a so called mesh-metric duality.

5.3. Hessian-based anisotropic mesh adaptation
Given a localized error estimate, an appropriate adaptation strategy can be determined by decreasing and equally

distributing the error [11]. In order to make the metric-based mesh adaptation efficient, stretched elements have to be
generated in areas where the solution exhibits high anisotropy. One dominant method for detecting the anisotropy is
to estimate directional interpolation error of a scalar solution [11, 43, 44]. For approximation order p = 1, the error
of a scalar solution u over an edge E in the mesh, with unit tangent vector s and length h, is given by

εE ∝
∣∣∣sT Hs

∣∣∣ h2 (30)

where H is the solution Hessian matrix,

Hi, j =
∂2u
∂xi∂x j

, i, j ∈ [1, ..., d] (31)

Suppose the edge conforms to a metric M, assumed constant along the edge. Since the edge is of unit length under
the metric measure,

lM =
√

sTMsh2 = 1 (32)

Then the interpolation error and metric are related by Eqn. (30) and Eqn. (32), and with the requirements of error
equidistribution, we have ∣∣∣sT Hs

∣∣∣
sTMs

= C (33)

where C is a constant defined by the desired error distribution. In order for Eqn. (33) to be valid for edges in any
principal direction, M can be chosen as

MH =
1
C

Q|Λ|QT =
1

h2
ref

Q|Λ|QT (34)

Here, Q denotes the orthonormal matrix containing the eigenvectors of H, andΛ as the corresponding diagonal matrix
containing its eigenvalues. href controls the absolute mesh size which can be determined by the error estimates and
desired error distribution [44]. Anisotropy detection based on the standard Hessian matrix is not suited for higher
order interpolation, due to the linear interpolation assumption used in the derivation of the Hessian-based method.

10 Chen etal / Journal of Computational Physics (2019)

Fidkowski and Darmofal [45] extended the Hessian-based anisotropy detection to general approximation order p by
estimating the p + 1st derivatives.

In order to equally distribute the error, we also need to predict the element size, or the number of the elements N f ,
in the adapted (fine) mesh. Let nk, not necessarily an integer, be the number of the fine-mesh elements contained in
element k at the original mesh. Denoting the current element size by hc

ref and the requested element size as h f
ref, nk can

be approximated as

nk =

hc
ref

h f
ref

d

(35)

Given an error tolerence e0, to satisfy the error equidistribution, each fine-mesh element is allowed an error of e0/N f ,
which means that each element k is allowed an error of nke0/N f . We relate the growth in elements to an error reduction
factor through an a priori estimate

nk
e0

N f︸︷︷︸
allowable error

= εk

h f
ref

hc
ref

p̄k+1

︸ ︷︷ ︸
a priori estimate

(36)

where εk is the current error indicator, p̄k = min(pk, γk), and γk is the lowest order of any singularity within element
k. Substituting Eqn. (35) into Eqn. (36) yields a relation between nk and N f .

nk
e0

N f = εkn−(p̄k+1)/d
k ⇒ n1+(p̄k+1)/d

k =
εk

e0/N f (37)

Substituting Eqn. (37) into N f =
∑

k nk, we can solve for N f . In practice, we use a fixed-growth refinement strategy
instead of relying on the a priori error estimate, i.e., assume N f = f growthNc at each adaptation iteration, nk and
h f

ref are determined by Eqn. (37) and Eqn. (35) respectively. Adaptation stops when we meet the error tolerence,
ε ≡

∑
k εk ≤ e0. For high-order solutions, the first d principal axes of the p + 1 directional derivatives are used to

characterize the element size and a priori error estimate.

5.4. Mesh optimization through error sampling and synthesis (MOESS)

Hessian-based anisotropic mesh adaptation has been shown to successfully detect solution anisotropy in many
applications. However, it relies on a scalar solution u, which should be carefully chosen to correlate to the chosen
output of interest. Also, an inflection in u may lead to inappropriate mesh stretching, and inadequate resolution may
occur where the magnitude of the Hessian is close to zero. In addition, the fixed-fraction adaptation strategy and
stop criterion used in Hessian-based adaptation can cause over-refinement for a design evaluation with certain error
requirements. Due to these deficiencies, extra degrees of freedom may need to be added when the design changes. This
kind of cost allocation may accumulate during the optimization, resulting in inefficiencies in practical applications.

In order to maximize the approximation potential of a mesh with a given number of degrees of freedom, we
consider a more sophisticated spatial adaptation method: unstructured mesh optimization through error sampling and
synthesis (MOESS). In MOESS, the mesh adaptation is formulated as an optimization problem in which the optimal
change of the metric field is iteratively determined based on a prescribed metric-cost model and a sampling-inferred
metric-error relationship. We briefly review this method and discuss its modifications in this section.

5.4.1. Error convergence model
The mesh optimization algorithm requires a model for how the error changes as the metric changes. Suppose that

a metric step matrix Se is imposed on an element Ωe with current error indicator of εe0. Instead of using a typical
priori model in Eqn. (36), a generalized error model taking account of the directional convergence property is given
in [30],

εe = εe0 exp[tr(ReSe)] ⇒
∂εe

∂Se
= εeRe (38)

where Re is a symmetric error convergence rate tensor containing the directional convergence information, while the
step matrix Se encodes both the size change and the stretching of the new element. The total error over the mesh is
the sum of the elemental errors, ε =

∑Ne
e=1 εe. During the optimization we will want to keep ε small, and we will want

to determine the optimal step matrices at each element, and hence the metric changes at mesh vertices, Sv. The rate

Chen etal / Journal of Computational Physics (2019) 11

tensor, Re, is determined separately for each element through a local error sampling procedure in which the element
is refined in different configurations and the resulting changes to the error are estimated.

For a triangular element, we consider four refinement options, indexed by i, as shown in Figure 2. We would
like to know how much the error would decrease under each refinement option. One expensive option is to refine the
element with the proposed cut, re-solve the primal and fine-space adjoint problems globally, and re-compute the error
estimate. Though accurate, this would be impractically expensive. Another option is to only solve the primal/adjoint
problems on a subset of the original mesh: the current element and its neighbors. This approach taken in [30] is
less accurate but still performs very well as globally-exact primal/adjoint states are not necessary to estimate the
error rate tensor. In this work we further simplify the estimation by not solving additional problems, even on a local
patch of elements. Instead, we use an element-local projection method [46] to approximate the fine-space adjoint in
semi-refined spaces associated with each refinement option.

Fig. 2. Four refinement options for a triangle. Each one is considered implicitly during error sampling, though the elements are never
actually refined.

