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Adaptive mesh refinement driven by combining an error indicator derived from using an
adjoint on a user-specified engineering scalar output and one derived directly from entropy
variables has previously shown benefits in cost and accuracy for many applications. By
leveraging indicators obtained from both approaches, the relative downsides of each approach
can be limited. Numerous examples of both steady and unsteady simulations using a variety of
governing equations highlight the possible benefits to both accuracy and cost that a combined
error indicator approach can present. Previous works demonstrating this approach all relied on
a discontinuous Galerkin (DG) discretization. In this work, the characteristics of the combined
approach are demonstrated using a continuous finite element formulation, the streamline
upwind/Petrov Galerkin (SUPG) method. Despite using a completely different discretization,
similar advantages of the combined approach are demonstrated for simulations that use the
steady-state inviscid Navier-Stokes equations. In addition, direct comparisons of error estimates
and adaptive meshes are made for the various adaptive strategies using both SUPG and DG
formulations.

I. Introduction
Solution-based adaptive methods that use an error indicator to drive computational mesh adaptation have long been

a popular approach in Computational Fluid Dynamics (CFD) to obtain accurate solutions for problems that exhibit
a wide range of spatial length scales [1–7]. Numerous examples in the literature detail extensive analysis of various
indicators and their relative performance, robustness, and accuracy.
One popular approach involves a user-specified engineering scalar output [4, 8, 9] to drive adaptation through the

use of an adjoint. This approach is advantageous since the indicator specifically targets areas of the computational
domain that are critical to the prediction of the desired output [3, 4, 10, 11]. The downside of this approach is that it can
be computationally expensive, since it requires the implementation of a transpose linear solver and since it involves
quantities that must be computed in a refined-space computational domain. Another downside is that the output-based
approach is not always effective due to a suboptimal approximation of the adjoint, especially in the presence of adjoint
singularities such as on a leading-edge stagnation streamline and near an airfoil trailing edge[12]. These singularities
lead to noise in the error estimate, which leads to areas of unnecessary, based on our tests, over-refinement of the
computational mesh. Another approach leverages entropy variables instead of a separate adjoint computation [13, 14].
Using entropy variables is less computationally expensive since these variables can be computed from a direct variable
transformation of the conservative state. Entropy-variable indicators, unfortunately, target all regions of the domain
where spurious entropy is produced, e.g. shocks or 3D vortices. Therefore, this approach is not as globally discriminating
as the output-based approach.
Since each of the two aforementioned approaches has its strengths and weaknesses, a new approach was implemented

that combines both indicators to drive the adaptation. Extensive research was previously done to show the benefits
of various approaches to combining the indicators for both steady-state and unsteady simulations using a variety of
governing equations [15–17]. All of the previous work on this subject used a discontinuous Galerkin (DG) formulation
for the spatial discretization. In this work, the combined approach is further analyzed, this time using a stabilized
continuous finite-element formulation.
The streamline upwind Petrov–Galerkin (SUPG) method [18, 19] is one of many stabilized continuous finite element

methods that are increasingly becoming more popular in the high-order CFD community. Discontinuous Galerkin (DG)
schemes have been aggressively developed and researched over the last several years [20–23] and continue to be one of
the most popular choices for high-order spatial discretizations. In this scheme, each element has its own set of nodes and
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solutions associated with those nodes. This leads to an element-wise discontinuous approximation of the solution over
the entire computational domain. In stabilized finite element schemes, nodes on edges, vertices, and faces are shared
between adjacent elements, which leads to a continuous solution over the domain. This means that for moderate formal
orders of accuracy, stabilized finite element methods require far fewer degrees of freedom than DG methods on the same
mesh [24, 25]∗. For implicit time-marching schemes, DG also requires far more non-zero matrix entries. Adaptation is
required for both discretizations to observe the full potential of error reduction at a given degree of freedom count.
Consequently, there is a growing benefit to be able to demonstrate mesh adaptation techniques using a continuous finite
element formulation such as SUPG.
The outline of this paper is as follows. Section II details the governing equations and the specifics of the SUPG

discretization including the stabilization parameter. Additional details on the linear solver and the DG discretization are
also discussed. Section III reviews the combined approach, as well as details on the output-based adjoint approach and
the entropy variables approach. Section IV details the adaptive mechanics used in the work. Finally, Section V presents
the results of the various adaptive strategies for both SUPG and DG.

II. Numerical Implementation
The primary focus of this section is to review the SUPG discretization of the Euler equations. Extra attention is

devoted to the stabilization term that is necessary for convection-dominated flows. Additional information regarding the
linear solvers and other aspects of the numerical implementation is also discussed.

A. Governing Equations
This work considers solutions of the compressible Euler equations of gas dynamics that govern the flow of a perfect

inviscid gas. These equations are obtained from the negligible-viscosity assumption at the high Reynolds number limit
of the compressible Navier-Stokes equations. Any viscous-related terms in the Navier-Stokes equations are ignored in
this approach. Written in terms of the conservation of mass, momentum, and energy, the Euler equations are

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌®𝑣) = 0

𝜕𝜌®𝑣
𝜕𝑡

+ ∇ · (𝜌®𝑣®𝑣 + 𝑃) = 0

𝜕𝜌𝐸

𝜕𝑡
+ ∇ · (𝜌®𝑣𝐻) = 0, (1)

where 𝜌 is density, ®𝑣 is velocity, 𝐻 is total enthalpy per unit mass, and 𝑃 is pressure. The Euler equations can be written
in a compact form as

𝜕u
𝜕𝑡

+ 𝜕F𝑖

𝜕𝑥𝑖
= 0, (2)

where 𝑖 indexes the spatial dimension. The state and flux vector in two dimensions can be written as

state : u =


𝜌

𝜌𝑢

𝜌𝑣

𝜌𝐸


, flux : ®F =


𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

𝜌𝑢𝐻


𝑥 +


𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

𝜌𝑣𝐻


�̂�. (3)

The divergence of the inviscid flux vector, 𝜕F𝑖

𝜕𝑥𝑖
, can be rewritten in terms of the unknown state values as

𝜕F𝑖

𝜕𝑥𝑖
=

𝜕F𝑖

𝜕u
𝜕u
𝜕𝑥𝑖

= A𝑖

𝜕u
𝜕𝑥𝑖

, (4)

where A𝑖 is the inviscid flux Jacobian. Rewriting the inviscid flux vector in terms of the inviscid flux Jacobian is helpful
since the stabilization term used in SUPG is directly related to it.

