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Abstract

This work presents an element-local algebraic approach to constructing coarse spaces

for p-multigrid solvers and preconditioners of high-order discontinuous Galerkin dis-

cretizations. The target class of problems is convective systems on unstructured meshes,

a class for which traditional p-multigrid typically fails to reach textbook multigrid effi-

ciency due to a mismatch between smoothers and coarse spaces. Smoothers that attempt

to alleviate this mismatch, such as line-implicit, incomplete LU, or Gauss-Seidel, dete-

riorate on grids that are not aligned with the flow, and they rely on sequential operations

that do not scale well to distributed-memory architectures. In this work we shift atten-

tion from the smoothers to the coarse spaces, and we present an algebraic definition of

the coarse spaces within each element based on a singular-value decomposition of the

neighbor influence matrix. On each multigrid level, we employ a block-Jacobi smoother,

which maintains algorithmic scalability as all elements can be updated in parallel. We

demonstrate the performance of our solver on discretizations of advection and the lin-

earized compressible Euler equations.
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1. Introduction

1.1. Motivation

Compared to traditional second-order methods, high-order discretizations offer accu-

racy and efficiency advantages for many problems of engineering interest. These include

convection-dominated flows in aerospace engineering, which demand accurate resolu-

tion of features such as boundary layers, vortices, and acoustic waves. One popular

high-order method is discontinuous Galerkin (DG) [1, 2], and this will be the subject

of the present work. DG offers attractive features such as convective stability, support

of unstructured meshes, simple parallelization, and a variational formulation for error

estimation. Recent DG extensions [3, 4] share these features, and we focus on standard

DG chiefly because it has been the subject of a large body of literature on discretizations

and solvers.

One drawback of DG is its expense, and largely for this reason DG has not yet be-

come a mainstream method such as second-order finite volume. DG does consume many

degrees of freedom (DOFs) per element of a mesh, especially compared to continuous

methods which do not include inter-element jumps in the approximation space. How-

ever, DOF consumption by itself is not the whole story, since for many problems DG

fares well compared to other discretizations in a DOF versus accuracy tradeoff [5]. In

addition to DOFs, we need to consider solvers, and this is where DG can become expen-

sive. The stiff discrete systems arising from high-order discretizations call for efficient

implicit solvers that balance several considerations, including iteration count, operation

count, memory usage, memory access, and scalability. Designing such solvers for DG

is not easy because of the relatively high bandwidth of the systems, even when using

element-wise compact stencils.

For nonlinear problems, Newton-Krylov is commonly used, and its performance

hinges on an effective preconditioner. For high-order DG discretizations, p-multigrid has

been investigated as both a preconditioner [6, 7] and as a stand-alone solver [8, 9, 10, 11].
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In this work we consider the former application of p-multigrid.

The tenet of p-multigrid is simple: lower order discretizations serve as coarse-spaces

in a multigrid correction procedure for a high-order solution. This procedure requires

an iterative smoother, and finding smoothers that complement the coarse-order spaces

and that scale well in parallel is not easy, especially for multi-dimensional convection-

dominated problems on unstructured meshes. Whereas most previous work in p-multigrid

has focused on iterative smoothers, in the present work we shift attention to the coarse

spaces, which in an algebraic interpretation need not be strict low-order discretizations.

We show that by choosing the coarse spaces independently on each element, we can

achieve excellent multigrid performance even with simple smoothers such as block Ja-

cobi.

This paper is organized as follows. In the remainder of this section, we present back-

ground material on p-multigrid. Section 2 reviews some key properties of p-multigrid

combined with typical smoothers. Section 3 presents the proposed algebraic approach to

selecting a coarse space inside an element. Finally, Section 4 shows results for advection

and the linearized Euler equations.

1.2. Background

In classical multigrid techniques, solutions on spatially coarser grids are used to

correct solutions on the fine grid. The use of coarser grids is motivated by the observation

that local smoothers generally do a poor job at eliminating low-frequency error modes on

the fine grid. However, these low-frequency error modes can be effectively corrected by

smoothing on coarser grids, in which they appear as high-frequency. In p-multigrid, the

idea is similar, with the exception that lower-order approximations serve as the “coarse

grids.”

The idea of using low-order discretizations to correct high-order solutions through

a multigrid approach was pioneered by the spectral finite element community for ellip-

tic equations. In the early 1980’s, Zang et al [12, 13] applied a multigrid approach
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to Fourier spectral approximations with periodic and Dirichlet boundary conditions and

demonstrated improvement over simple iterative smoothers. A more general multigrid

approach, applied to the geometrically-flexible spectral finite element method, was in-

troduced in 1987 by Rønquist and Patera [14]. For a one-dimensional Poisson prob-

lem, these authors demonstrated convergence rates independent of the number of ele-

ments and of the order, for spectral multigrid with simple and parallelizable diagonal

Jacobi smoothers. In follow-up papers, Maday and Muñoz [15, 16] justified these con-

vergence rates and proved order-independence in one dimension. However, this order-

independence does not extend to multiple dimensions [16], an observation that has been

attributed to the deterioration of the diagonal smoother with increasing order, and one

that has seen been addressed through under-relaxation, semi-coarsening, and line relax-

ation [17, 18, 19, 20].

