Output-Based Error Estimation and Mesh
Adaptation for Steady and Unsteady Flow
Problems

Krzysztof J. Fidkowski *
University of Michigan, USA

September 15, 2015

Contents
[1__Introduction| 5
(L1 Motivationl. 5
(.2 Fiite Blement Discretizationl oo 7
(1.3 Background| 8
PEE b} ationl 9
2.1 The Discontinuous Galerkin Methodl 9
[2.1.1 Conservation kquations| 9
[2.1.2 Solution Approximation| 9
13 Weak Form| 10
[2.1.4 Discrete System|o 11
2.1.5 Nonlinear Solver| 13
[2.2 Discrete Adjoint|. 13
[2.2.1 Local Sensitivity Analysis| 13
[2.2.2 The Adjoint System| 14
[2.2.3 Adjoint Consistency| 15
[2.2.4 Adjoint Sensitivity Tests|o 18
[3 Output Error Estimation| 21
B.I Two Discretization Leveld 21
[3.2 "The Adjoint-Weighted Residuall 21
[3.3 Approximations| 22
[3.4 Error Effectivity|.o 23
[3.0 Examples 24
[3.5.1 Drag Error for Euler Flow over a Bump| 24
[3.5.2 Drag Error for Viscous Flow over a NACA 0012 Airtoill 27

*Associate Professor, Aerospace Engineering Department, kf id@umich.edu

VKI -1-

CONTENTS CONTENTS

[4 Mesh Adaptation| 29
4.1 Frror Localizationl. 29
4.2 Adaptation Mechanics|o 29

42,1 local Refinement! o000 29
[4.2.2 Global Re-Meshingl 31
[4.2.3 Targeting Strategies| 32
[4.2.4 Incorporating Anisotropy|. 33
[4.2.5 Adapting in Order| 34
4.3 Examples| 34
M3.1 Inwvisad Flow over an Airfoillo o000 35
4.3.2 Viscous Flow over an Airfoill 38
[4.3.3 Which Output?| 39
“4.3.4 Transonic Turbulent Flow over an Airfolll 42
[4.3.5 Transonic Turbulent Flow over a Wing| 45

[> Mesh Optimization| 49

[>.1 Metric-Based Mesh Optimization Algorithm| 49
[>.1.1 Metric-Based Meshing| 49
[>.1.2 Error Convergence Model| 50
bh.l13 Cost Modell 52
[>.1.4 Metric Optimization Algorithm| 52

[5.2 Element-Local Error Sampling| 54

.3 Examples| 57
b.3.1 Invisad Flow over a NACA 0012 Airfolll o7
[5.3.2 High-Reynolds Number Flow over a Flat Plate]. 61
(3.3 NACA 0012 Airfoil in Laminar Viscous Flow] 62
0.3.4 RAL 2822 Aijrfoil in Turbulent Transonic Flowf. 69

6 Unsteady Systems| 73

[6.1 Primal and Adjoint Discretizations| 73
[6.1.1 Multi-Step Methods 0. 73
[6.1.2 Discontinuous Galerkin in Timel o000 75

6.2 Deformable Domainsl oo 7
[6.2.1 An Arbitrary Lagrangian Eulerian Treatment| 77
[6.2.2 Blended Analytical Mesh Motions| 81
6.2.3 The Geometric Conservation Lawl 81

[6.3 Error Estimation and Adaptation| 83
[6.3.1 The Adjoint-Weighted Residual and Error Localization| 83
[6.3.2 Incorporating Space-Time Anisotropyl. 84
[6.3.3 Space-Time Mesh Adaptation| 84
[6.3.4 Implementation Notes| 88

6.4 Examples| 89
[6.4.1 Static h-Refinement for an Impulsively-Started Airtoil 89
[6.4.2 Dynamic-Order Adaptation for Pitching and Plunging Airfoils) . . . 93
[6.4.3 Dynamic-Order Adaptation for a Three-Dimensional Wing| 98

VKI

-2

CONTENTS CONTENTS
[7__Conclusions| 103
8 Acknowledgments| 105
[A Compressible Navier-Stokes Equations| 117
[A.1 FEuler Equations| 117
[A.2 Compressible Navier-Stokes| 117
[A.3 Reynolds-Averaged Compressible Navier-Stokes| 119
[B Unsteady Adaptive Strategy| 120
[B.1 Greedy Fixed Growth Selection Algorithm| 121
[B.2 Temporal-Mesh Optimization| 121