∗this does not mean that continuous methods are universally more accurate for a given number of degrees of freedom, as the error magnitudes
could be different at the same order
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B. SUPG Discretization
The weak form of the governing system of equations is obtained by using an approximation of the solution with a

weighted sum of basis functions of the form

u(®𝑥) =
𝑁∑︁
𝑗=1

𝜙𝑒, 𝑗 (®𝑥)U 𝑗 , (5)

where 𝑁 is the total number of degrees of freedom in the mesh. We also denote by 𝑁𝑒, the number of elements in the
domain Ω, and by 𝑛𝑝 the number of basis functions that have support over a given element. Using this approximation
for the solution, the weak form can be written as∫

Ω

𝝓𝑇

[
𝜕u
𝜕𝑡

+ 𝜕F𝑖

𝜕𝑥𝑖

]
𝑑Ω = 0. (6)

where 𝝓 is a general test vector over the states. After integrating Eqn. 6 by parts, the weak form can be written as∫
Ω

[
𝝓𝑇 𝜕u

𝜕𝑡
− 𝜕𝝓𝑇

𝜕𝑥𝑖
F𝑖

]
𝑑Ω +

∫
Γ

𝝓𝑇
(
F𝑏
𝑖 𝑛𝑖

)
𝑑Γ = 0, (7)

where F𝑏
𝑖 𝑛𝑖 is the normal component of the flux on the boundary Γ. For the far-field boundaries, the boundary flux is

constructed using the Roe scheme [26], where the interior and freestream states values are used in the Riemann solver.
For the inviscid wall boundaries, the boundary flux at the wall is given by

𝐹𝑏 = [0, 𝑝𝑏𝑛𝑥 , 𝑝𝑏𝑛𝑦 , 0], 𝑃𝑏 = (𝛾 − 1)
[
𝜌𝐸+ − 1

2
𝜌+

��®𝑣𝑏��2] , (8)

where ®𝑛 = 𝑛𝑥𝑥 + 𝑛𝑦 �̂� is the normal, 𝑃𝑏 is the boundary pressure, and ®𝑣𝑏 is the boundary velocity. The boundary velocity
is tangential, meaning that the interior velocity with the wall-normal component is taken out. The boundary pressure is
calculated based on the interior density, energy, and boundary velocity.
The Galerkin continuous finite element discretization as shown in Eqn. 7 will be unstable for advection dominated

flows. This is because spurious oscillations will lead to instability in the time integration. Several stabilization methods
in the past have been studied to correct this instability. One such approach, the Streamline Upwind Petrov-Galerkin
(SUPG) method [27–30], was chosen for this discretization. In this approach, a stabilization matrix, 𝜏SUPG, is added to
compensate for the lack of dissipation in the streamwise direction [18].
To better understand the stability notation, it is useful to rewrite Eqn. 2 using a differential operator L [31],

L(u) = 0, L =
𝜕

𝜕𝑡
+ A𝑖

𝜕

𝜕𝑥𝑖
. (9)

The added stability that is necessary to obtain converged solutions can be achieved by adding an upwind bias to the test
functions 𝝓. In this case, the convective portion of the aforementioned operator, L𝑐, acting on the basis functions is
added to the existing test functions to produce [32, 33]

�̂� = 𝝓 + 𝝉L𝑐 (𝝓) = 𝝓 + 𝝉A𝑖

𝜕𝝓

𝜕𝑥𝑖
, (10)

where 𝝉 is the stabilization matrix. The purpose of this term is to limit the amount of numerical dissipation added to the
scheme to as low of an amount as possible while preserving stability.
Using this augmented test function, the weak form in Eqn. 7 can be rewritten as [34, 35]∫

Ω

𝝓𝑇 𝜕u
𝜕𝑡

− 𝜕𝝓

𝜕𝑥𝑖
F𝑖𝑑Ω +

∫
Γ

𝝓𝑇
(
F𝑏
𝑖 𝑛𝑖

)
𝑑Γ +

𝑁𝑒∑︁
𝑒=1

∫
Ω

P𝑒

(
𝜕u
𝜕𝑡

+ 𝜕F𝑖

𝜕𝑥𝑖

)
𝑑Ω︸                            ︷︷                            ︸

Stabilization term

= 0.
(11)

In the above equation, it is important to note that the stabilization term is calculated over all of the elements in the
domain Ω. The stabilization term only affects the element interior and does not have an impact on the boundary terms.
The elemental perturbation term, P𝑒, can be expanded as [30, 35, 36] (summation implied on 𝑖)

P𝑒 = A𝑖

𝜕𝝓

𝜕𝑥𝑖
𝝉𝑒 . (12)
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The elemental stabilization matrix 𝝉𝑒 is obtained using the eigensystem decomposition of the projection of the flux
Jacobian matrices onto the spatial gradients of the basis functions [19, 34]. For element 𝑒,

𝝉−1
𝑒 =

𝑛𝑝∑︁
𝑗=1

����𝜕𝜙𝑒, 𝑗𝜕𝑥𝑖
A𝑖

��������𝜕𝜙𝑒, 𝑗𝜕𝑥𝑖
A𝑖

���� = [T] |𝚲| [T]−1 ,

(13)

where [T] denotes the matrix of right eigenvectors and |𝚲| denotes the diagonal matrix of absolute values of the
eigenvalues. 𝑖 indexes the spatial dimension, whereas 𝑗 indexes the basis functions for the specific element 𝑒. The
inverse of the stability matrix is evaluated at each Gauss quadrature point for volume integration. This means that there
is a unique elemental stability matrix for each quadrature point. Note that even for high-order discretization, 𝑝 ≥ 2, only
the linear shape functions are used for the computation of the stabilization matrix. It has been previously shown that
including the higher-order basis functions will reduce the amount of dissipation added to the scheme [37]. Since the
stabilization term was initially developed for linear basis functions [27] and there is no formal derivation of the stability
matrix for high-order discretization, the choice was made to include linear basis functions in Eqns. 12 and 13.

C. General Numerics and Solver
For this work, a continuous finite element-based code written in ANSI C was created to solve all cases that incorporate

the SUPG discretization. Besides handling the high-order SUPG discretization, the code also has two-dimensional
high-order meshing, error estimation, and adjoint capabilities. The code leverages an open-source suite of various data
structures and routines, PETSc [38–40], for solving large linear systems of equations. In this work, we use PETSc
routines that solve systems using preconditioned Krylov subspace methods. Incomplete LU factorization (ILU) with
two levels of fill was chosen as the preconditioner [41–43]. The generalized minimal residual method (GMRES) [44]
with Gram-Schmidt orthogonalization was used for the Krylov subspace method.
Our previous works all used a discontinuous Galerkin (DG) finite-element code [45] to handle the discretization of

the governing equations. That same code was used in this work as well. It relies on the Roe approximate Riemann
solver [26] for the inviscid fluxes. The code also uses a Newton-GMRES implicit solver with element-line-Jacobi
preconditioning for solving large linear systems.