The application of p-multigrid to discontinuous Galerkin finite elements is more

recent. p-Multigrid fits naturally within the framework of DG, due to the flexibility in

approximation order of these discretizations. Additional coarse grid information is not

required since the same spatial grid is used by all levels. In addition, a hierarchical

basis can be used, eliminating the duplication of state storage at each level. Although

the premise of the method remains similar to the spectral element case, there are key

differences, including:

• The character of the target differential equation: whereas spectral elements have

been primarily applied elliptic equations, the niche for DG lies in convection-

dominated flows.

• The maximum expected approximation order: unlike the very large orders com-

mon in spectral methods, p = 3 or p = 4 are already considered “high order” by

DG practitioners.

• The availability of smoothers: with the relatively lower approximation orders

common in many DG applications, element Jacobi smoothers, which treat the
4



unknowns within each element implicitly, are computationally feasible.

These differences are sufficient to have sparked recent interest in p-multigrid methods

for DG discretizations. One of the first studies was performed by Helenbrook et al [8],

who analyzed p-multigrid for DG in one and two dimensions. For a two-level cycle,

these authors demonstrated order and mesh independence for scalar convection in one

dimension when using element Jacobi smoothing. In two dimensions, they found that

order independence persisted, but that convergence depended on the number of elements.

Around the same time, the author presented p-multigrid results for the compressible

Euler equations of gas dynamics in two dimensions [9, 21]. This work confirmed order

independence and mesh dependence for equation systems when using element Jacobi

smoothing. It also presented a more powerful element-line Jacobi smoothing strategy, in

which unknowns on a contiguous line of elements are treated implicitly, that significantly

improved convergence and in some cases yielded nearly mesh-independent V-cycle rates

in combination with p-multigrid. The element-line Jacobi solver was further analyzed

in two dimensions by Mascarenhas et al [22], who confirmed mesh independence and

suggested alternating the direction of lines for improved robustness when the flow is not

aligned with the mesh. The use of other smoothers, including explicit Runge-Kutta is

investigated by Luo et al [23].

Nastase and Mavriplis [24] present a p-then-h multigrid strategy in which they em-

ploy h-multigrid mesh coarsening to create more multigrid levels beyond the coarsest

approximation order. This strategy addresses the expense of solving the coarsest ap-

proximation order (e.g. p = 0) problem directly or smoothing on it many times. It does

not address h-dependence of the solver as a whole, as even with an exact coarse-order

solve, h-dependence persists [8, 21].

p-Multigrid has also been investigated for DG discretizations of singularly-perturbed

convection-diffusion equations, including the compressible Navier-Stokes system [25,

26, 10, 27], and of pure diffusion equations [28, 11]. Order-independence of p-multigrid
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with element-Jacobi smoothing is observed in a majority of these one and two-dimensional

studies, and h-dependence appears less prominent.

Finally, aside from a couple small problems considered by the author [21], there has

been little research into the application of p-multigrid to three-dimensional problems.

At stake is the possible degradation of convergence due to the smoothers becoming less

powerful: for example, an element-line Jacobi smoother is an exact solve in one dimen-

sion, but not in two or three dimensions.

2. Properties of p-Multigrid

2.1. Overview

The simplest multigrid iteration is a two-level correction scheme, illustrated for a

linear problem in Figure 1.

[Figure 1 about here.]

The fine-level system to be solved is

Ahuh = fh,

where Ah ∈ RNh×Nh is the system matrix, uh ∈ RNh is the state, and fh ∈ RNh is the

forcing vector. In a two-level correction scheme, we iterate towards the solution by using

a combination of a smoother on the fine level and a correction obtained from a coarse-

level solution. We discuss options for the iterative smoother in the next subsection. The

coarse level is defined by a prolongation operator, IH
h ∈ RNh×NH , the columns of which

define each coarse-level state as a linear combination of fine-level states, and possibly by

a separate residual restriction operator, Ih
H ∈ RNH×Nh , the rows of which prescribe how

the fine-level equations are linearly combined to form the coarse-level equations. In a

Galerkin formulation, Ih
H =

(
IH

h

)T
. The coarse-level operator is then given by

AH = Ih
HAhIH

h

The two-level scheme can be summarized in the following steps:
6



1. Smooth uh νpre times on the fine grid

2. Compute residual rh = fh − Ahuh, and restrict it: rH = Ih
Hrh

3. Solve for the error on the coarse grid, AHeH = rH

4. Prolongate eh = IH
h eH and correct uh = uh + eh

5. Smooth uh νpost times on the fine grid

2.2. Smoothers

The choice of smoother heavily influences the multigrid convergence rate. Popular

smoothers for p-multigrid DG include element-block Jacobi/Gauss-Seidel, element-line,

alternating-direction implicit (ADI), incomplete lower-upper (ILU) decomposition, and

multistage schemes. [8, 21, 10, 11]. These smoothers differentiate themselves in a

performance versus cost tradeoff. An additional consideration, however, is algorithmic

scalability, and generally speaking, powerful smoothers typically do not scale well.