5.4.2. Cost model
To measure the cost of refinement, we use degrees of freedom, dof, which on each element just depends on the

approximation order pe, assumed constant and equal to p over the elements. Again, we consider one element, Ωe,
with current cost Ce0, and a proposed metric step matrix Se. The cost allocation for the new configuration is inversely
proportional to the element area, which can be inferred from the metric,

Ce = Ce0

√
det(M1/2

0 exp(Se)M1/2
0)

det(M0)
= Ce0 exp

[
1
2

tr(Se)
]
⇒

∂Ce

∂Se
= Ce

1
2
I (39)

where Ce is the expected cost over the original element area after applying Se to the original metric. The total cost
over the mesh is the sum of the elemental costs, C =

∑Ne
e=1 Ce. During the optimization, we will want to determine the

optimal step matrices given fixed cost to minimize the total error indicator ε.

5.4.3. Mesh optimization algorithm
Given a current mesh with its mesh-implied metric (M0(~x)), elemental error indicator εe0, and the elemental rate

tensor Re, the mesh optimization problem can be formulated as

min
Sv

ε(Sv)

s.t. C(Sv) = const
(40)

where Sv is the step matrix at each vertex, and the elemental step matrix Se in the error and cost models takes
the algorithmic mean of its vertices’ step matrices. Again, using the Lagrangian function, we have the first order
optimality condition as

∂ε

∂Sv
+ λs

∂C
∂Sv

= 0 (41)

where λs is the global Lagrange multiplier, taking the same value in every element. We do not solve this problem
exactly, since this would be a very high-dimensional problem which may require extremely high computational ef-
fort, especially in an optimization problem where the optimal mesh changes as the design varies. Furthermore, the
error model based on the empirical local sampling may not represent the error exactly. Therefore, solving the mesh

12 Chen etal / Journal of Computational Physics (2019)

optimization problem exactly is inefficient and unnecessary. Instead, we follow Yano’s optimization approach, by
defining a “local” Lagrange multiplier,

λv =
∂ε/∂Sv

∂C/∂Sv
(42)

λv can be interpreted as the marginal improvement in the local error for a given investment in the local cost. The
optimization problem is to equally distribute λv over the mesh vertices, which eventually converge to the same solution
as Eqn. (41). In practice, the mesh optimization and state/adjoint solution are performed several times at a given target
cost, until the error stops changing. Then the target cost is increased to reduce the error further if desired.

6. Optimization approach

6.1. Optimization algorithm

To be consistent with the analysis for the optimization formulation in Section 2, the optimization algorithm
should involve the Lagrange multipliers. Sequential Least Square Programming (SLSQP) [47] with Broyden-Fletcher-
Goldfarb-Shanno (BFGS) type Hessian approximation [48] is used in this work. The weak Wolfe condition is used
to terminate the backtracking line search, ensuring a sufficient decrease at each optimization step. The gradients of
the objective function and the constraints are calculated by the adjoint method, per Eqn. (18), and the objective and
constraints are evaluated with the numerical solution of the state problem, Eqn. (19). The Lagrange multipliers asso-
ciated with the trim constraints are extracted after each optimization step as a surrogate for the fine space multipliers,
used in the error estimation for the objective in Eqn. (26).

6.2. Mesh adaptation in a multifidelity setting

With the requirements for high accuracy of the design, a fine discretization has to be chosen, so that the discrete
optimization problem approximates the original continuous problem with required accuracy. Instead of optimizing
on a mesh with fixed resolution, which would always require the highest fidelity for accurate calculations, the mesh
is progressively refined as the optimization proceeds, resulting in a multifidelity optimization.

Rather than performing optimization and mesh adaptation sequentially, one after another, an interactive framework
is introduced. Two possible ways to incorporate the mesh adaptation and design optimization are considered here:
optimization-driven adaptation and adaptation-driven optimization. In the former approach, the optimization tolerance
at each fidelity is prescribed by the user. The objective function is first evaluated on a relatively coarse mesh, and then
the error estimation and mesh adaptation are performed to control the numerical error to be below the optimization
tolerance at current fidelity, the allowable numerical error decreases as the optimization fidelity increases. The mesh
adaptation techniques used in this method is the Hessian-based anisotropic mesh adaptation. For the latter approach,
several mesh levels (degrees of freedom) are defined before the optimization. Again, we start with a fairly coarse
mesh, and then the mesh is optimized for each design to achieve the best accuracy. Once the objective change or the
gradient norm is smaller than the objective error estimate, the optimization terminates at the current cost level and
the fidelity increases through mesh adaptation with a higher cost. This approach is designed for MOESS to fulfill
the potential of the cost at each fidelity. According to the prescribed information for each method, we refer them as
error-based and cost-based methods respectively.

Compared with the fixed-fidelity optimization, unnecessarily fine meshes at the early stages of shape optimization
are avoided in the two proposed multifidelity frameworks. Moreover, the areas that introduce most of the error may
differ a lot for different designs during the optimization. Both approaches reduce the chance of over-refining areas
that are not relatively important for the final design, which is important if the adaptation mechanics do not allow for
coarsening. Compared with the multifidelity optimization without error estimation, the optimization tolerance and the
error estimate are tightly coupled to actively control the optimization at each step and avoid the waste of low-fidelity
convergence. Therefore, we expect the two methods can effectively prevent over-optimizing on a coarse mesh, or
over-refining on an unintended shape.

6.3. Consistent objective-sensitivity analysis

One should note that even at the same fidelity, the mesh is not necessarily fixed as in the traditional design
method. Rather, the mesh is also adapted if needed, e.g. refined in the error-based method or optimized in the cost-
based method to control the numerical error. Recall the discretized optimization problem in Eqn. (11), omitting the

Chen etal / Journal of Computational Physics (2019) 13

additional trim constraints for simplicity,

min
x

Jh(Uh(x), x)

s.t. Rh(Uh(x), x) = 0
(43)

The above problem formulation infers a dependence on the discretization h, i.e. the computational mesh. One could
prove that by refining the discretization, the discretized optimization problem converges to the continuous one. How-
ever, it should be mentioned that, the discretized optimization is an independent problem, which is characterized by
the behavior of both the continuous problem and the discretization induced error.

Jh(uh, x) = J (u, x) + Eh(u − uh, x) ⇒
dJh

dx
=

dJ
dx

+
dEh

dx
(44)

In general, the discretized objective is incorrect compared to the exact continuous objective due to the numerical
error. Consequently, the discretized objective gradient also involves the gradient of the error (assuming the error is
a continuous function with respect to the design parameters), which is unique to each discretization. If the mesh is
not adapted, then the numerical error may lead to a substantial deviation of the objective. However, the numerical
error does not affect the convergence of the discretized optimization problem, since the discretized gradient analysis is
consistent with the discretized objective function. In fact, if exact differentiation is used in Eqn. (44), one determines
the exact gradient of the discretized objective functional. Due to the consideration above, controlling the error of the
sensitivity seems to be of limited importance for the optimization process. However, objective sensitivity is commonly
used in the stopping criterion for the optimization problem, controlling the sensitivity error can ensure the optimality
condition [28].