III. Combined Approach for Output Error Estimation
This section reviews a previously documented error estimation technique that involves combining two mesh

refinement indicators. One indicator is obtained from an output-based adjoint and the other directly from entropy
variables [15, 16]. A brief review of the derivation of how each indicator, along with a description of how the indicators
are combined, is the primary focus of this section.

A. Adaptation Using Output Adjoints
Output error estimation methods refine areas of the mesh that have a direct impact on the prediction of a targeted

engineering output. The error estimates can be localized to refine areas of the mesh that have the greatest impact on the
prediction of the chosen output. They rely on the solution of an adjoint problem, which yields, in continuous form, the
adjoint 𝝍(®𝑥). The adjoint is a Green’s function that relates perturbations of the residual to the output of interest, 𝐽 (u),
where u denotes the state vector.
Consider a general partial differential equation r(u) = 0, where r(·) is a differential operator. The adjoint 𝝍 ∈ V is

the sensitivity of 𝐽 to an infinitesimal source term, 𝛿r, added to the governing equation,

𝛿𝐽 =< 𝛿r,𝝍 >, (14)

where < ·, · > is an inner product over the computational domain, Ω. The adjoint satisfies the following weak
statement [8]: determine 𝝍 ∈ V such that

R ′[u] (w,𝝍) + 𝐽 ′[u] (w) = 0, ∀w ∈ V, (15)

where the primes denote Fréchét linearization about u,V is the trial and test function space and R(·, ·) : V ×V → R
is the semilinear operator that is the weak form of the differential equation.
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The solution of the adjoint equation can be used to estimate the output error using an adjoint-weighted residual
method. For most cases, the solution in a finite-dimensional approximation spaceV𝐻 does not exactly satisfy the PDE
and results in a residual disturbance in the weak form. Fortunately, the adjoint translates the residual perturbation to an
output perturbation via Eqn. 14 [14]

𝛿𝐽 =< 𝛿r,𝝍 >= −R(u𝐻 ,𝝍). (16)

The numerical error in the chosen output can be quantified using a weighted residual approximation for the solution of
the above expression. However, the continuous adjoint must be solved on a finer finite-dimensional space,Vℎ ⊃ V𝐻 ,
either directly or iteratively [46–48]. For this work, the fine space is obtained by incrementing the approximation order.
The fine-space adjoint 𝝍ℎ is then used to obtain an indicator that relates the output error to the local contribution of each
element in the computational domain. Eqn. 16 can be approximated as

𝛿𝐽 ≈ −
∑︁

𝜅𝐻 ∈𝑇𝐻
Rℎ

(
u𝐻 ,𝝍ℎ |𝜅𝐻

)
≈ −

∑︁
𝜅𝐻 ∈𝑇𝐻

Rℎ

(
u𝐻 , 𝛿𝝍ℎ |𝜅𝐻

)
, (17)

where |𝜅𝐻 denotes the restriction of an interpolated function to element 𝜅𝐻 of the triangulation 𝑇𝐻 . The difference
between the fine and coarse space adjoints, 𝛿𝝍ℎ ≡ 𝝍ℎ − 𝝍𝐻 , is taken to minimize the error due to possible order-
dependence of the residual [49]. Using the absolute value of the elemental contributions in Eqn. 17, the elemental
adaptive indicator can be expressed as [3, 10, 50, 51]

𝜂𝜅𝐻 =
��R (

u𝐻 , 𝛿𝝍ℎ |𝜅ℎ
) �� . (18)

Since the output-based adjoint must be computed on the fine-space with a transpose solver, it can be computationally
expensive. This is particularly true for unsteady problems where the fine-space adjoint must be computed at each time
step in a reverse time integration.

B. Adaptation Using Entropy Variables
Entropy variables can also be used instead of an output-based adjoint to compute error estimates. Regions in the

computational domain that exhibit high net production of spurious entropy are targeted for refinement. The following
derivation of the entropy variable approach to mesh refinement follows our previous work [14]. Note that this derivation
includes viscous terms for the sake of completeness.
Consider a steady-state set of viscous conservation laws in quasi-linear form combined with a scalar entropy

conservation law,

A𝑖𝜕𝑖u − 𝜕𝑖
(
K𝑖 𝑗𝜕 𝑗u

)
= 0, 𝜕𝑖𝐹𝑖 = 0, (19)

where 𝑖 is the spatial index, A𝑖𝜕𝑖u is the inviscid flux, −K𝑖 𝑗𝜕 𝑗u is the viscous flux, and 𝐹𝑖 (u) is the entropy flux
associated with the entropy function𝑈 (u).
The entropy flux and entropy function satisfy the compatibility relation 𝑈uA𝑖 = (𝐹𝑖)u. The entropy variables,

defined as v = 𝑈Tu , symmetrize the conservation laws in the sense that [32, 52]: the transformation Jacobian matrix, uv,
is symmetric, positive definite; and A𝑖uv is symmetric. The entropy variables must also symmetrize K𝑖 𝑗 , in the sense
that K̃𝑖 𝑗 = K̃

T
𝑗𝑖 , where K̃𝑖 𝑗 = K𝑖 𝑗uv [32]. Substituting 𝜕𝑖u = uv𝜕𝑖v into Eqn. 19 and taking the transpose yields the

following equation for the entropy variables,

𝜕𝑖vTA𝑖uv − 𝜕𝑖

(
𝜕 𝑗vTK̃ 𝑗𝑖

)
= 0. (20)

The entropy variables satisfy an adjoint equation for an output that has no domain integral contribution [14]. This can
be proven by using the entropy variables instead of the output-based adjoint,

𝐽 =

∫
𝜕Ω

𝐹𝑖𝑛𝑖𝑑𝑠 +
∫
Ω

𝜕𝑖v𝑇K̃𝑖 𝑗𝜕 𝑗v𝑑Ω −
∫
𝜕Ω

v𝑇K̃𝑖 𝑗𝜕 𝑗v𝑛𝑖𝑑𝑠. (21)

Each of the terms in Eqn. 21 has a physical meaning outlined in previous works [13, 14]. The entropy function, 𝑆, that
produces entropy variables that symmetrize both the inviscid and viscous terms in the compressible Navier-Stokes
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equations, with heat-conduction included, is unique up to additive and multiplicative constants [32]. We can write the
entropy variables in terms of the entropy functions via

v = 𝑈𝑇
u =

[
𝛾 − 𝑆

𝛾 − 1
− 1

2
𝜌𝑉2

𝑃
,
𝜌𝑢𝑖

𝑃
, − 𝜌

𝑃

]𝑇
, 𝑈 = −𝜌𝑆/(𝛾 − 1) , 𝑆 = ln 𝑃 − 𝛾 ln 𝜌, (22)

where 𝑉2 = 𝑢𝑖𝑢𝑖 is the square of the velocity magnitude, 𝑃 = (𝛾 − 1) (𝜌𝐸 − 𝜌𝑉2/2) is the pressure, and 𝐸 is the total
energy per unit mass. The entropy variables are found via a nonlinear transformation of the conservative variables. The
entropy flux function can be defined as 𝐹𝑖 = 𝑢𝑖𝑈.
Using entropy variables to drive the adaptation is an attractive alternative to using output-based adjoints since the

entropy variables can be computed directly from the state. However, since this approach targets all regions of the domain
where spurious energy is generated, regardless of the effect on a particular engineering output, over-refinement may
result. This is especially true for simulations that contain flow discontinuities.