In this work we focus on two representative smoothers: element-block Jacobi (“block”)

and element-line Jacobi (“line”). The block smoother is one of the simplest scalable

methods, and the line smoother is similar to block Gauss-Seidel and ILU. For the linear

system Au = f, both can be expressed in the following form,

un+1 = un −M−1r(un), r(un) ≡ Aun − f

where n is the iteration number and M is the preconditioner that defines the smoother.

For the block smoother, M is the block diagonal of A, and for the line smoother M con-

sists of block tridiagonal systems formed by stringing elements together, as illustrated in

Figure 2.

[Figure 2 about here.]

2.3. Dependence on h

To demonstrate the performance of a two-level p-multigrid scheme for a practical

problem, we consider flow governed by the nonlinear Euler equations over a bump ge-

ometry, as illustrated in Figure 3.
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[Figure 3 about here.]

Full-approximation storage [29] is used for the nonlinear extension of the multigrid al-

gorithm described at the beginning of this section. As the two levels, we consider ph = 3

and pH = 2 approximation orders.

We first consider block smoothing. Figure 4 shows residual convergence of two-

level multigrid on a sequence of grid refinements. The initial condition in each case is

uniform free-stream.

[Figure 4 about here.]

As shown, the residual converges in two phases, the first of which is a near plateau whose

duration depends on the grid size (h). The steepness of the drop in the second phase also

depends on the grid size. A large number of smoothing iterations on the fine space

can mask this h-dependence, for a limited time – as the grid is refined, h-dependence

eventually appears.

To gain insight into the performance deterioration of p-multigrid with block smooth-

ing, we visualize the slowest converging error mode (density component) in Figure 5.

This mode is measured on the finest grid at the end of the near-plateau phase – i.e. be-

fore the steep drop. As shown, the error is low frequency in the streamwise direction

and high-frequency perpendicular to the streamlines. This result suggests that a more

effective smoother could be designed by treating the streamwise parallel/perpendicular

directions differently.

[Figure 5 about here.]

The line smoother addresses the multigrid h-dependence for this problem by solving

for all unknowns in the streamwise direction at once. The resulting residual convergence

histories are shown in Figure 6

[Figure 6 about here.]
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The great performance of the line solver in this bump case is due to the underlying

structured mesh that allows for long element lines aligned with the flow direction. When

this is not the case, for example on general unstructured meshes, line smoothing no

longer cures h-dependence. Figure 7 illustrates the effect of line/flow misalignment for a

linear advection problem on a structured mesh with horizontal lines. As the flow angle,

α, increases convergence deteriorates and h-dependence becomes more prominent.

[Figure 7 about here.]

Three-dimensional problems also pose challenges to the line smoother and its vari-

ants. Figure 8 shows h-dependence of the two-level p-multigrid cycle with line smooth-

ing for flow over a wing: As the mesh is refined, the convergence rate drops.

[Figure 8 about here.]

2.4. Scalability

The line smoother is algorithmically more powerful than the block smoother because

it damps out more modes through its implicit treatment of multiple elements linked

together. This property is important for p-multigrid because the more work the smoother

does, the less work remains for the coarse-level correction. ILU and block Gauss-Seidel

smoothing share similar characteristics. In addition, even though the line smoother is

more computationally intensive than the block smoother, the algorithmic performance

benefits typically outweigh these costs [21].

However, a problem with line smoothing is that it is not algorithmically scalable

because it relies on a non-local coupling of elements. Figure 9 shows how partition-

ing breaks lines, and shorter lines degrade performance. In the limiting case of single-

element lines, the line smoother reduces to the block smoother.

[Figure 9 about here.]
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On the other hand, block smoothing scales very well as all elements can be operated

on simultaneously and since only nearest-neighbor information is required. Since block

smoothing does not damp out as many modes as line smoothing, if we resign ourselves

to use block smoothing we need to compensate with more work elsewhere. In the present

paper we pursue this idea in the context of p-multigrid by offloading work to the coarse

levels. In particular, we equip the coarse levels with the ability to represent error modes

not addressed by the smoother. This idea of tuning the coarse levels to complement the

smoother is similar to the premise of algebraic multigrid (AMG), although designing

efficient and scalable “black-box” AMG solvers for convection problems is challenging.

We thus propose a more local, element-centric, approach driven by an analysis of inter-

element coupling, as discussed in the next section.