VKI

1 INTRODUCTION

1 Introduction

1.1 Motivation

These notes present the theoretical background and practical implementation aspects of
error estimation and mesh adaptation using output-based methods. The target application
is the numerical simulation of aerodynamic flows, which are often convection-dominated
and in which outputs of interest can be highly sensitive to small perturbations in the
flow. The task of generating appropriate computational meshes for such simulations
is therefore challenging, as inadequate resolution in a seemingly uninteresting area of
the domain can have a large impact on engineering outputs of interest. It is in these
situations that output-based adaptive methods, which specifically take into account such
error propagation effects, can be advantageous, often by a margin that outweighs their
(nontrivial) implementation cost.

When discussing adaptation, we are concerned with min-
imizing errors from the numerical discretization, which in-
cludes effects of mesh size, polynomial order, and time step.
Such error is inherent to computational simulations because
of the finite nature of discrete numerical calculations. As
illustrated in Figure (1| discretization error is not the only
source of error in computation, but its management tends to
be the most elusive. In practice, with limited resources, nu-
merical errors are managed by practitioners who are knowl- convergence errors
edgeable about the assumptions and limitations of the mod-
els, and/or by best-practice guidelines for mesh generation.
However, even very experienced practitioners cannot reliably
quantify the error in a discrete approximation of a complex
flowfield — see for example the non-intuitive adaptive results
in Figure [3] In addition, reliance on best-practice guidelines Figure 1: Various sources of
is an open-loop solution that leaves unchecked the possibility error affecting computation.
of large amounts of numerical error for computations on novel configurations.

modelling

input uncertainties
errors

discretization errors

post—processing errors

Methods based on an adjoint analysis, where an adjoint associated with an output
is the sensitivity of that output to residuals in the governing equations, help to close
the loop in the control of numerical error via two ways. First, these methods provide
output error estimates, which, although not bounds, can be used as confidence intervals
to determine if an engineering output has been computed to sufficient numerical accuracy.
Second, the error estimates can be localized, e.g. to elements of the computational mesh,
in order to drive an adaptive method that reduces the error, as illustrated schematically
in Figure [2, We view both of these uses of output-based analysis as improvements in the
robustness of numerical simulations. Furthermore, note that the a posteriori nature of the
error estimation and adaptation elicits a new paradigm for what constitutes a numerical
solution — rather than treating properties of the discretization, such as the mesh, as givens,
we propose to treat these properties as unknowns in the solution process.

VKI -5-

1 INTRODUCTION 1.1 Motivation

Initial mesh

A

A
+e (error est.) ;

output

corrected
output

exact output value

T cost (degrees of freedom)

adaptive iterations

Figure 2: Typical adaptive convergence result obtained using output-based error estimates. The task
of allocating degrees of freedom to regions of the domain is incorporated into the solver. Note, in many
cases we can compute directional error estimates, i.e. corrections, and the resulting corrected outputs
are illustrated by a dashed line. We can also often obtain conservative error estimates (though not strict
bounds), and these are illustrated by the shaded regions at =+e.

Adapted using residual

0.112

\
il
- | ”"’.

01115} \

A

% 0111 il 7/
(&) T

(@) S

g ;i

g N WAV %

0.1105¢

I

Ny

| \

Adapted using drag adjoint 1-1h0O I\ tum \adioin

Figure 3: Two ways of adapting the mesh for a transonic, M., = 0.95, Euler simulation around a
NACA 0012 airfoil. The “fishtail” shock structure aft of the airfoil is a prominent feature, one targeted
by a typical indicator such as an unweighted residual, which is actually not necessary for the prediction
of drag. An indicator that weights the residual by the drag adjoint is not distracted by this feature and
quickly hones in on the correct drag value.