C. Adaptation Using a Combined Approach
With the ability to produce two different error indicators, one obtained from the fine-space output-based adjoint

and the other from entropy variables, a new approach can be derived where the indicators are combined. The simplest
approach involves computing the indicators separately and then combining them through direct, elemental multiplication.
This can be expressed mathematically using the indicators obtained through Eqn. 18 as

𝜂𝜅𝐻 ,combined = 𝜂𝜅𝐻 ,output · 𝜂𝜅𝐻 ,entropy, (23)

where 𝜂𝜅𝐻 ,output is the elemental indicator obtained using the output-based adjoint and 𝜂𝜅𝐻 ,entropy is the elemental
indicator obtained using the entropy variables. The output-based indicator is obtained using the fine-space adjoint, 𝝍ℎ,
while the entropy-based indicator is obtained using fine-space entropy variables, vℎ.
Combining the indicator through multiplication is a simple option, but certainly not the only one. Various other

approaches designed to improve adaptive efficiency and computational cost have been outlined and investigated in
previous works [15, 16]. At present, only the basic combined approach was evaluated in this work. In the future, other
combined approaches will be vetted as well.

IV. Adaptive Mechanics
In this research, we considered two different strategies to drive the mesh adaptation for each adaptive iteration.

The first adaptation approach is a variation of mesh optimization via error sampling and synthesis (MOESS)[49, 53].
The distinguishing feature of this approach to MOESS is an elemental error sampling approach for determining the
convergence rate tensor of the elemental error. The second mesh adaptation strategy involves sizing the elements using
a priori rate estimates and using Hessians of scalars computed from the state to determine each element’s anisotropy. A
detailed summary of the approach can be found in reference [54].

A. Mesh Optimization via Error Sampling and Synthesis (MOESS)
As previously stated, the unique aspect of the implementation of MOESS used in this work is an error sampling

approach for determining the convergence rate tensor of the error on a single element. The ideal local refinement for a
particular element is determined through the local sampling approach by computing error indicator ΔE𝑒 𝑗 for a finite
number of refinement options 𝑗 of the element. The indicators estimate the error between the coarse-space solution and
the solution for a given refinement option 𝑗 , which can be expressed mathematically as

E𝑒 𝑗 ≡ E𝑒0 − ΔE𝑒 𝑗 . (24)

The calculation of ΔE𝑒 𝑗 requires projecting the fine-space adjoint, 𝝍𝑝+1
ℎ 𝑗

|Ω𝑒
or v𝑝+1

ℎ 𝑗
|Ω𝑒
depending on whether the adjoint

is output-based or entropy-based, down to the space of the refinement option 𝑗 and order 𝑝, and then back up to order
𝑝 + 1 on the original element. From there, adjoint-weighted residuals can be calculated on the original element. For the
output-based adjoint, mathematically this can be expressed as

ΔE𝑒 𝑗 ≡
���R 𝑝+1

ℎ

(
u𝑝

ℎ
, 𝛿�̃�

𝑝

ℎ 𝑗 |Ω𝑒

)��� , (25)
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where �̃�𝑝

ℎ 𝑗 is the fine-space adjoint 𝝍
𝑝+1
ℎ
projected from 𝑝 + 1 to order 𝑝 on refinement option 𝑗 , and then back to order

𝑝 + 1 on the original element. 𝛿�̃�𝑝

ℎ 𝑗 is then defined as 𝛿�̃�
𝑝

ℎ 𝑗 ≡ �̃�
𝑝

ℎ 𝑗 −𝝍𝑝

ℎ
. Note, all projections are done in a least-squares

sense in element-reference space. The form of Eqn. 25 that corresponds to the entropy variables is identical except that
v replaces 𝝍.
The complete details of applying this error sampling approach to discontinuous finite element methods like DG can

be found in previous work [53]. However, there are a few changes that need to be made to this approach when using a
continuous finite element method such as SUPG. In DG, the approximation in each element is discontinuous from one
another so that it is straightforward to apply a global subtraction over all of the elements of the coarse-space adjoint from
the fine-space adjoint. However, for SUPG, information among elements is shared at the element boundaries. Therefore,
before calculating ΔE𝑒 𝑗 in Eqn. 25, the coarse-space adjoint must again be subtracted from the fine-space adjoint using
the same approach outlined in the previous paragraph. The key difference from before is that the projection from 𝑝 + 1
to 𝑝 on refinement option 𝑗 is done for each element individually. This eliminates any issues caused by the sharing of
information across elements.
In SUPG, the error indicators used to govern the local sampling approach, ΔE𝑒 𝑗 , need to be restricted based on how

many elements each dof is in contact with. This is because the fine-space residuals and adjoints are not tied to each
element individually. Instead, they are shared across all elements. To leverage the fine-space residuals and adjoints
available from error estimation, they error contributions are distributed as shown in Figure 1.

Fig. 1 Weights for distributing residuals and adjoint-weighted residuals from globally-coupled SUPG degrees
of freedom to elements, shown for triangles. The node weights are the inverse of the node cardinality while the
face weights are simply 1

2 .

By refining each element based on the local sampling approach, anisotropy is created. This produces much better
mesh resolution, especially when discontinuities are present in the flow field.

B. A Priori Mesh Adaptation
In the a priori mesh adaptation approach, the elemental error indicator ΔE𝑒 is calculated using the adjoint-weighted

residual approach outlined in Eqn. 25. Unlike in MOESS, where this is done for various refinement options using a
local sampling approach in order to discern anisotropy, the anisotropy information in the a priori approach is found by
estimating the direct interpolation error of the solution. We define the interpolation error of a scalar solution 𝑢 over an
edge 𝐸 in the mesh as [5]

𝛿𝑢,𝐸 =
��®𝑠𝑇H®𝑠

�� ℎ2, 𝐻𝑖, 𝑗 =
𝜕𝑢2

𝜕𝑥𝑖𝜕𝑥 𝑗

, 𝑖, 𝑗 ∈ [1, ..., 𝑑] , (26)

where ®𝑠 is the edge’s unit tangent vector, ℎ is the length, and H is the Hessian matrix of a chosen scalar. The scalar
solution chosen for this work, which is suitable for many types of flows, is the Mach number. Error equidistribution
states that the ideal mesh is obtained by equally distributing the squared edge length under the metric |H|, which is a
symmetric, positive definite matrix. Using the eigenvalues and eigenvectors from the Hessian, we can find the stretching
ratio for a particular element.
With the stretching information known, the desired element sizes can be found using the error indicators obtained

from Eqn. 25. To do so, we must estimate the number of adapted elements, 𝑛𝑒, in element 𝑒 of the original mesh. This
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is done by relating the increase in the number of elements to an error reduction factor through an a priori estimate [54]