2.5. Semi-coarsening in p

Before presenting the general coarse-level selection procedure, we revisit the bump-

flow problem of subsection 2.3. As we saw in Figure 5, when using p-multigrid with

the block smoother, the slowest converging mode was high-frequency perpendicular to

the streamlines. A somewhat contrived but illustrative solution to this slow convergence

is to equip the coarse space with the ability to represent such error modes. To do this,

we consider a quadrilateral mesh aligned with the flow, on which we use an anisotropic

order approximation for the coarse space: p = 3 in the flow-perpendicular direction and

p = 2 in the streamwise direction, as shown in Figure 10. In contrast, a standard coarse

space would be p = 2 in both directions.

[Figure 10 about here.]

When using the “semi-coarsened” approximation space as the coarse level, the prob-

lematic error modes are effectively eliminated after the coarse-level correction. As a

result, h-independent convergence rates are recovered – see Figure 11.

[Figure 11 about here.]
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Generalizing order semi-coarsening to unstructured meshes and non-flow-aligned

elements is possible but not trivial. Such an algorithm would have to discover the appro-

priate directions for semi-coarsening and would have to decide on the appropriate orders

in each direction. It is also not clear that such principal orthogonal directions always

exist, especially in three dimensions. Thus, we seek a more automated and systematic

approach to the coarse-level construction, as described in the next section.

3. SVD-Based Coarse Levels

In this section we present a definition of the coarse levels in p-multigrid that better

represents modes not addressed by the smoother. For scalability, we employ the block

smoother, and we define coarse levels locally for each element. Furthermore, we restrict

our attention to a two-level correction scheme.

3.1. Excitable Modes

At each iteration, the block smoother applied to an element makes the solution in

that element correct with respect to the “boundary conditions” imposed by surrounding

elements. Of course, those boundary conditions change from iteration to iteration as

error modes make their way out of the domain and the solution converges globally.

Our motivating observation is that not all degrees of freedom (or “modes”) inside an

element are created equal with respect to this error propagation. For example, in many

convective flows, there exist solution modes inside an element that are not affected by

state variations on surrounding neighbors. These modes then do not play a role in inter-

element error propagation and they can be trimmed from the coarse-level approximation

space without sacrificing any approximation power of the coarse level when coupled

with the block smoother. Similarly, there will be some modes that are only affected

slightly by neighbor perturbations, and we could consider trimming these too. To make

this process systematic, we need to identify and rank such modes.
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We take a matrix-based approach in identifying solution modes on each element

that are important for inter-element propagation of error. Denote by U the discrete state

vector, R the discrete residual vector, and A = ∂R
∂U the residual Jacobian matrix. These

quantities are associated with the fine-level, but we drop the subscript h for clarity of

exposition. Consider an element i, with state Ui and residual Ri. Figure 12(a) highlights

the portion of A relevant to element i.

[Figure 12 about here.]

The block row of A associated with the residuals on element i contains a self block Ai,i,

which dictates how state perturbations on element i affect the residual Ri, as well as

off-diagonal blocks Ai, j, which dictate how state perturbations on neighbors j affect Ri.

There will only be a few j values for which Ai, j is nonzero since typical element shapes

have only a small number of neighbors. We can therefore compress the entire block row

into a smaller dense matrix, Ai,: as shown in Figure 12(b).

The compressed off-diagonal matrix, Ai,:\Ai,i maps neighbor state perturbations onto

residuals in element i. In determining modes in element i that are important for inter-

element error transport, we focus on this matrix. Specifically, we ask: which residual

modes in element i are most “excitable” by neighbors state perturbations. Once we

identify the important residual modes, we can map these locally to state modes using

A−1
ii . To answer this question, we take a singular value decomposition (SVD) of Ai,:\Ai,i,

as illustrated in Figure 13.

[Figure 13 about here.]

The SVD provides information on the neighbor modes that most strongly affect residuals

in element i. Currently we actually neglect this information on neighbor modes, stored

in the matrix Vi, as we are primarily interested in the corresponding residual modes in

element i, i.e. the columns of Ui.

The columns of Ui contain element i residual modes ranked in order of importance

with respect to how excitable they are by neighboring state perturbations. The cor-
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responding singular values σk provide the weights in this ranking. Now, considering

element i in isolation, the states that map to the residual modes in Ui are given by the

columns of Φi, where

Φi = A−1
ii Ui.

At a discrete level, the columns ofΦi contain state modes that are most strongly excited

by perturbations on the neighbors. When the singular values σk are disparate, the most

important modes to retain in the coarse levels will be in the first columns of Φi.

A visual demonstration of the results of this singular value decomposition for a 2D

advection problem is shown in Figure 14. The triangular element of interest, shown

shaded in Figure 14(a), is oriented in a manner such that it is only affected by the state in

one neighbor. When using a p = 4 DG approximation, the number of unknowns in each

triangle is r = 15. However, the element of interest is only affected by the state on its

single upwind edge, and the number of possible modes on this edge is p+1 = 5. As a re-

sult, only 5 residual modes on the shaded element are excited by neighbor perturbations.

This is confirmed by the SVD calculations, which yields 5 nonzero singular values, as

illustrated in the overlaid singular value plot in Figure 14(a). The corresponding state

modes, i.e. the first 5 columns of Φi, are illustrated in Figure 14(b).