VKI -6 -

1.2 Finite Element Discretization 1 INTRODUCTION

1.2 Finite Element Discretization

In these notes we employ a finite element discretization of the governing equations of
compressible fluid flow, i.e. the compressible Navier-Stokes equations. Many of the ideas
presented extend to other discretizations, such as finite volume and finite difference meth-
ods. We choose finite elements for their variational formulation and flexibility in intro-
ducing high-order approximation. In particular, we employ the discontinuous Galerkin
(DG) method, which has become a popular choice for convection-dominated conservation
laws.

We employ a high-order discretization to allow for the possibility of order refinement
during adaptation. The choice of low versus high-order methods is often a subject of
debate, and a typical answer is that this choice depends on the problem: smooth flows are
amenable to high order, whereas flows with singularities may be more efficiently resolved
with low order. Most practical flows, however, exhibit both smooth and singular features,
the locations of which are often not known a priori. In such circumstances, solution-based
adaptation is critical for robustness and efficiency. High order applied selectively to parts
of the domain becomes just another tool for efficient accuracy improvement. Other tools
include mesh size and stretching optimization and mesh motion; one can imagine that
more adaptive tools translate into a better use of degrees of freedom, and hence more
efficient adaptation, as indicated in Figure . For our work, we focus on h (mesh), p

log(error) log(error)
Traditional perspective A Adaptive paradigm

uniform h
adaptive h

adaptive\hp

= log(dof)

H

Figure 4: Schematic comparison of output convergence for uniform mesh refinement and for adaptive
refinement. In aerodynamics, hp-refinement provides an important capability for addressing errors in
flows with both smooth and discontinuous regions, specifically when targeting engineering outputs. Note
that in the presence of singular features, the convergence rate of high-order approximations with uniform
refinement (left) will generally be no better than that of low-order approximations, whereas this is not
the case with hp-refinement.

(order), and hp (combined) adaptation. As aerodynamic flows generally exhibit both
smooth and discontinuous features, hp-refinement is important in maximizing efficiency
and robustness of CFD calculations, and the ability to locally enrich the order of the
method is an key ingredient in making this possible.

VKI -7-

1 INTRODUCTION 1.3 Background

1.3 Background

For flexibility in adaptive mechanics, we work with a discretization that admits high order,
preferably in a locally-adaptive manner. Several such choices exist, and we turn to finite
elements for their built-in variational framework, and to discontinuous approximation
spaces for convective stability. Previous works have demonstrated the realizability of high-
order accuracy |26} [38], error estimation [16} [60} [32], hp-adaptation [64], stable viscous
discretization [11), 12, 4] [18,[92], and extension to variational space-time algorithms [0, [71]
117, 118, 68, 10} [79, 108, 37] using discontinuous Galerkin (DG) finite element methods.

Error estimation is a critical ingredient for improving the robustness of computational
simulations. Efficient error control by systematic reduction requires the additional ability
to identify regions in space and time contributing most to the error and the ability to
change the discretization given such information. Table [1] lists several popular strategies
for managing numerical error to improve simulation robustness. As indicated, only output-

based methods provide both good error estimates and good adaptive indicators.

Table 1: Summary of existing methods for managing numerical error in engineering simulations.

Method and References Description Error Es- Adaptive
timates Indicator
Resource exhaustion [45], [77] Simulations run using the finest available numerical res-
olution.
Expert assessment [81] [76] User employs previous experience, inspection of features, | Poor Poor
etc.
Convergence studies [100}, [I] Convergence rate estimated from a series of refined grids. | Good Poor
Comparison to experiment [70, | Numerical error is low if experimental data is reasonably | Medium
[841 [104) matched.
Feature-based adaptation [5,[8, | Mesh is adapted in “interesting” areas, e.g. large gradi- Medium
[121) ents.
Residual methods [I13,[103, /54, | Nonzero residuals drive error propagation and mesh | Medium Medium
102} adaptation.
Output-based methods [14} 57, | Employ adjoint-weighted residual and localization for | Good Good
[T19 [36] adaptation.

Output-based methods [96], 14} 57, 119l 82, B6] seek to quantify and minimize errors
in scalar outputs of interest. Their robustness and efficiency arise from the fact that
they specifically target for refinement those and only those areas of the computational
domain that are important for predicting the output. They are well-suited for convection-
dominated flows because through the use of adjoint solutions they properly account for
error propagation effects, which can be troublesome for many heuristic adaptive indica-
tors. Application to unsteady problems has been more limited [73] [74] 10, [79, 37, 34} 67]
due largely to implementation challenges and computational expense associated with the
solution of a fine-space adjoint equation, especially for nonlinear problems.