𝑛𝑒
E 𝑓

𝑁 𝑓︸︷︷︸
allowable error

= E𝑐
𝑒

(
ℎ
𝑓

ref
ℎ𝑐ref

) �̄�𝑒+1

︸           ︷︷           ︸
a priori estimate

= E𝑐
𝑒

[
𝑑∏
𝑖=1

(
ℎ
𝑓

𝑖

ℎ𝑐
𝑖

)] ( �̄�𝑒+1)/𝑑

, (27)

where 𝑖 denotes the principal direction, ℎ𝑐
𝑖
and ℎ 𝑓

𝑖
are the current and requested element sizes, respectively, E𝑐

𝑒 is the
elemental error indicator, 𝑝𝑒 = min(𝑝𝑒, 𝛾𝑒), and 𝛾𝑒 is the lowest order of any singularity in the element. The error
reduction factor, E 𝑓 /𝑁 𝑓 , is the ratio of the output error tolerance to the number of elements in the adapted mesh. In
this work, the output error tolerance is not known. Instead, it is controlled by a target number of elements, 𝑁 𝑓 , and
computed via

E 𝑓 = 𝑁 𝑓

(
1
𝑁 𝑓

𝑁𝑒∑︁
𝑒=1

(
E𝑐
𝑒

)𝑟 ′)1/𝑟 ′

, (28)

where 𝑟 ′ = 𝑑/(𝑝 + 1 + 𝑑). With E 𝑓 and 𝑁 𝑓 known, the scaling factor in element size, ℎ 𝑓

𝑖
/ℎ𝑐

𝑖
, is determined through the

smallest principal stretching, obtained from the Hessian, and the corresponding aspect ratios along the other principal
directions. More information can be found in reference [54].

V. Results
The results in this section showcase how the combined approach performs for SUPG relative to DG. Adaptation

using either output-based adjoints or entropy variables is shown as well. In total there are two different cases presented
in this work that were also analyzed in previous works [15, 16]. Both cases involve solving the steady-state inviscid
Navier-Stokes equations.

A. NACA 0012 in Two-Dimensional, Inviscid, Subsonic Flow: 𝑀∞ = 0.3, 𝛼 = 5°
The first case is a two-dimensional, inviscid flow over the NACA 0012 airfoil with a closed trailing edge. The initial

mesh, shown in Figure 2, is made up of 533 triangular elements with a far-field located 100 chord lengths away from
the airfoil. Curved elements, 𝑞 = 3, were used to represent the geometry and solution approximation orders of 𝑝 = 1
and 𝑝 = 2 were used. The following degrees of freedom targets were run with 𝑝 = 1: 750, 1500, 3000, and 6000. In
addition, the following degrees of freedom targets were run with 𝑝 = 2: 1500, 3000, and 12000. At each dof target,
multiple solution iterations were performed so that an average of five solutions could be obtained.

(a) Initial Mesh (b) Initial Mesh (Zoom)

Fig. 2 Initial NACA 0012 airfoil mesh.

The freestream Mach number is 0.3 and the angle of attack is 5°. The flow is subsonic everywhere in the domain.
Mach number contours are shown in Figure 3. The drag coefficient and lift coefficient were chosen as the engineering
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Fig. 3 NACA 0012 𝑀∞ = 0.3, 𝛼 = 5°: Mach number contours (range: 0-0.5).

outputs. Adaptation was governed by adjoints using either the output-based adjoint or entropy variables. In addition, the
combined output-based and entropy-based adjoint approach was analyzed.
Figure 4 shows the convergence of the drag coefficient for the various adaptation strategies using both SUPG and DG.

One convergence plot compares the drag coefficient error to degrees of freedom, while the other shows the error versus
the number of elements. The drag truth solution was obtained by taking the finest mesh obtained using the drag-based
adjoint with the DG discretization at 𝑝 = 2, uniformly refining it twice, and solving it with a solution approximation
order of 𝑝 = 3. A second truth solution was obtained by taking the finest mesh obtained using the drag-based adjoint
with the SUPG discretization and running with a solution approximation order of 𝑝 = 3. The difference between these
two solutions was 3 × 10−8.

(a) Drag Error Versus Degrees of Freedom (b) Drag Error Versus Number of Elements

Fig. 4 NACA 0012 𝑀∞ = 0.3, 𝛼 = 5°: Comparison of drag coefficient convergence histories for various
adaptation methods.

For the same number of degrees of freedom, cases using a solution approximation order of 𝑝 = 2 produced smaller
errors compared to cases that used 𝑝 = 1. This conclusion holds regardless of whether SUPG or DG was used. At 𝑝 = 1,
there is a much greater difference in error levels between SUPG and DG than at 𝑝 = 2. At each degrees of freedom
target, SUPG produces drag coefficient error levels that are about one-third an order of magnitude less than DG. For
𝑝 = 2, the relative difference in error between SUPG and DG is much less, especially for the higher degrees of freedom.
Since each element run with DG has its own unique set of degrees of freedom, there are far fewer overall elements in DG
compared to simulations using SUPG. At 𝑝 = 1, there are only three unique degrees of freedom for each discontinuous
element in DG. This leads to inferior performance relative to SUPG where the degrees of freedom are continuous and
there are more elements in the mesh. For 𝑝 = 2, the number of degrees of freedom in DG increases to six, which is
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enough to better compensate for the fact that the solution is discontinuous across elements. It is no surprise that for the
same number of elements, DG performs much better than SUPG. However, that is not a fair comparison as the number
of degrees of freedom per element is much less using SUPG and it is the number of degrees of freedom, not the number
of elements, that adds to the computational expense.
This case is a benign simulation with no major flow discontinuities. Consequently, there is not too much difference

between the three different error estimation approaches, especially for DG. For SUPG, there is a small benefit in accuracy
using just the entropy-adjoint compared to using just the drag-based adjoint for 𝑝 = 2. This is a particular case that
shows no loss in accuracy using entropy variables to drive adaptation compared to the typical output-based adjoint
approach. However, as previous works have highlighted, this is only because there are no regions in the domain that
generate spurious entropy that are far from the airfoil. Since there is not a major difference in performance between
using the drag-based adjoint versus entropy variables, the combined approach does not provide much of an impact.
However, it does not negatively impact the performance.
Sample meshes generated using SUPG with the various error indicator approaches for both 𝑝 = 2 and 𝑝 = 1 are