In the proposed frameworks, inconsistent objective-sensitivity analysis may occur since we are changing the
discretized optimization problem every time we adapt the mesh. Although all of the problems are approximations
to the continuous optimization problem, each of them has their own behavior because of the embedded numerical
error. There may not exist a feasible gradient-based update path between two design and discretization pairs, since
the gradient depends on the discretization and hence cannot guide the update between different discretizations. For
the sake of consistent objective-gradient analysis, we update the design on the same mesh, and then perform mesh
adaptation if needed, yielding a sequence of designs and discretizations, which converges to the optimal design of the
continuous optimization problem,

{Jh} = {Jh0 (x0), Jh0 (x1), Jh1 (x1), ..., JhN−1 (xN), JhN (xN)} lim
hN→0

|JhN (xN) − J (x∗)| = 0 (45)

6.4. Algorithm overview
The proposed optimization frameworks with error estimation and mesh adaptation are summarized in Algorithm 1

and Algorithm 2, using error-based and cost-based approaches respectively. Optimization tolerance levels or cost
levels are specified by the user, driving the mesh adaptation to actively control the numerical errors. In this paper, we
assume the error estimation is accurate enough to represent the “true” numerical error, which may be inappropriate
when the adjoint is not well-resolved or when the problem is highly nonlinear. In practice, a safety factor η can be
used to ensure the numerical error to be always below the optimization tolerance; η = 1 is adopted in this paper.

7. Results

In this section, we first demonstrate the importance of controlling the numerical error in optimization with a prob-
lem constrained by one-dimensional advection diffusion equations. Then two-dimensional airfoil shape optimization
problems constrained by compressible Navier-Stokes equations are considered. The two methods proposed in Section
Section 6 are applied in the airfoil optimization to compare their effectiveness and efficiency.

7.1. Scalar advection-diffusion
We now take a closer look at the example shown in Figure 1(b), the system is governed by the one-dimensional

scalar advection-diffusion equation,

a
∂u
∂x
− ν

∂2u
∂x

= 0 x ∈ [0, L]

u(0) = 0 u(L) = 1
(46)

14 Chen etal / Journal of Computational Physics (2019)

Algorithm 1: optimization with error estimation and mesh adaptation (error-based)
input : initial deign x0, initial coarse mesh Th, optimization tolerance levels τ0, τ1, ..., τn, safety factor η ≤ 1
output: optimal design x∗ with controlled objective error E(Jh) ≤ τn

1 for l = 0, 1, ..., n do
2 set error tolerance as El ← ητl

3 while not converge do . optimization algorithm
4 compute objective function Jh(xl) and its error estimate δJh(xl)
5 while δJh > El do
6 adapt mesh Th

7 end
8 calculate objective gradient dJh/dx and update design xl . line search
9 end

10 finish optimization at level l, xl+1 = xl

11 end

Algorithm 2: Optimization with error estimation and mesh adaptation (cost-based)
input : initial deign x0, initial coarse mesh Th, cost levels C0,C1, ...,Cn, safety factor η ≥ 1
output: optimal design x∗ with optimal accuracy at given cost Cn

1 for l = 0, 1, ..., n do
2 while not converge do . optimization algorithm
3 optimize mesh Th to minimize numerical error at fixed cost Cl

4 calculate objective Jh(xl) and its error estimate δJh(xl)
5 set optimization tolerance τl = ηδJh

6 calculate objective gradient dJh/dx and update design xl . line search
7 end
8 finish optimization at level l, xl+1 = xl

9 end

The optimization problem is formulated as seeking an optimal Peclet number defined as Pe = aL/ν to minimize the
scalar gradient at a specified location,

min
x=Pe

∂u
∂x

∣∣∣∣∣
x=0.76L

(47)

The objective functional J = ∂u
∂x |x=0.76L is an implicit function of the design variable x (Peclet number) defined by the

underlying state equation. We discretize the continuous optimization problem using DG with approximation order
p = 2. Three computational meshes with the same degrees of freedom are tested: a uniformly-distributed mesh, an
isotropically-refined mesh, and an optimized mesh with MOESS, both starting from a coarser mesh. The discretized
objective functional on different meshes are shown in Figure 3(a). We see that the naive uniformly distributed mesh
produces a spurious optimum besides the expected one due to the discretization error, while the adapted meshes are
able to predict a reasonably accurate objective functional over the entire design space. Therefore, the optimization
performed on the uniform mesh can heavily depend the starting point, especially for gradient-based methods. The
optimizer may converge to the spurious local optimum if the descent direction is pointing to it. With the same degrees
of freedom, the adapted meshes based on objective error are more robust to the starting point, since the objective
shape over the design space is preserved by reducing the numerical error. However, the numerical error can hardly
be eliminated: we can only converge to the optimum by some tolerance comparable to the objective error, which is
always the case in most engineering applications. By zooming into the region near the exact optimum, we can see
that the uniform mesh has the highest error leading to a most inaccurate optimum. The optimized mesh tends to give
a better accuracy compared to the isotropically adapted mesh. In order to have a closer look at the spurious optimum,
we plot the state solution u(x) over the computational domain on different meshes in Figure 3(b). We can observe
a severe numerical oscillation near the location of interest for the solution on the uniform mesh, while the adapted
meshes are made to predict an accurate objective, which reduces the possibility of the occurrence of spurious optima.

Chen etal / Journal of Computational Physics (2019) 15

The numerical oscillation shown in Figure 3(b) is only one of the possible sources that may cause spurious optima.
Many physical features that are sensitive to numerical errors, such as boundary layers or shocks in flow problems, can
also potentially create spurious optima.

0 10 20 30 40 50 60

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Analytic solution

Uniform mesh

Isotropically adapted mesh

Optimized mesh(MOESS)

1 2 3 4 5 6 7 8

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

(a) Discretized objective functional on different meshes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

Analytic solution

Uniform mesh

Isotropically adapted mesh

Optimized mesh(MOESS)

0.7 0.72 0.74 0.76 0.78 0.8

-0.01

-0.005

0

0.005

0.01

0.015

(b) State solutions u at the spurious optima

Fig. 3. Optimization constrained by 1D scalar advection-diffusion PDE on different meshes

A comparison of the optimization on these meshes starting from different Peclet numbers is listed in Table 1. We
do not consider the error estimation and optimization coupling here since the error in the objective is fairly large on
these coarse meshes, which can cause early convergence for the optimization. The optimization tolerance is set to be
small enough compare to the numerical error. The optimization on the fixed uniform mesh converges to the spurious
optimum when the initial point is close to it, whereas the adapted meshes produce more accurate results that are more
robust to the starting point as expected. Furthermore, the optimization with optimized meshes produced by MOESS
exhibits better accuracy since the optimized meshes tend to obtain a better approximation of the objective over the
design space.