[Figure 14 about here.]

3.2. Petrov-Galerkin Projection

The singular value decomposition of the neighbor influence matrix gives us a ranking

of the most important residual modes to keep on the coarse level from the point of view of

preserving inter-element communication. These residual modes are orthonormal vectors

in the columns of Ui. To ensure that we test these modes on the coarse levels, we choose

the columns of Ui as the test vectors. That is, the coarse-level equations are linear

combinations of the fine-level equations according to coefficients in the columns of Ui.
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Performing the SVD for every element, we obtain element-specific test vectors, Ui,

and basis functions, Φi. We roll these matrices into global restriction (R) and prolonga-

tion (P) operators as,

R =



UT
1 0 · · · 0

0 UT
2

. . .
...

...
. . .

. . . 0

0 · · · 0 UT
N


, P =



Φ1 0 · · · 0

0 Φ2
. . .

...
...

. . .
. . . 0

0 · · · 0 ΦN


,

where N is the number of elements. We now define a transformed system matrix as

Ã = RAP.

Note that R and P are square matrices, so that Ã is the same size as A – this is only a

basis transformation, not yet a coarse-space selection. In addition, the block diagonals

of Ã are identity matrices, since

Ãi,i = Ri,iAi,iPi,i = UT
i Ai,iΦi = UT

i Ai,iA−1
i,i Ui = I.

This fact will reduce computational and storage costs, as described in the next subsec-

tion.

To obtain a coarse-level matrix, we use a subset of the columns of Ui and Φi (the

first rH < rh) on each element when defining the restriction and prolongation. Since in

general R , PT , the coarse-level projection will be Petrov-Galerkin. Finally, note that

the resulting coarse-level transformed matrix, ÃH , is already contained in Ã, as the first

rH rows and columns of each elemental block.

3.3. p-Multigrid Implementation

This section presents details on an in-place implementation of the SVD-based p-

multigrid method. We assume fine/coarse levels with rh/rH degrees of freedom per el-

ement. Instead of subscripts h and H directly on the variables, we employ a more de-

scriptive notation: ih = the set of degrees of freedom on the fine level, over all elements;
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iH = the set of degrees of freedom on the coarse level, over all elements; ih\H = ih\iH .

The steps of a two-level correction cycle are then as follows:

1. Transform the system Au = f to Ãũ = f̃. This transformation is done in-place by

two loops over all elements;

First loop: for each element i we

(a) compute the SVD of the off-diagonal influence matrix, Ai,:\Ai,i

(b) overwrite Ai,:\Ai,i with the product UT
i
(
Ai,:\Ai,i

)
(c) overwrite Ai,i with Φi – note, we know that the on-diagonal of Ã is the

identity matrix, so we do not need to store it

(d) overwrite fi with UT
i fi

Second loop: for each element i we

(a) loop over elements j adjacent to i

(b) overwrite Ai, j with Ai, jΦ j

2. Smooth the transformed system νpre times on the fine level. Note that applying the

block smoother is cheaper on the transformed system because the main diagonal

block (the preconditioner) is the identity.

3. Restrict the residual by modifying the transformed source term,

f̃(iH) = f̃(iH) − Ã(iH , ih\H) ũ(ih\H)

4. Solve the coarse-level problem,

Ã(iH , iH) ũ(iH) = f̃(iH)

5. The error is already prolongated from the coarse to the fine space because of the

in-place storage. However, we need to undo our source modification from Step 3,

f̃(iH) = f̃(iH) + Ã(iH , ih\H) ũ(ih\H)

6. Smooth the transformed system νpost times on the fine level.
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The above algorithm has no explicit application of restriction and prolongation ma-

trices because in the transformed system these operations are trivial – the matrices con-

sist of the identity padded with zero rows/columns. To explain Step 3 we consider the

standard coarse-level error equation presented in Section 2. The fine-level residual is

r̃ = f̃ − Ã ũ, so that the coarse-level error equation is

Ã(iH , iH) ẽ(iH) = r̃(iH)

= f̃(iH) − Ã(iH , ih) ũ(ih)

= f̃(iH) − Ã(iH , iH) ũ(iH) − Ã(iH , ih\H) ũ(ih\H)

⇒ Ã(iH , iH)
(̃
u(iH) + ẽ(iH)

)
= f̃(iH) − Ã(iH , ih\H) ũ(ih\H)

The right-hand side of this equation is precisely the modified source term after Step 3,

and on the left we have the coarse-level operator multiplying the desired corrected coarse

state. In summary, the proposed multigrid implementation modifies the system and right-

hand side in-place using a variable transformation arising from element-wise SVD calcu-

lations; following this transformation, smoothing, restriction, and prolongation become

simple operations that do not require auxiliary vectors.