shown in Figure 5. All of these meshes have approximately 6000 elements, but the meshes generated using 𝑝 = 2 have
far more degrees of freedom. Both meshes obtained using the drag-based adjoint allocate a large number of elements to
the stagnation streamline region well in front of the airfoil, where the adjoint has a weak singularity [12]. However, at
𝑝 = 2 significantly more elements are allocated to this region. Neither meshes generated using the entropy variables or
the combined approach show this propensity to allocate elements to this region. This explains why these approaches
produce slightly lower error levels at 𝑝 = 2. For meshes generated using 𝑝 = 2, there is also more refinement near
the surface of the airfoil in the middle region, except for meshes that use the entropy variables approach. When using
entropy variables, all refinement is focused on the nose and tip of the airfoil where it is more critical to accurately predict
drag.
A comparison of meshes generated using SUPG and DG with the various error indicator approaches for 𝑝 = 2 is

shown in Figure 6. For SUPG, there are approximately 1500 elements in each mesh, while there are approximately 2000
elements in the DG meshes. Despite the scarcity in the number of elements in each mesh compared to the previous
figure, these are the finest DG meshes shown in Figure 4 since the number of degrees of freedom per element is much
higher compared to SUPG. Overall, the meshes are pretty comparable between DG and SUPG for a given error strategy.
Since the meshes are much coarser from an element perspective, all of the extra refinement in the stagnation streamline
region is not present for the drag-based adjoint cases. This explains where there was minimal difference between the
entropy variables and output-based approach for DG. These meshes are not fine enough to warrant the unnecessary
stagnation streamline refinement. A reasonable conclusion is that for this case the benefit of the entropy variables
approach is much stronger in SUPG compared to DG since SUPG requires far more elements at the same degrees of
freedom level. When there are more elements in a given mesh, they are more likely to be placed in unnecessary regions
for the drag-based adjoint approach.
Figure 7 shows the convergence of the lift coefficient for the various adaptation strategies using both SUPG and DG.

Instead of using the drag-based adjoint for the output-based adjoint and combined approaches, the lift-based adjoint is
used instead. Finding the lift truth solution was done in the same manner as was done for the drag truth solution. The
difference in truth solutions between SUPG and DG is 3 × 10−7. When it comes to predicting lift coefficient, the relative
difference in error between 𝑝 = 2 and 𝑝 = 1 is still significant for both SUPG and DG. However, there is much more
variability in predicting lift coefficient among the different error indicator approaches compared to predicting the drag
coefficient, where all of the different approaches were pretty similar. For 𝑝 = 1, all of the approaches produce lower lift
coefficient error levels when using SUPG compared to DG. The entropy variables approach in particular outperforms
all of the other approaches. However, for 𝑝 = 2 the results obtained using DG and much more comparable, if not
slightly better compared, to SUPG. For the higher order of 𝑝 = 2, the entropy variables approach suffers (especially for
DG), while the combined approach generally produces lower error levels for both SUPG and DG. Since there is more
variability between the output-based and entropy variables approach when calculating lift coefficient, the combined
approach makes much more of a positive impact.
The benefits of the combined approach are much more obvious upon closer examination of the meshes. A comparison

of meshes for both 𝑝 = 2 and 𝑝 = 1 generated using SUPG is shown in Figure 8. The meshes generated using the
lift-based adjoints refine the stagnation streamline area to an even greater degree compared to the meshes generated
using the drag-based adjoints. The entropy variables approach does not refine this region, nor does it refine near the
surface of the airfoil to the same degree as the output-based adjoint. This was not an issue for calculating the drag
coefficient, but this may be more of an issue for calculating lift coefficient. The entropy variables approach in particular
lacks refinement near the surface close to the tip and nose. The combined approach may strike a better balance between
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(a) Drag Adaptation (𝑝 = 2, Elem≈6000) (b) Drag Adaptation (𝑝 = 1, Elem≈6000)

(c) Entropy Adaptation (𝑝 = 2, Elem≈6000) (d) Entropy Adaptation (𝑝 = 1, Elem≈6000)

(e) Drag-Entropy Adaptation (𝑝 = 2, Elem≈6000) (f) Drag-Entropy Adaptation (𝑝 = 1, Elem≈6000)

Fig. 5 NACA 0012 𝑀∞ = 0.3, 𝛼 = 5°: Meshes generated using SUPG for various error indicators.
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(a) Drag Adaptation (SUPG, Elem≈1500) (b) Drag Adaptation (DG, Elem≈2000)

(c) Entropy Adaptation (SUPG, Elem≈1500) (d) Entropy Adaptation (DG, Elem≈2000)

(e) Drag-Entropy Adaptation (SUPG, Elem≈1500) (f) Drag-Entropy Adaptation (DG, Elem≈2000)

Fig. 6 NACA 0012 𝑀∞ = 0.3, 𝛼 = 5°: Meshes generated using SUPG and DG for various error indicators at
𝑝 = 2.
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(a) Lift Error Versus Degrees of Freedom (b) Lift Error Versus Number of Elements

Fig. 7 NACA 0012 𝑀∞ = 0.3, 𝛼 = 5°: Comparison of lift coefficient convergence histories for various adaptation
methods.

refining near the surface of the airfoil, near the nose and trailing edge especially, while not refining the stagnation
streamline as much as the output-based approach. The combined approach at 𝑝 = 2 does not refine the stagnation
streamline region far from the airfoil as much as 𝑝 = 1, which explains why it performs better for 𝑝 = 2.
Meshes at 𝑝 = 2 generated using DG and SUPG are directly compared in Figure 9. Just as in Figure 6, for SUPG

there are approximately 1500 elements in each mesh, while there are approximately 2000 elements in the DG meshes.
As before, the meshes between DG and SUPG are pretty comparable for the same error indicator approach. Unlike
in Figure 6, there are much more noticeable differences in the meshes among the different error indicator approaches
despite the meshes being coarser than in Figure 8. The stagnation streamline region and regions near the surface of
the airfoil are significantly more refined in the output-based approach compared to the entropy variables approach.
While the extra refinement in the stagnation streamline region may not be necessary, the entropy variables approach is
not refining the regions near the surface of the airfoil enough. This is why the combined approach works so well for
calculating lift coefficient, as both the output-based approach and entropy variables approach have limitations in refining
the appropriate regions for calculating lift.
All of the results documented up to this point use MOESS for the mesh adaptation strategy. In Figure 10, the SUPG

results at 𝑝 = 2 from the previous figures are compared to similar simulations that use the a priori mesh adaptation
approach instead of MOESS. Overall, the a priori approach yields lower drag coefficient error levels compared to
MOESS, regardless of the error indicator approach. However, the lift coefficient error performance between MOESS and
a priori is dependent on chosen error indicator approach. The combined approach and the entropy variables approach
yield similar performance between MOESS and a priori, whereas the lift-based adjoint approach performs much better
using MOESS.
Figure 11 presents sample meshes from the various approaches shown in Figure 10. For both the drag-based and