VKI

2 DISCRETIZATION

2 Discretization

2.1 The Discontinuous Galerkin Method

2.1.1 Conservation Equations
Consider a conservation law given by the partial differential equation (PDE)
o+ 0;H;(u,Vu) = 0, (1)

where u € R? is the state vector, H; € R? is the i*® component of the total flux, 1 <i < d

indexes the spatial dimension d, and summation is implied on the repeated index i. We
decompose the total flux into convective and diffusive parts,

H; = FZ(u) + Gi(u’ VU), (2>

Gi(u, VU) = —Kij(U) 8ju, (3)

where F; € R® is the i*" component of the inviscid/convective flux, G; € R® is the i*!

component of the viscous flux, and K;; € R**® is the (i,j) component of the viscous
diffusivity tensor. We will initially focus on steady problems, so that d,u = 0.

2.1.2 Solution Approximation

DG is a finite element method in which the state u is
spatially approximated in functional form, using linear
combinations of basis functions, usually polynomials, on
each element. No continuity constraints are imposed on Q.
the approximations on adjacent elements. Denote by T},
the set of N, elements in a non-overlapping tessellation
of the domain €, as illustrated in Figure [f

4 I
N. Npe domain {2 element e
u(7) ~ Z Z Uerngen (), (4) Figure 5: Partition of a square do-
e=1 n=1 main into 14 triangular elements.
where
N,, = mnumber of basis functions needed for an order p. approximation
den(T) = n'™ order p, basis function on element e (zero on all other elements)
pe = order of spatial basis functions on element e
N, = number of elements
U,., = vector of s coefficients on n'* basis function on element e

Formally, we can write that u, € V), = [V,]*, where
Vh = {u S LQ(Q) . U‘Qe S Ppe VQG € Th}7

and PP¢ denotes polynomials of order p. on element e. E| In many cases we use the
same approximation order on all elements, so that Ve, p. = p. The lack of continuity in

ISee Appendix Al for the PDEs used in this work

2A caveat here is that for elements that are curved, the polynomial approximation is usually performed
on a master reference element, so that following the reference-to-global mapping, the state approximation
on curved elements is not strictly of order p..

VKI -9.

2 DISCRETIZATION 2.1 The Discontinuous Galerkin Method

the solution approximation differentiates DG from continuous finite element methods, as
illustrated in Figure[6] It adds computational expense, as we do not expect to approximate
solutions that are discontinues at every element interface, but it also provides convective
stability and simplifies hanging-node mesh refinement and local order enrichment.

6.1: Continuous Galerkin 6.2: Discontinuous Galerkin

Figure 6: Solution approximation using continuous and discontinuous basis functions. Though the
solution is discontinuous in DG methods, the inter-element flux is single valued, as in finite volume
methods.

2.1.3 Weak Form

We obtain a weak form of by multiplying the PDE by test functions v, € V), and
integrating by parts to couple elements via fluxes. The convective fluxes on element
faces are handled via a traditional finite-volume (approximate) Riemann solver, but the
diffusive treatment is trickier and requires stabilization. Multiple diffusion formulations
exist [4], and we employ the second form of Bassi and Rebay (BR2) [11].

We can write the final semilinear weak form as

Rin(ap,vy) =0, Vv, €V, (5)

which, by linearity of the second argument, we can decompose into contributions from
each element,

Ne
Rh(uh,vh) = ZRh(uh,vhme) = 0, Vvh S Vh. (6)
e=1

Integrating by parts and applying the BR2 diffusion treatment, we find that the semilinear
form associated with each element is

Rh(uh,vh|ge) = / vfatuh ds? —/ angHz dS)
Qe Qe

—l—/ v (]_*A“ + é) ds +/ v (f” + éb) ds
99.\09 99,000
—/ &-V,J{TKZT; (uz — ﬁh) n;ds

99.\00

—/ iKY (uf —ap) nyds (7)
99,000

VKI -10 -

2.1 The Discontinuous Galerkin Method 2 DISCRETIZATION

where (-)7 denotes transpose, and on the element boundary 952, the notations (-)*, (-)7, ()
respectively denote quantities taken from the element interior, neighbor element, and
boundary. The last two terms symmetrize the semilinear form for adjoint consistency.
A schematic showing key quantities and the variables affecting the fluxes is given below.
The unique state on an interior face is U, = (u; +u;,)/2.