4. Results

In this section we present performance comparisons of the SVD-based coarse-levels

with block smoothing relative to standard p-multigrid coarse levels with both block and

line smoothing. We consider a two-level cycle applied to linear advection and the lin-

earized Euler equations in two dimensions. As a comparison metric, we look at conver-

gence with multigrid iterations, which is not perfect because it does not account for dif-

ferent costs in the smoother (e.g. line more expensive than block), nor in pre-processing

(e.g. the SVD calculation or block-tridiagonal factorization). As these costs can be

implementation/architecture dependent we employ a simple multigrid iteration count,

which does give us a rough comparison and lets us study h and p dependence of each

method.
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4.1. Linear Advection in Two Dimensions

The first problem we consider is two-dimensional linear advection on quadrilateral

meshes of a [0, 1]2 domain. The advection velocity is constant, from bottom-left to

upper-right, as illustrated in Figure 7. The initial solution guess is u = 0, and the inflow

boundary condition is u = e−40(x2+(y−0.3)2), prescribed on the bottom and left. For the

baseline comparison, we use ph = 3 ⇒ rh = 16 on the fine level and pH = 2 ⇒ rH = 9

on the coarse level. The approximation space is tensor-product polynomials, and the

basis is nodal Lagrange – this last point does not affect the results; a different basis

would give different restriction and prolongation operators but would not change the

convergence properties. Note that with the SVD approach, we are not restricted to a

specific value of rH , and we only choose rH based on pH to obtain a fair comparison to

standard p-multigrid.

[Figure 15 about here.]

Before looking at multigrid performance, we first analyze the behavior of the sin-

gular values of the neighbor influence matrices for each element. Figure 16 presents

these singular values for a sequence of three mesh refinements and one order refine-

ment, ph = 4. The plots show singular values for all elements together on one plot –

these overlap due to the identical elements in the structured mesh. The vertical dashed

lines on each plot mark the size of the ph − 1 coarse space on each element. Note that in

all cases, the number of nonzero singular values in every element is less than rH . In fact,

by considering the number of possible neighbor state variations, we can predict that the

maximum number of nonzero singular values for a quadrilateral with two inflow edges

will be 2ph + 1, and this is confirmed in Figure 16. This number will be smaller than the

rH implied by pH − 1 for ph > 2.

[Figure 16 about here.]
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The fact that the number of singular values in each element is less than rH means that

the coarse-level solve will provide an exact solve modulo intra-element variations that

will be taken care of by the block smoother. This is confirmed in Figure 17, which shows

the residual convergence with multigrid iterations for the three methods tested. Note

that the “block” and “line” designations refer to these smoothers with a standard ph − 1

coarse-space, whereas “SVD” refers to block smoothing with the SVD coarse-space.

All coarse spaces have the same size, rH degrees of freedom per element. Standard

p-multigrid exhibits p-independence but h-dependence; on the other hand, the SVD

approach solves the problem exactly in one multigrid iteration. This result is insensitive

to the flow angle and the solver is inherently scalable.

[Figure 17 about here.]

4.2. Linearized Euler

For a more difficult and practical problem, we turn to the linearized Euler equations.

The particular problem is flow over a NACA 0012 airfoil, linearized about a solution

at Mach number M∞ = 0.5 and angle of attack α = 2◦, as illustrated in Figure 18.

The nonlinear problem is solved on a mesh of quadratic curved quadrilaterals. The

approximation space again consists of tensor-product polynomials. The source term

for the linearized system is set to the residual Jacobian matrix multiplied by the exact

nonlinear solution, and the initial linear state is set to u = 0.

[Figure 18 about here.]

Figure 19 shows singular values and convergence results for the three methods for a

two-level cycle between ph = 3 ⇒ rh = 64 and pH = 2 ⇒ rH = 36, on a 728-element

mesh. Note, the state rank for two-dimensional Euler is 4, so that the number of degrees-

of-freedom for tensor-product approximation of order p is 4(p + 1)2 per element. In this

more complicated system, the singular values vary more widely among the elements. In

addition, there are elements that have more nonzero singular values than rH , so we can
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no longer expect an exact solve after one SVD-multigrid iteration. However, these extra

singular values are relatively small, so we should still expect the coarse-level correction

to perform well. As shown in Figure 19 this is indeed the case. The SVD approach

converges in roughly three multigrid iterations, whereas standard p-multigrid with block

or line smoothing exhibit much slower convergence.

[Figure 19 about here.]

To study h-dependence we next consider a uniformly-refined mesh of 2912 elements.

The singular values and residual convergence histories for this case are shown in Fig-

ure 20. The distribution of singular values is nearly identical to that in Figure 19, which

is expected since the uniform refinement just creates more of the same type of elements

as those in the 728-element mesh. The result is that again, the SVD approach converges

in just three multigrid iterations, in contrast to the traditional p-multigrid approaches

which take many more iterations.

[Figure 20 about here.]

Next, we look at a higher order, ph = 4 and pH = 3. The singular values and residual

convergence histories for this case are shown in Figure 21. We see from the singular

values that now all elements have as many as or fewer than rH = 64 nonzero singular

values. Thus, we expect an exact solve after one multigrid iteration, and indeed this is

the case, as shown in the residual convergence history.