lift-based adjoint approaches, MOESS focuses more refinement in the stagnation streamline region and near the surface
of the airfoil. This is because MOESS picks up anisotropic refinement much better than a priori. Having refinement
near the surface of the airfoil in the middle section of the airfoil is not as essential for accurately predicting the drag
coefficient, which is why the a priori approach outperforms MOESS. Conversely, the extra refinement in the mid-board
section of the airfoil leads to a better estimation of the lift since having a good estimation of the pressure on both the
bottom and top surface of the airfoil is critical for calculating the lift coefficient. It is obvious based on the sample mesh
generated with the lift-based adjoint approach that the a priori approach is unable to produce ideal anisotropic elements
on the boundary of the airfoil. This leads to suboptimal performance compared to MOESS. A reasonable conclusion is
that if the desired output requires highly anisotropic elements, using MOESS is a more desirable approach compared to
the a priori approach.
The same conclusions regarding the relative performance between MOESS and a priori for the output-based adjoint

approach also apply to the combined approaches. However, the contributions from the entropy variable indicator in
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(a) Lift Adaptation (𝑝 = 2, Elem≈6000) (b) Lift Adaptation (𝑝 = 1, Elem≈6000)

(c) Entropy Adaptation (𝑝 = 2, Elem≈6000) (d) Entropy Adaptation (𝑝 = 1, Elem≈6000)

(e) Lift-Entropy Adaptation (𝑝 = 2, Elem≈6000) (f) Lift-Entropy Adaptation (𝑝 = 1, Elem≈6000)

Fig. 8 NACA 0012 𝑀∞ = 0.3, 𝛼 = 5°: Meshes generated using SUPG for various error indicators.

14



(a) Lift Adaptation (SUPG, Elem≈1500) (b) Lift Adaptation (DG, Elem≈2000)

(c) Entropy Adaptation (SUPG, Elem≈1500) (d) Entropy Adaptation (DG, Elem≈2000)

(e) Lift-Entropy Adaptation (SUPG, Elem≈1500) (f) Lift-Entropy Adaptation (DG, Elem≈2000)

Fig. 9 NACA 0012 𝑀∞ = 0.3, 𝛼 = 5°: Meshes generated using SUPG and DG for various error indicators at
𝑝 = 2.
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(a) Drag Error Versus Degrees of Freedom (b) Lift Error Versus Degrees of Freedom

Fig. 10 NACA 0012 𝑀∞ = 0.3, 𝛼 = 5°: Comparison of drag and lift coefficient convergence histories for various
mesh adaptation strategies using SUPG at 𝑝 = 2.

the combined approach limit the dramatic differences present using the output-based approach. While the stagnation
streamline region is still targeted for refinement in both combined approaches using MOESS, the refinement is not as
fine as it was for the output-based approaches. This is why for estimating lift coefficient in particular, the combined
approaches outperform the output-based approaches in both MOESS and a priori. The entropy variables approach using
a priori produces lower drag and lift errors compared to MOESS because the mesh is much coarser near the surface of
the airfoil. While the output-based approaches in MOESS produced too much refinement in this region, the entropy
variables approach does not refine this region enough. Since the entropy variables and output-based adjoint approaches
target different regions of the domain for both MOESS and a priori, there can be a clear benefit using the combined
approach so that all regions of the domain required to accurately calculate a particular output are adequately refined.

B. Diamond Airfoil in Two-Dimensional, Inviscid, Supersonic Flow: 𝑀∞ = 1.5, 𝛼 = 2°
The next case was chosen specifically because there are multiple flow discontinuities present in the computational

domain. In this case, a thin diamond airfoil, with a thickness-to-chord ratio of 0.05, is subjected to a supersonic flow of
𝑀∞ = 1.5 at an angle of attack of 𝛼 = 2°. The supersonic flow produces shocks emanating from the upper and lower
surfaces of the diamond, as shown in Figure 12. The simulation can be solved with an inviscid discretization because
the shocks are weak. The weak shocks are due to the small thickness of the diamond airfoil.
The grid is a square with a side length of ten chords. The diamond is placed slightly off from the center of the

domain so that the shocks emanating from the airfoil do not directly impact the corners of the domain. The initial
linear, 𝑞 = 1, mesh is made up of unstructured, triangular elements, as shown in Figure 13. Cases run with a solution
interpolation order of 𝑝 = 1 used the following three degrees of freedom targets: 375, 750, and 1500. Cases that had a
solution interpolation order of 𝑝 = 2 used the following degrees of freedom targets: 750, 1500, and 3000. As before,
multiple solution iterations were performed at each target so that an average could be done over five separate iterations.
The drag coefficient was again chosen as the analyzed engineering output for this case. Consequently, the drag-based
adjoint approach was analyzed along with the entropy variables approach and the combined approach that uses the
drag-based adjoint.
Figure 14 presents the drag coefficient error convergence for the adaptation strategies using both DG and SUPG. The

mesh adaptation strategy used for these cases was MOESS. The truth solution was obtained by generating an adaptive
mesh with approximately 3,000 degrees of freedom using the drag-based adjoint with a DG formulation, uniformly
refining that mesh, and generating a solution at 𝑝 = 3. A similar truth solution was obtained using SUPG. The difference
in the truth solutions between SUPG and DG was 2 × 10−7.
A noteworthy observation from Figure 14 is that generally there is not much of a benefit running this simulation at

𝑝 = 2. Unlike in subsonic airfoil case where simulations at 𝑝 = 2 always produced lower output errors at the same degree
of freedom level, regardless of the discretization and adaptation approach used, for this case it is more advantageous to
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(a) Drag Adaptation (MOESS, Elem≈6000) (b) Drag Adaptation (A Priori, Elem≈6000)

(c) Lift Adaptation (MOESS, Elem≈6000) (d) Lift Adaptation (A Priori, Elem≈6000)

(e) Entropy Adaptation (MOESS, Elem≈6000) (f) Entropy Adaptation (A Priori, Elem≈6000)

(g) Drag-Entropy Adaptation (MOESS, Elem≈6000) (h) Drag-Entropy Adaptation (A Priori, Elem≈6000)

(i) Lift-Entropy Adaptation (MOESS, Elem≈6000) (j) Lift-Entropy Adaptation (A Priori, Elem≈6000)

Fig. 11 NACA 0012 𝑀∞ = 0.3, 𝛼 = 5°: Comparing mesh adaptation strategies using SUPG at 𝑝 = 2.
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Fig. 12 Diamond 𝑀∞ = 1.5, 𝛼 = 2°: Mach number contours (range: 1.3-1.7).