F = F(u',u;,i
99.\00 N A<uh Uy s)
G = G(uf,u;,Vu/,Vu,; ,n)
u o~ ~
" F* = F'(u}, BC,7)

~

G’ = GYu},Vui,BC,7)

T
u 7 09, U 09
h
In particular, on an interior face o/, the convective flux F is computed using the Roe
approximate Riemann solver [101], and the BR2-stabilized viscous flux is

G = % (GF+ Gy)n + 77% (67 +6;) nt, (8)

where the auxiliary variables 8;,8; € [Vh]d have support on the two elements adjacent
to the interior face ¢/ and are obtained by solving V1, € V;,

/Q+ Th85dQ + /Q_ 756, dQ = /;f % (T,J;TK:; + T}_LiTKi_j) (u;f — u;)nj ds. (9)

1 is a stabilization factor that should not be less than the number of faces per element,

and in our work is taken to be (at least) twice the maximum number of faces on adjacent
elements.

On a boundary face o®, fluxes are typically computed directly from the boundary state,

u’, which is a function (projection) of the interior state and the boundary-condition data,

u? = u}(u, BC). One exception is the convective flux for a boundary condition in which

a complete exterior state is specified: in such a case, an approximate-Riemann solver is

used to compute the boundary convective flux, F®. The BR2-stabilized boundary viscous

flux is
éb = ch [Gi(ul,’” VuZ)ni + 775@'7%] , (1())

where the auxiliary variable e [Vh]d has support on the element adjacent to the bound-
ary face o® and is obtained by solving V7,; € V),

/T%iéidQ = /TZiTKfj(u;—uZ)njds. (11)
o—b

The projection I12¢ in incorporates boundary conditions on the viscous flux, such as
a prescribed heat flux in the compressible Navier-Stokes equations.
2.1.4 Discrete System

For efficient implementation, the various contributions from all elements to the final semi-
linear form in are computed in three logical loops: one loop over all element interiors,

VKI -11 -

2 DISCRETIZATION 2.1 The Discontinuous Galerkin Method

one loop over all interior faces, and one loop over all boundary faces. When computing
these contributions, we choose as test functions the trial basis functions introduced in ,
OGen, Where

span {¢e } = V. (12)

Recall that e is the element number and n indexes the polynomial basis functions inside
element e. Each state equation is tested with the same set of functions, which means that
we can define a size-s residual vector for the n'" test function in element e by

Ren = {Rh(uha ¢€ne7‘)}r:1...s € RS’ (13>

where e, € R*, r = 1...s, is a vector of all zeros except a 1 in position r. We now use the
convention that dropping a subscript means considering the set of values over the entire
range of that subscript. So R, is the set of residuals over all states and basis functions
inside element e, and R is the set of all residuals for all elements in the domain. Using
the same convention for the state, U, we can write the discrete system of equations (i.e.
residuals) compactly as

R(U) = 0. (14)

Note that both U and R lie in RY, where the total number of degrees of freedom including
equation states is

Ne
N = N, s. 15
Pe
e=1

When considering different discretization spaces, we will append a subscript h or H to
the variables R, U, and N.

In practice, we store the state and residual vectors unrolled, as illustrated in Figure[7]
Finally, the number of basis functions per element depends on the approximation space

Uel
: U, } U, state a?pprox.
- : U coefficients for
U = }element e U., ‘} basis fen n : 2 element e and
: U, basis function n
UeNpe

numbers needed to describe s order p
polynomials inside element e

Figure 7: Unrolled storage of the state vector U € RV,

and order p. We consider two approximation spaces that are given by the span of mono-
mials in reference space coordinates &;, 1L ,&P: a full-order space in which Zle pi < p,
and a tensor-product space in which Vi, p; < p. The resulting dimensions of these spaces
are

|
full-order basis set: N, = (Z) = ﬁ tensor-product basis set: N, = (p + 1)
(p—d)!