[Figure 21 about here.]

In the results thus far, we chose rH for the SVD approach based on the size of an

order pH = ph−1 tensor-product coarse space. However, we can choose different values

of rH . Looking at Figure 19(a), we see that the singular values decay in a step-wise

fashion, with drops at rH = 30, 36, 48. Figure 22 shows the results of choosing each

of these values of rH in turn in a two-level correction procedure. We see, as expected,
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that the smaller the value of rH , the worse the performance of the two-level cycle. In all

cases, however, this performance is still better than that of the block or line solver.

[Figure 22 about here.]

5. Conclusions and Future Work

We have presented an element-wise algebraic approach to selecting a coarse-level

approximation space for a p-type multigrid correction procedure in high-order discon-

tinuous Galerkin discretizations of linear convection problems. This approach uses a

singular-value decomposition of the neighbor-influence component of the residual Jaco-

bian matrix for each element in order to identify the residual modes and corresponding

state modes that are most “excitable” by neighbor perturbations. Preserving these modes

on coarse levels keeps inter-element error transport pathways open so that convective er-

rors can be approximated and eliminated on the coarse space, instead of by the more

expensive fine-space smoother. Two-level results for advection and the linearized Eu-

ler equations confirm the algorithmic performance of this approach. Furthermore, the

SVD approach uses block Jacobi as the smoother, which bodes well for fine-grained

scalability.

A natural question is whether the SVD approach extends to multiple multigrid levels.

In terms of implementation, the extension is straightforward: the algorithm presented

in Section 3.3 applies equally well to corrections between coarse and coarser levels.

But can we expect the algorithmic performance benefits to continue down to coarser

levels? The answer depends on the distribution of singular values. The best scenario

for the proposed approach is one in which each element has an appreciable number

of zero singular values. In this case we have a “free” degree of freedom reduction to

possibly very coarse levels. That is, we can reduce the number of unknowns with no

effect on accuracy, since one coarse-level correction and one smoothing iteration will

give us an exact solve. Next, if the singular values decay steadily or even in multiple
20



steps, then each coarser level will still preserve the dominant modes important for the

finer level that it is correcting, and the algorithmic performance will continue to coarser

levels. However, if the singular values eventually plateau for low mode numbers, the

algorithmic benefits of going to coarser levels will cease. In these situations, which

ideally will occur after a sizable reduction in degrees of freedom, the size of the coarse

system will still likely be too large for a direct solve; one can then turn to other solvers

such as Krylov methods, which now would operate on smaller systems.

Another question is about prospects for equations with diffusion. Preliminary exper-

iments show that the singular values in such cases do not decay as quickly as in problems

with only convective terms. Intuitively this is expected because in diffusion problems a

state perturbation in an element will affect residuals in all of its neighbors. Therefore, the

SVD-multigrid approach looses its advantage. A possible remedy in this case would be

to use an operator-splitting approach to treat convective and diffusive terms differently,

possibly with standard p-multigrid for the latter.

We have shown two-dimensional examples but the ideas carry over naturally to three

dimensions. We expect similar benefits for convective systems at high orders. An in-

tuitive interpretation is that the SVD approach can yield systems in which the degrees

of freedom scale as pdim−1 instead of pdim, because for convection problems modes in-

side an element are excited only by state variations on inflow faces, and the number

of independent variations scales as p to a power one lower than the dimension of the

problem.

For simplicity, in our results we have assumed that rH is the same on each element.

However, we could tailor rH to the singular value decay in each element. For some

elements in which the singular values decay slowly, we could choose to keep most of

the modes. Conversely, for elements that have a large number of zero singular values,

we could use a much smaller rH . In a parallel setting the partitioner would have to be

aware of this non-uniformity in the coarse-level sizes for ensure load balancing, but no

fundamental changes to the algorithm would be necessary.
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Finally, we have considered only linear problems. For nonlinear problems, a sim-

ple extension is to apply the SVD-multigrid solver to the linearized system in Newton-

Raphson. We could even use this solver as a preconditioner for a Krylov method. How-

ever, this does not alleviate the storage demands for the fine-level residual Jacobian. To

address this problem, we are currently looking into extending our ideas to methods that

adaptively tailor the approximation space for efficient representation of the dominant

state components inside each element.
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Figure 1: Illustration of a two-level correction cycle, where the fine (h) and coarse (H) levels are denoted
by subscripts.
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(a) Jacobian matrix, A (b) Mesh and lines (c) A, elements reordered

Figure 2: An element-block smoother inverts only the block diagonal of the residual Jacobian matrix, A,
whereas an element-line Jacobi smoother solves block tridiagonal systems formed by ordering elements
along strongest coupling. Block-ILU and Gauss Seidel smoothers share characteristics with the element-
line smoother.
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(a) A coarse mesh (b) Mach number contours

Figure 3: Inviscid flow over a bump: the elements are curved using a cubic mapping from reference to
global space.