Table 1. Optimization results (advection-diffusion PDE) on different meshes (DG, p = 2, Ne = 8, optimization tol = 1e−10)

Initial design Mesh x∗h Jh(x∗h) ‖xh − x∗‖ ‖Jh(x∗h) − J (x∗)‖

x0 = 40
Uniform mesh 44.6029 -0.4970 40.7969 1.0645

Iso-adapted mesh 3.7215 -1.5472 0.0846 0.0142
Optimized mesh 3.8100 -1.5622 0.0040 0.0007

x0 = 20
Uniform mesh 3.6458 -1.5404 0.1602 0.0211

Iso-adapted mesh 3.8440 -1.5562 0.0380 0.0052
Optimized mesh 3.8100 -1.5622 0.0040 0.0007

7.2. Airfoil shape optimization

The simple example of the one-dimensional advection-diffusion problem shows the importance of controlling the
objective error in PDE-constrained optimization. However, it is more common in engineering applications to optimize
the objective subject to some constraints, where the numerical error can affect both the objective and constraint out-
puts. The error in the constraints can often indirectly affect the calculation of the objective, hence the mesh should be
adapted to predict both the objective and constraint outputs with appropriate accuracy. As a simple demonstration of
the constrained optimization approach, we consider two dimensional airfoil shape optimization problems in different
flow regimes, which impose different state PDE constraints to the optimization problem. The goal of the optimization
is to seek an optimal airfoil shape and incidence angle to minimize the drag coefficient subject to fixed lift trim condi-
tion and the minimum volume constraint. We only consider the numerical errors in the drag and lift calculations, and
the airfoil volume measurements are assumed to be exact.

16 Chen etal / Journal of Computational Physics (2019)

The airfoil is parametrized with 10 Hicks-Henne basis functions [49], and cubic curved mesh elements are used
to represent the boundary. At each line search iteration in the optimization, the objective function needs to be re-
evaluated, which requires a flow solution on the updated geometry, and hence a new mesh must be obtained every
time. Regeneration of a mesh, especially for a complex geometry or with high resolution, could be time-consuming
and non-trivial. And also for the purpose of objective-gradient consistency, mesh regeneration which may change
the mesh topology is not preferred here. Thus, an efficient way to update the computational mesh is needed, and in
this work, we use radial basis function (RBF) interpolation [50, 51] to deform the mesh for small shape changes and
the linear elasticity equations [52] for large deformations. We first show the effective way of controlling the error of
the optimization problem with a simple smooth laminar flow problem. Then the two different proposed adaptation
strategies are compared in a more challenging inviscid transonic flow problem. Finally, a more practical turbulent
transonic case is investigated.

7.2.1. Laminar, subsonic airfoil
A subsonic laminar flow case is first studied. The initial design is a NACA 0012 airfoil at zero angle of attack

with a free-stream Mach number M∞ = 0.5 and Reynolds number Re = 5000. Three optimization and error con-
trolling strategies are investigated: fixed (highest) fidelity optimization without error estimation and mesh adaptation,
multifidelity optimization with error estimation and mesh adaptation only on the objective (only the error in the drag
coefficient, cd, is controlled during the optimization), and the multifidelity optimization with meshes adapted on both
the objective and constraints as proposed in Section 4 (total error in the objective is restricted). We only consider the
effects of different error control strategies, thus only the Hessian-based adaptation mechanics is used here. Different
adaptation mechanics are compared in Section 7.2.2.

All of the optimization runs start from the same initial mesh consisting of 533 triangular elements with a DG p = 1
discretization. For the fixed-fidelity optimization, the mesh is first adapted to meet the objective tolerance, and then
no more mesh adaptation occurs during the optimization. In contrast, in the other two methods, the mesh is adapted
during the optimization, taking into account a changing error estimate. The initial symmetric airfoil should produce
zero lift at zero incidence, and thus the initial condition is further from feasible if a higher target lift is specified, which
means higher error of the outputs may appear during the optimization.

The target lift coefficient is set to be c∗l = 0.1 here with a minimum volume as 95% of the initial NACA 0012
airfoil, and the final optimization tolerance is 1 × 10−4 in the drag coefficient. We should expect the final meshes to
be comparable in size for all of the methods because of the same ultimate tolerance for the optimization. The meshes
during the optimization, however, may be quite different. The fixed fidelity mesh and the meshes at the same interme-
diate optimization fidelity for the multifidelity methods are shown in Figure 4. These meshes show that multifidelity
optimization significantly reduces the mesh size and computational resources during the early optimization iterations.
The drag adjoint and lift adjoint (density component) are also shown with the meshes for the two multifidelity opti-
mizations. Though the shape is not the same, the flow features and mesh sizes are similar. Most of the mesh adaptation
happens at the leading edge since the drag adjoint is the largest (and least resolved) near the airfoil nose, while the
proposed adaptation based on combined error estimation, Figure 4(d), adapts more on the trailing edge, which is also
important for accurate lift prediction.

The objective and constraint convergence history are shown in Figure 5(a) and Figure 5(b). From the convergence
plots, we see that the discretization error of the objective increases as the shape changes for the fixed-fidelity optimiza-
tion without mesh adaptation. The objective error may be above the optimization tolerance during the optimization
even though we start with a fairly fine mesh, and it converges to a noticeably different design compared to the results
of the other two methods with error control, as shown in Figure 5(c). On the other hand, the objective error is always
controlled to be below the optimization tolerance via mesh adaptation in the other two methods. However, the mesh
adapted only on the objective has similar but slightly lower constraint error compared to the fixed mesh. The proposed
method achieves lowest constraint error by taking it into account in the error estimation and adaptation, and of course
requires higher computational cost at the highest fidelity as shown in Figure 5(d). Furthermore, the fixed-fidelity
optimization requires the most iterations on the highest fidelity (the number of objective evaluations would be even
more because of the line search between each major iteration). Multifidelity frameworks benefit from fewer iterations
on the finest mesh since the they have better starting designs obtained from the coarser meshes.