Fig. 13 Initial diamond airfoil mesh.

(a) Drag Error Versus Degrees of Freedom (b) Drag Error Versus Number of Elements

Fig. 14 Diamond 𝑀∞ = 1.5, 𝛼 = 2°: Comparison of drag coefficient convergence histories for various adaptation
methods.
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allocate degrees of freedom to the number of elements and not to higher elemental orders. A reasonable conclusion is
that capturing the flow discontinuities with more elements produces better drag error estimates than using fewer higher
order-elements. For the same number of elements, using 𝑝 = 2 does provide a benefit for SUPG. However, that benefit
is not as significant as it was for the previous cases.
Another observation, consistent with our previous works [15, 16] is that for this case the entropy variables approach

is inferior to the output-based adjoint approach, regardless of whether SUPG or DG is used. This is because the entropy
variables approach targets only the shocks where a large amount of entropy is generated. Since the entropy variable
approach performs poorly, it negatively impacts the combined approach. This is a situation where a more sophisticated
way of combining the indicators, weighted more towards those generated from the output-based adjoint, would likely
improve the error estimation. In terms of comparing SUPG versus DG, using the combined approach and the drag-based
adjoint approach, respectively, in SUPG produces lower drag error estimates compared to DG. Unlike in the previous
airfoil case at subsonic flow, there is much more variation in drag error levels between SUPG and DG. If we consider
our previous observation that for this case the number of elements is more essential than the number of degrees of
freedom in estimating drag coefficient because outside of the shocks the domain is pretty uniform, it is reasonable to
summarize that SUPG performs better than DG for this case because for the same number of degrees of freedom SUPG
uses far more elements.
Samples meshes of around 1500 elements generated using SUPG at 𝑝 = 2 and 𝑝 = 1 are shown in Figure 15. For the

entropy variables approach, the refinement is targeted in the regions consumed by the discontinuities emanating from the
nose and tip of the airfoil. This refinement extends unnecessarily to the far-field boundary because this approach has no
way of discriminating regions of the domain that do not have much of an effect on the output of interest. This accounts
for why the entropy variables approach produces inferior results relative to the output-based approach. The output-based
approach restricts the refinement to regions near the airfoil in the shape of a diamond. Whether all of the refinement
that travels upstream from the airfoil is necessary to produce a good drag estimate is a worthwhile question, since
the meshes generated from the combined approach do not show this feature. However, since the combined approach
views refinement considerations from the output-based and entropy variables approach equally, there is still a lot of
unnecessary refinement far from the airfoil present in the combined approach. This leads to inferior performance
compared to the output-based approach. This further suggests that an alternative way of combining the indicators to
favor the output-based approach is likely necessary to improve performance.
The effect the mesh adaptation strategy has on the various adaptive indicator approaches is shown in Figure 16. In

this figure, drag coefficient error comparisons between cases that use MOESS versus cases that use the a priori mesh
adaptation approach are shown. All of the cases have a solution approximation order of 𝑝 = 2. The most important
takeaway from this comparison is how much better the output-based approach performs with MOESS compared to
a priori. In the subsonic airfoil case, highly anisotropic refinement was not necessary to predict an accurate drag
coefficient. In this case, because of the flow discontinuities in the domain that must be captured, anisotropic refinement
is much more beneficial and leads to a better drag error estimate for a given cost. The combined approach and entropy
variables approach do not show as significant of a difference between MOESS and a priori since both are degraded by
all of the unnecessary refinement of the discontinuous regions of the flow domain far from the airfoil.
An examination of sample meshes made up of approximately 1500 elements in Figure 17 better illustrates the

benefit of MOESS over a priori for this case. While the differences between the meshes for the entropy variables and
the combined approaches are subtle, there is a significant difference between the meshes for the output-based adjoint
approach. Using the a priori approach no longer produces the diamond pattern of mesh refinement shown with MOESS.
Instead, the a priori approach focuses most of its refinement on the discontinuity emanating from the nose. Without the
ability to capture the discontinuity with highly anisotropic elements, the a priori approach has to refine this region with
far more elements. This consequently leads to less refinement in other regions of the domain, which negatively impacts
the ability to produce an accurate drag error estimate.

VI. Conclusions and Future Work
In this work, we further demonstrated the potential of the combined approach for mesh adaptation and error

estimation by implementing a stabilized continuous finite element formulation. The potential benefits of these methods
over discontinuous methods like DG, make the advantages of the combined approach even more pronounced. The same
issues that were previously discovered for both the output-based adjoint approach and the entropy variables approach
while using DG, are still present in SUPG. Using the combined approach with SUPG offers the same potential benefits
as it did with DG. However, there is still more work that needs to be done to demonstrate that the combined approach is

19



(a) Drag Adaptation (𝑝 = 2, Elem≈1500) (b) Drag Adaptation (𝑝 = 1, Elem≈1500)

(c) Entropy Adaptation (𝑝 = 2, Elem≈1500) (d) Entropy Adaptation (𝑝 = 1, Elem≈1500)

(e) Drag-Entropy Adaptation (𝑝 = 2, Elem≈1500) (f) Drag-Entropy Adaptation (𝑝 = 1, Elem≈1500)

Fig. 15 Diamond 𝑀∞ = 1.5, 𝛼 = 2°: Meshes generated using SUPG for various error indicators.
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(a) Drag Error Versus Degrees of Freedom

Fig. 16 Diamond 𝑀∞ = 1.5, 𝛼 = 2°: Comparison of drag coefficient convergence histories for various mesh
adaptation strategies using SUPG at 𝑝 = 2.

a viable option for mesh adaptation when using SUPG. In cases such as the diamond airfoil, where the entropy variables
approach is not a viable option for accurate error estimation, the combined approach suffers.
The only version of the combined approach demonstrated in this work is the most basic approach where the

unmodified indicators from both the output-based and entropy-based adjoint approaches are multiplied directly. The
problem with this approach is that it is more computationally expensive than either of the individual approaches alone.
Previous works highlighted approaches where the output-based indicator came from a coarse-space output-based adjoint,
which is far less expensive to compute. In addition, masking techniques were shown to have a substantial benefit as
well. These combined approaches need to be analyzed as well using the SUPG formulation and compared to similar
simulations using DG.
As was demonstrated in our previous work [17], the benefits of the combined approach extend to unsteady

simulations. For unsteady simulations, the fine-space output-based adjoint has to be computed for each time step. This
is computationally expensive and makes a combined approach that uses a coarse-space output-based adjoint more
desirable. Future work will focus on demonstrating the combined approach for an unsteady simulation using the SUPG
discretization. This effort will provide further verification that the combined approach can be used for multiple types of
spatial discretizations and often yield superior performance compared to the output-based adjoint approach.
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