29



0 10 20 30 40 50 60 70 80 90 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Multigrid Iterations

L 1 
R

e
s
id

u
a

l 
N

o
rm

 

 

N
elem

=256

N
elem

=1024

N
elem

=4096

N
elem

=16384

(a) νpre = νpost = 2
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(b) νpre = νpost = 20

Figure 4: Inviscid flow over a bump: mesh dependence of the p-multigrid V-cycle with element Jacobi
smoothing as a function of the number of pre-correction and post-correction smoothing iterations. Two
levels were used, ph = 3 and pH = 2, with an exact solve on pH = 2.
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(a) Far view of density error (b) Near view

Figure 5: Inviscid flow over a bump: slowest converging mode corresponding to the finest grid in Figure 4a.
The density error is shown at ten multigrid iterations, which is when the residual convergence begins to
plateau. The error is high frequency orthogonal to the streamlines, and low frequency in the streamwise
direction.
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(a) Lines of elements
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(b) Residual convergence

Figure 6: Inviscid flow over a bump: mesh independence of the p-multigrid V-cycle with element-line
Jacobi smoothing, for νpre = νpost = 2. Two levels were used, p = 3 and p = 2, with an exact solve on p = 2.
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Figure 7: Two-dimensional advection with horizontal lines: flow/line alignment test for two-level p-
multigrid with the element-line smoothing. Two levels were used, ph = 3 and pH = 2, with an exact
solve on pH = 2, and νpre = νpost = 2.
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(a) Hexahedral mesh of a wing
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(b) Residual convergence

Figure 8: Inviscid flow over a wing: h-dependence of p-multigrid with the element-line smoother. Lines
were created using a physics-based coupling measure computed from the inviscid flux [10], and due to the
structure of the mesh they align reasonably well with the flow in most of the domain. Two levels were used,
ph = 2 and pH = 1, with an exact solve on pH = 1, and νpre = νpost = 2.
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(a) 1 core (b) 32 cores

Figure 9: Laminar Navier-Stokes flow over an airfoil: parallel degradation of the element line smoother:
lines are cut by partition boundaries.
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p=2

p=3
flow

Figure 10: Inviscid flow over a bump: construction of a semi-coarsened approximation space on each
element, in this case by taking advantage of the mesh structure and alignment with the flow.
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(a) Coarse space: (p=2) ⊗ (p=2)
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(b) Coarse space: (p=2) ⊗ (p=3)

Figure 11: Inviscid flow over a bump: convergence of p-multigrid with full- and semi-order coarsening, us-
ing a tensor-product Lagrange basis. A two-grid cycle is used with νpre = νpost = 5. Note the h-independence
of the residual convergence when using semi-coarsening of the tensor-product approximation space.
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Figure 15: 2D Linear advection on a quadrilateral mesh, α = 25o.
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(a) 16 × 16 mesh, ph = 3
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(b) 32 × 32 mesh, ph = 3
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(c) 64 × 64 mesh, ph = 3
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(d) 32 × 32 mesh, ph = 4

Figure 16: Comparison of singular values for an advection problem on a structured mesh. Singular values
of all elements are shown together on each plot, with colors picked randomly to distinguish between singular
values.
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(a) 16 × 16 mesh, ph = 3

0 5 10 15 20
10

−20

10
−15

10
−10

10
−5

10
0

MG iterations

L
2
 r

e
s
id

u
a

l 
n

o
rm

 

 

SVD

Block

Line

(b) 32 × 32 mesh, ph = 3
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(c) 64 × 64 mesh, ph = 3
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(d) 32 × 32 mesh, ph = 4

Figure 17: Comparison of two-level correction convergence rates for advection on a structured mesh.
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Slip wall BC

NACA 0012 

(a) Problem setup (b) Mach contours

Figure 18: Problem setup (α = 2◦,M∞ = 0.5) and Mach number contours for the steady-state flow solution
over a NACA 0012 airfoil. This is the state about which we linearize for the linearized Euler solver.
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(a) Singular values
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(b) Convergence

Figure 19: Linearized Euler flow over a NACA 0012 airfoil: singular values and residual convergence of a
two-grid correction cycle for a 728-element mesh, with ph = 3 and pH = 2. Tensor product basis functions
are used.
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(a) Singular values
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(b) Convergence

Figure 20: Linearized Euler flow over a NACA 0012 airfoil: singular values and residual convergence of a
two-grid correction cycle for a fine, 2912-element mesh, using ph = 3 and pH = 2.
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(a) Singular values
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(b) Convergence

Figure 21: Linearized Euler flow over a NACA 0012 airfoil: singular values and residual convergence of a
two-grid correction cycle for a 728-element mesh, using ph = 4, pH = 3.
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Figure 22: Linearized Euler flow over a NACA 0012 airfoil: study of the effect of the coarse-space size,
rH , for a 728-element mesh with ph = 3⇒ rh = 64.
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