Local Mach number contours of the final designs on the corresponding meshes achieved by all these three methods
are given in Figure 6. Again, we can see that the mesh adapts on both the objective and constraint has more refinement
on the airfoil upper surface around the trailing edge, which is important for accurate lift calculation while it has little

Chen etal / Journal of Computational Physics (2019) 17

(a) Initial mesh (b) Fixed fidelity

(c) Adapt only on drag, 1371 elements (Drag adjoint, −0.3 ∼ 0.9) (d) Adapt on both, 1302 elements (Lift adjoint, −16 ∼ 21)

Fig. 4. Initial mesh and intermediate meshes for different error controlling strategies

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0.053

0.054

0.055

0.056

0.057

0.058

0.059

0.060

c d

shaded area is optimization tol

initial mesh

first optimization step No adapt
Adapt on drag
Adapt on both

4 5 6

0.055

0.057

(a) Objective convergence history

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

0.00

0.02

0.04

0.06

0.08

0.10

c l

shaded area is optimization tol
Target trim output
No adapt
Adapt on drag
Adapt on both

7 8 9 10
0.098

0.100

0.102

(b) Constraint convergence history

0.0 0.2 0.4 0.6 0.8 1.0
x/c

0.06

0.04

0.02

0.00

0.02

0.04

0.06

z/
c

NACA 0012
No adapt
Adapt on drag
Adapt on both

(c) Initial and optimized shapes

0 1 2 3 4 5 6 7 8 9 10 11
Iterations

2000

4000

6000

8000

10000

12000

14000

16000

18000

D
eg

re
es

 o
f f

re
ed

om

No adapt
Adapt on drag
Adapt on both

(d) Mesh size evolution

Fig. 5. Optimization history and final designs for different error controlling strategies (laminar, subsonic)

18 Chen etal / Journal of Computational Physics (2019)

effect on the drag prediction. We take the optimized shape as well as the final mesh produced by all theses methods,
then increase the approximation order to p+1, and start a new optimization (fixed mesh) to get the ”exact” optimization
solutions on these meshes. Since the meshes are not fine enough, we do not expect the ”exact” solutions to be the
same. The main results for the optimization on different meshes are summarized in Table 2. Using Eqn. (26), we
decompose the error of the optimal objective into two parts: pure objective error (third column) and the error due to
inaccurate trim constraint (fourth column). If the mesh does not adapt to predict accurate constraints, the error in the
constraints can indirectly affect the objective, which is comparable to the pure objective error as shown in the table.
In the proposed method, both error sources are well controlled, as the optimal objective error estimate is below the
optimization tolerance. In this problem, we know that some refinements (leading edge) for accurate drag prediction
also improve the lift accuracy, however, the important areas for objective and constraints can be very different in some
problems [39], and adapting only on the objective can lead to undesired designs due to inaccurate constraints. By
comparing the difference between order p and p + 1 solutions, we also find the error estimate given by Eqn. (26) is
pretty close to the “exact” error in this problem. However, the adjoint-based error estimates can be inaccurate on very
coarse meshes or when the adjoints are not well resolved. In addition, the Lagrange multipliers extracted from the
optimizer can be inaccurate when the objective and constraint gradients are not accurate or when the problem is highly
nonlinear. We would not expect the error estimate in Eqn. (26) to be very accurate in these problems or situations, but
it can still give the user an estimate of the error level which can be a guideline for the optimization (a safety factor η
can be used to ensure the error to be sufficiently small compared to the optimization tolerance). The total optimization
costs are also compared in Table 2 by scaling with the wall time used by the fixed fidelity optimization. Though
the iterations on the finest meshes are reduced, we increase the total computational cost with error control and mesh
adaptation due to additional adjoint and flow solves. Those extra costs required for more accurate design can possibly
be reduced by more efficient adaptation techniques.

(a) Initial NACA 0012 airfoil (b) Optimized airfoil (fixed fidelity)

(c) Optimized airfoil (adapt on drag) (d) Optimized airfoil (adapt on both)

Fig. 6. Local Mach number contour (0 ∼ 0.6) for the initial and final designs (laminar, subsonic)

Chen etal / Journal of Computational Physics (2019) 19

Table 2. Laminar airfoil optimization results on different meshes (DG, p = 1, f inal optimization tol = 1e − 4)(
Jadapt

h,p

)∗
δJadapt µT

h δJtrim δJadapt
opt

(
Jadapt

h,p+1

)∗ ∥∥∥∥(Jadapt
h,p

)∗
−

(
Jadapt

h,p+1

)∗∥∥∥∥ Cost

Fixed mesh 5.53993E-2 1.347E-4 1.456E-4 2.803E-4 5.51980E-2 2.013E-4 1.00
Adapt on drag 5.53572E-2 9.060E-5 8.490E-5 1.755E-4 5.51814E-2 1.758E-4 1.11
Adapt on both 5.52243E-2 8.402E-5 7.009E-6 9.103E-5 5.51327E-2 9.160E-5 2.56

7.2.2. Inviscid, transonic airfoil
We apply the new objective error estimation to an optimization problem based on an inviscid transonic flow at

M∞ = 0.8 around the NACA 0012 airfoil. The initial angle of attack is α = 1.25◦, and the goal is to minimize the drag
with a target lift coefficient of c∗l = 0.4. Again the minimum volume of the airfoil is set as 95% of the initial design.
Although the transonic flow around the original NACA 0012 airfoil features a strong shock on the upper surface near
the trailing edge, we expect that the shape would be modified during the optimization such that the shock strength
is weakened or the shock is completely removed. The flow features and the outputs of interest are highly related to
the location and strength of the shock, which may change a lot during the optimization. Thus, error estimation and
mesh adaptation become more crucial in this case. In this problem, the mesh adaptation is based on the objective error
estimate including the constraint error effects. Meanwhile, shocks are one of the very common anisotropic features
in flow problems, since the flow field changes a lot in the direction normal to the shock while remains similar along
the shock direction. Therefore, two different anisotropic adaptation mechanics are tested here, the Hessian-based
mesh adaptation and mesh optimization via error sampling and synthesis (MOESS). Due to the different adaptation
mechanisms, the couplings between optimization and mesh adaptation are also different. The former uses an error-
based multifidelity optimization framework, while the latter adopts a cost-based one, as described in Algorithm 1 and
Algorithm 2, respectively.

We start with the same initial mesh used in the laminar case, the objective convergence histories for these two
adaptation mechanics are shown in Figure 7(a) and Figure 7(b). The objective on the initial mesh is not shown in
the plots for simplicity. Since the error estimates have already included the effect of the constraints, we do not show
the constraints convergence plots here. The optimization with Hessian-based mesh adaptation is performed with
user-specified multiple error levels with an ultimate tolerance of 1 × 10−4 for the objective. On the other hand, the
optimization using MOESS starts at a fairly low cost level, and degrees of freedom are added once the optimization
converges at current cost level. The optimization stops when the total objective error (setting to be the optimization
tolerance) is below 1 × 10−4. As shown in the convergence plots, these two methods have similar convergence for
this optimization problem. Most of the drag reduction happens at the lowest fidelity, where the flow solve is very
cheap, though quite inaccurate. Both methods converge fast at the highest fidelity by virtue of better starting shapes
obtained from the lower fidelity. We obtain fairly close optimal objective values as shown in Table 3. Compared with
the initial objective value cd,0 (the initial drag coefficient in the table is obtained by a very fine mesh on the original
NACA 0012 airfoil, not the first point in the convergence plot), the total drag is therefore reduced by around 95% for
both methods. The optimized shapes on these two meshes are also very similar as shown in Figure 7(d). The final
designs approach a flattened upper surface and a higher aft camber, resembling a super-critical airfoil. The mesh size
evolution is plotted in Figure 7(c). The mesh size (measured by dof) of the MOESS approach is much less than the
Hessian-based mesh adaptation, which will be discussed in detail later.

Mach number contours for the initial and final designs on the corresponding meshes are shown in Figure 8. The
initial strong shock is significantly weakened on the optimized airfoils. We can still see weak discontinuities in the
flow field, though, and the drag could be further reduced if more basis functions were used to parametrize the airfoil
shape and even higher fidelity flow calculations were performed. One can also notice that for the final designs in
Figure 8, the Hessian-based adaptation requires a mesh which is much finer compared to the mesh optimized by
MOESS. In fact, the optimized mesh only needs around half of the degrees of freedom required for the Hessian-based
method, as shown in Figure 7(c). The total optimization cost with MOESS is thus also around half of the cost needed
for Hessian-based adaptation as shown in Table 3. There are two main reasons making the optimization with MOESS
more efficient, one is the adaptation mechanics and the other is the optimization algorithm. The Hessian-based
mesh adaptation adapts where the scalar solution (Mach number here) anisotropy is large, which may not always
be necessary for accurate objective and constraint prediction, while MOESS has a better anisotropy detection of the

20 Chen etal / Journal of Computational Physics (2019)

2 4 6 8 10 12 14 16
Iterations

0.000

0.005

0.010

0.015

0.020

0.025
C d

Optimization tol
Objective

12 14 16

1.2 × 10 3

1.5 × 10 3

9 × 10 4

(a) Objective convergence history (Hessian-based adaptation)

1 3 5 7 9 11 13 15 17 19
Iterations

0.000

0.005

0.010

0.015

0.020

0.025

C d

Optimization tol
Objective

12 14 16 1810 3

1.2 × 10 3

1.4 × 10 3

(b) Objective convergence history (MOESS)

1 5 10 15 20
Iterations

5000

10000

15000

20000

25000

30000

D
eg

re
es

 o
f f

re
ed

om

Hessian-based adapt
MOESS

(c) Mesh size evolution

0.0 0.2 0.4 0.6 0.8 1.0
x/c

0.06

0.04

0.02

0.00

0.02

0.04

0.06

z/
c

NACA 0012
Hessian-based adapt
MOESS

(d) Initial and optimized shapes

Fig. 7. Optimization history and final designs for different adaptation mechanics (inviscid, transonic)

output-relevant anisotropy over the computational domain through local error sampling. Hence we observe many
refinements on the airfoil surface in Figure 8(b) which cannot be seen in Figure 8(c). With regard to optimization
algorithm, error-based multifidelity optimization can be inefficient since the mesh gets refined every time the error
is higher than the optimization tolerance, as the shape changes the mesh may get adapted in many areas that are
important for different shapes, accumulating over-refinement during the optimization. On the other hand, the mesh is
not necessary to be adapted as long as the error estimates are still below the tolerance even when the shape and flow
field change. This effect can be found in the optimization here, some intermediate optimization steps of these two
different methods are shown in Figure 9. In the 9th optimization step with Hessian-based mesh adaptation, we can see
there is a refinement aligned to the weak shock near the trailing edge in Figure 9(a). Nevertheless, this refinement stays
there at following optimization steps even though the weak shock has moved forward since the error estimates are
still below the optimization tolerance. Thus we lose the approximation capacity of these degrees of freedom. On the
contrary, for the shape optimization combined with mesh optimization, we have refinements that always align to the
weak shock on the top surface, and we can also observe that more anisotropic elements are added to the airfoil surface
to improve the outputs accuracy, with the total degrees of freedom remaining the same. Therefore, for optimization
with dramatic design changes or with complex systems involving strong anisotropy, MOESS will be more efficient
and effective.

Table 3. Inviscid transonic airfoil optimization results on different meshes (DG, p = 1)

cd,0 cd,opt δcd,opt ‖cd,opt − cd,0‖/cd,0 Cost

Hessian-based 2.242E − 2 1.140E-3 6.708E-5 94.92% ± 0.30% 1.00
MOESS 1.136E-3 8.752E-5 94.93% ± 0.39% 0.53

Chen etal / Journal of Computational Physics (2019) 21

(a) NACA 0012 airfoil (b) Final design (Hessian-based adaptation) (c) Final design (MOESS)

Fig. 8. Local Mach number (0 ∼ 1.6) for the initial and final designs (inviscid, transonic)

(a) Hessian-based adaptation, 9th, 10th and 12th optimization step from left to right

(b) MOESS, 16th,17th and 19th optimization step from left to right

Fig. 9. Intermediate meshes for different adaptation mechanics (inviscid, transonic)

22 Chen etal / Journal of Computational Physics (2019)

7.3. Turbulent, transonic high-lift airfoil

The final problem considered in this paper is a more sophisticated turbulent case: optimization of a transonic airfoil
with a high lift demand, starting with the RAE 2822 airfoil. The initial angle of attack is 2.79◦ with a freestream Mach
number of M∞ = 0.734 and Reynolds number Re = 6.5 × 106. The target lift coefficient is set to be c∗l = 0.824, and
the airfoil volume is restricted to be no smaller than the initial value. The starting mesh for the turbulent case consists
of 1448 elements, which is finer than the initial mesh used for the laminar and transonic runs. An approximation order
of p = 2 is used in this case.

The initial mesh and the meshes used in the optimization are summarized in Figure 10. For the turbulent case,
most of the adaptation focuses on resolving the boundary layer, which is highly anisotropic. Therefore, many degrees
of freedom are put into the boundary layer with anisotropic elements around the airfoil boundary. Once the boundary
layer is properly resolved, the objective error drops down very quickly. Then, more degrees of freedom are added to
the upper surface to resolve the flow field changes along the flow direction.

The mesh size and objective are collected at each optimization step as shown in Figure 11. Here we assume that
at a given fixed cost, the objective error on optimized meshes should be close if the physics are similar. This can
also be observed in Figure 11(a), however we do see some oscillations of the error at coarse and medium meshes,
which are caused by the shape changes and hence the different physics (shock strength and location). At the highest
fidelity we expect only small changes in the shape, and the objective error remains almost the same, which means that
both the shape and the mesh converge to an optimum. The initial and optimized airfoils are compared in Figure 12.
As shown in Figure 12(c), the optimization flattens the upper surface near the forward section, while curving the
lower surface and increasing the thickness in the aft section. The curvature reduction on the top surface is trying to
smooth the flow acceleration region to weaken the shock. The thickened lower surface and aft section are required
to maintain the lift and area constraints. This can be further observed in the Mach contours shown in Figure 12(a)
and Figure 12(b), where the initial strong shock is significantly reduced. Hence the strong discontinuity is absent
in the airfoil surface pressure distribution in Figure 12(d). Therefore the final design yields a drag coefficient of
cd,opt = 1.0506E−2± 2.8000E−5, achieving a 43.73%± 0.15% drag reduction compared with the initial design which
produces a drag of cd,0 = 1.8671E−2 (the initial drag coefficient is obtained with an optimized finer mesh on the
original design).

8. Conclusion

In most PDE-constrained optimizations, we work with discretized governing equations. Thus, numerical error
should be carefully controlled to ensure convergence to the “true” optimal design at a prescribed fidelity. Without
properly controlling this error, the optimizer may arrive at a sub-optimal design or even at an incorrect spurious
optimum with inaccurate information provided by the PDE solver and gradient analysis as shown in the test cases.

In this work, we presented frameworks that integrate output-based error estimation and mesh adaptation with a
traditional gradient-based algorithm. A coupled adjoint is also introduced, offering a way to include the constraints
error into the objective error estimation. The multifidelity optimization approach consists of progressive refinement
of the computational mesh and is capable of preventing over-optimizing and over-refining. The mesh adaptation
(fidelity increase) is tightly coupled with the optimization algorithm either with error-based or cost-based strategy.
The optimization with mesh optimization via error sampling and synthesis (MOESS) is shown to be more efficient
and effective by fulfilling the approximation potential of given cost. This benefit can become more significant when
higher fidelity is required, or highly anisotropic physics governs the system.

With more judicious considerations of the objective functions and constraints, and additional design parameters,
the new methods can provide realistic configurations in practical design scenarios. The fidelity increase is presently
driven by an adaptation tolerance or a computational cost that increases or decreases by a fixed factor each time, or
has to be specified by the user. However, for more practical problems, without a priori knowledge of the objective
convergence, an improved and automated fidelity increase strategy should be developed to fulfill the potential of the
present optimization framework to increase the accuracy and efficiency for PDE-constrained optimization problems.
Furthermore, only the mesh adaptation (h−adaptation) is considered here to control the numerical error. More efficient
adaptation mechanics like approximation order increment (p−adaptation), and combinations (hp−adaptation) can also
be applied to current methods in the future.

Chen etal / Journal of Computational Physics (2019) 23

(a) Initial mesh (b) Mesh at first step (dof = 8000)

(c) Mesh at 17th step (dof = 16000) (d) Final mesh (dof = 32000)

Fig. 10. Initial mesh and intermediate meshes during the optimization (turbulent, transonic)

1 5 10 15 20 25
Iterations

0.010

0.012

0.014

0.016

0.018

0.020

C d

Opt tol
Objective

14 16 18 20 22

1.05 × 10 2

1.1 × 10 2

1.13 × 10 2

(a) Objective convergence

1 5 10 15 20 25
Iterations

10000

15000

20000

25000

30000

D
eg

re
es

 o
f f

re
ed

om

(b) Mesh evolution

Fig. 11. Objective convergence history and mesh evolution (turbulent, transonic)

24 Chen etal / Journal of Computational Physics (2019)

(a) RAE 2822 airfoil (b) Optimized airfoil

0.0 0.2 0.4 0.6 0.8 1.0
x/c

0.06

0.04

0.02

0.00

0.02

0.04

0.06

z/
c RAE 2822

Optimized airfoil

(c) Initial and optimized shapes

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

0.5

1.0

1.5

c p

Initial
Optimized

(d) Pressure distribution

Fig. 12. Local Mach Number (0 ∼ 1.3) and pressure distribution for the initial and final designs (turbulent, transonic)

Acknowledgments

The authors acknowledge the support of the Boeing Company, with technical monitor Dr. Mori Mani, and the
Department of Energy under grant DE-FG02-13ER26146/DE-SC0010341.

References

[1] P. Hajela, Nongradient methods in multidisciplinary design optimization-status and potential, Journal of aircraft 36 (1999) 255–265.
[2] J. R. Martins, J. J. Alonso, J. J. Reuther, A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design, Optimization

and Engineering 6 (2005) 33–62.
[3] J. R. Martins, P. Sturdza, J. J. Alonso, The complex-step derivative approximation, ACM Transactions on Mathematical Software (TOMS)

29 (2003) 245–262.
[4] A. Griewank, A. Walther, Evaluating derivatives: principles and techniques of algorithmic differentiation, volume 105, Siam, 2008.
[5] A. Jameson, Aerodynamic design via control theory, Journal of scientific computing 3 (1988) 233–260.
[6] J. J. Reuther, A. Jameson, J. J. Alonso, M. J. Rimlinger, D. Saunders, Constrained multipoint aerodynamic shape optimization using an

adjoint formulation and parallel computers, part 1, Journal of aircraft 36 (1999) 51–60.
[7] W. K. Anderson, V. Venkatakrishnan, Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation, Com-

puters & Fluids 28 (1999) 443–480.
[8] M. B. Giles, N. A. Pierce, An introduction to the adjoint approach to design, Flow, turbulence and combustion 65 (2000) 393–415.
[9] O. C. Zienkiewicz, J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineerng analysis, International journal for

numerical methods in engineering 24 (1987) 337–357.
[10] I. Babuška, A. Miller, A feedback finite element method with a posteriori error estimation: Part i. the finite element method and some basic

properties of the a posteriori error estimator, Computer Methods in Applied Mechanics and Engineering 61 (1987) 1–40.
[11] O. Zienkiewicz, J. Zhu, Adaptivity and mesh generation, International Journal for Numerical Methods in Engineering 32 (1991) 783–810.
[12] R. Mueller, D. Gross, G. Maugin, Use of material forces in adaptive finite element methods, Computational Mechanics 33 (2004) 421–434.
[13] N. Kikuchi, K. Y. Chung, T. Torigaki, J. E. Taylor, Adaptive finite element methods for shape optimization of linearly elastic structures, in:

The Optimum Shape, Springer, 1986, pp. 139–169.
[14] N. Banichuk, F. Barthold, A. Falk, E. Stein, Mesh refinement for shape optimization, Structural optimization 9 (1995) 46–51.
[15] A. Schleupen, K. Maute, E. Ramm, Adaptive fe-procedures in shape optimization, Structural and Multidisciplinary Optimization 19 (2000)

282–302.

Chen etal / Journal of Computational Physics (2019) 25

[16] N. A. Pierce, M. B. Giles, Adjoint recovery of superconvergent functionals from pde approximations, SIAM review 42 (2000) 247–264.
[17] R. Becker, R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta numerica 10 (2001)

1–102.
[18] R. Hartmann, P. Houston, Adaptive discontinuous galerkin finite element methods for the compressible euler equations, Journal of Compu-

tational Physics 183 (2002) 508–532.
[19] D. A. Venditti, D. L. Darmofal, Grid adaptation for functional outputs: application to two-dimensional inviscid flows, Journal of Computa-

tional Physics 176 (2002) 40–69.
[20] M. A. Park, Adjoint-based, three-dimensional error prediction and grid adaptation, AIAA journal 42 (2004) 1854–1862.
[21] K. Mani, D. J. Mavriplis, Error estimation and adaptation for functional outputs in time-dependent flow problems, Journal of Computational

Physics 229 (2010) 415–440.
[22] K. J. Fidkowski, Y. Luo, Output-based spacetime mesh adaptation for the compressible navierstokes equations, Journal of Computational

Physics 230 (2011) 5753 – 5773.
[23] K. J. Fidkowski, D. L. Darmofal, Review of output-based error estimation and mesh adaptation in computational fluid dynamics, AIAA

journal 49 (2011) 673–694.
[24] K. J. Fidkowski, Output-based space–time mesh optimization for unsteady flows using continuous-in-time adjoints, Journal of Computational

Physics 341 (2017) 258–277.
[25] J. Lu, An a posteriori error control framework for adaptive precision optimization using discontinuous Galerkin finite element method, Ph.D.

thesis, Massachusetts Institute of Technology, 2005.
[26] M. Nemec, M. Aftosmis, Output error estimates and mesh refinement in aerodynamic shape optimization, in: 51st AIAA Aerospace Sciences

Meeting including the New Horizons Forum and Aerospace Exposition, 2013, p. 865.
[27] D. Li, R. Hartmann, Adjoint-based airfoil optimization with discretization error control, International Journal for Numerical Methods in

Fluids 77 (2015) 1–17.
[28] J. E. Hicken, J. J. Alonso, Pde-constrained optimization with error estimation and control, Journal of Computational Physics 263 (2014)

136–150.
[29] G. Chen, K. Fidkowski, Airfoil shape optimization using output-based adapted meshes, in: 23rd AIAA Computational Fluid Dynamics

Conference, 2017, p. 3102.
[30] M. Yano, D. L. Darmofal, An optimization-based framework for anisotropic simplex mesh adaptation, Journal of Computational Physics

231 (2012) 7626–7649.
[31] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge university press, 2004.
[32] G. Biros, O. Ghattas, Parallel lagrange–newton–krylov–schur methods for pde-constrained optimization. part i: The krylov–schur solver,

SIAM Journal on Scientific Computing 27 (2005) 687–713.
[33] S. R. Allmaras, F. T. Johnson, Modifications and clarifications for the implementation of the spalart-allmaras turbulence model, in: Seventh

international conference on computational fluid dynamics (ICCFD7), 2012, pp. 1–11.
[34] C. E. Baumann, J. T. Oden, A discontinuous hp finite element method for convection-diffusion problems, Computer Methods in Applied

Mechanics and Engineering 175 (1999) 311 – 341.
[35] P. Houston, E. Süli, hp-adaptive discontinuous galerkin finite element methods for first-order hyperbolic problems, SIAM Journal on

Scientific Computing 23 (2001) 1226–1252.
[36] L. Wang, D. J. Mavriplis, Adjoint-based h-p adaptive discontinuous galerkin methods for the 2d compressible euler equations, Journal of

Computational Physics 228 (2009) 7643 – 7661.
[37] P. L. Roe, Approximate riemann solvers, parameter vectors, and difference schemes, Journal of computational physics 43 (1981) 357–372.
[38] F. Bassi, S. Rebay, Gmres discontinuous galerkin solution of the compressible navier-stokes equations, in: Discontinuous Galerkin Methods,

Springer, 2000, pp. 197–208.
[39] B. A. Rothacker, M. Ceze, K. Fidkowski, Adjoint-based error estimation and mesh adaptation for problems with output constraints, in: 32nd

AIAA Applied Aerodynamics Conference, 2014, p. 2576.
[40] A. Loseille, F. Alauzet, Continuous mesh model and well-posed continuous interpolation error estimation, Ph.D. thesis, INRIA, 2009.
[41] F. Hecht, Bamg: bidimensional anisotropic mesh generator, User Guide. INRIA, Rocquencourt (1998).
[42] X. Pennec, P. Fillard, N. Ayache, A riemannian framework for tensor computing, International Journal of computer vision 66 (2006) 41–66.
[43] M. Castro-Diaz, F. Hecht, B. Mohammadi, O. Pironneau, Anisotropic unstructured mesh adaption for flow simulations, International Journal

for Numerical Methods in Fluids 25 (1997) 475–491.
[44] D. A. Venditti, D. L. Darmofal, Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, Journal of

Computational Physics 187 (2003) 22–46.
[45] K. J. Fidkowski, D. L. Darmofal, A triangular cut-cell adaptive method for high-order discretizations of the compressible navier–stokes

equations, Journal of Computational Physics 225 (2007) 1653–1672.
[46] K. Fidkowski, A local sampling approach to anisotropic metric-based mesh optimization, in: 54th AIAA Aerospace Sciences Meeting, 2016,

p. 0835.
[47] D. Kraft, A software package for sequential quadratic programming, Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace Center—

Institute for Flight Mechanics, Köln, Germany (1988).
[48] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics of computation 19 (1965) 577–593.
[49] R. M. Hicks, P. A. Henne, Wing design by numerical optimization, Journal of Aircraft 15 (1978) 407–412.
[50] S. Jakobsson, O. Amoignon, Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization, Computers

& Fluids 36 (2007) 1119 – 1136.
[51] T. Rendall, C. Allen, Efficient mesh motion using radial basis functions with data reduction algorithms, Journal of Computational Physics

228 (2009) 6231 – 6249.
[52] J. E. Hicken, D. W. Zingg, Aerodynamic optimization algorithm with integrated geometry parameterization and mesh movement, AIAA

journal 48 (2010) 400–413.