VKI -12 -

2.2 Discrete Adjoint 2 DISCRETIZATION

2.1.5 Nonlinear Solver

To solve , we use a preconditioned Newton-Krylov method augmented with pseudo-
transient continuation. Starting from an initial guess, usually the free-stream condition,
and a conservative time step set using a Courant-Friedrichs-Lewy (CFL) number of ap-
proximately 1, the Newton solver iterates until steady state. The linear system at each
Newton iteration is solved using an element-line preconditioned General Minimal Residual
Krylov subspace method [106], T05]. As successful Newton updates are taken, the time
step is increased according to an exponential growth formula for the CFL number. Details
on the solver, including the incorporation of physical constraints on some of the variables,
can be found in [24].

2.2 Discrete Adjoint

Suppose that we are interested in a scalar output computed from the solution to our PDE.
Using the discrete state vector, we write

output J = J(U). (16)

The discrete adjoint, ¥ € R, is a vector of sensitivities of the output to the N residuals.
That is, each entry of the adjoint tells us the effect that a perturbation in the same
entry in the residual vector would have on the output J. One common source of residual
perturbations is changes in input parameters for a problem, and so we ground the adjoint
presentation in the context of a local sensitivity analysis.

2.2.1 Local Sensitivity Analysis

Consider a situation in which N, parameters, p € RV affect the PDE in (14). For
example, in aerodynamics, parameters could be used to set boundary conditions or the
geometry, as illustrated schematically in Figure [§] We can then write the following chain
of dependence,

© — R(U,pu) =0— U — J(U) : (17)
~— ———— ~~ N ——
inputs € RN N equations state € R output (scalar)

We are interested in how J changes (locally for nonlinear problems) with g,

a7 € RV Ne = N, sensitivities. (18)
dp

Note, if J depends directly on p we would add g—i to the above sensitivity, but for clarity
of presentation we consider only the case when J = J(U). Several options exist for
computing these sensitivities. Two direct ones are finite differencing, in which the input
parameters are perturbed one at a time, and forward linearization, in which the sequence
of operations in is linearized. Both of these become expensive when N, is moderate
or large, because of the need to re-solve the system R(U, u) = 0 for each parameter. A
third choice is the adjoint approach, which requires an inexpensive residual perturbation

VKI -13 -

2 DISCRETIZATION 2.2 Discrete Adjoint

Output
J = Lift

("state: U, = [p, pi, pEl.)

element e

(Residual: R, = [,,, F- ﬁ)

Figure 8: Schematic of typical inputs, state, residual, and output quantities in an aerodynamics simu-
lation.

calculation followed by an adjoint weighting to compute the effect on the output. That
is, we write

dJ R
— =wl (19)
dp ow

This approach is efficient for computing a large number of sensitivities for one output, as
the cost is one residual perturbation calculation and one vector product per sensitivity.

The central idea in the adjoint approach is that L R U J
we do not need to solve the forward problem each]]
time we want a sensitivity. Suppose that for a given : :
p we solve our discrete system and find U such that \ | solver | /

R(U,) = 0. Now perturb g — p + dp ... what (expensive)

_

is the effect on J? We can re-solve for a perturbed
state, but this is expensive. Instead, we can separate
the effects of p on R, and R on J, as illustrated
on the right. The adjoint method precomputes the Figure 9: Bypassing the forward solve
effect of R on J, which is the expensive step. The Zflaiiidpmt approach to sensitivity cal-
resulting N sensitivities are stored in the vector W. '

2.2.2 The Adjoint System

To derive an equation for the adjoint, we consider the chain of operations we would take
in computing the sensitivities via a direct approach. In the following steps, we assume
small perturbations.

VKI -14 -

2.2 Discrete Adjoint 2 DISCRETIZATION

1. Input n— p+op
2. Residual R(U,p+dp)=0R#0 — R(U,pu)+ g—ﬁ(U S = R
-
3. State R(U+6U,p+dp)=0 — R(U,u)+§%(U 5u+§%‘u oU =
D :
4. Output J(U+6U)=J(U)+d6J — 6J=26U
Subtracting step 2 from step 3, we obtain
OR OR]™
—| 0U=-0R oU=—-|—1| JR. 2
aU luu - [aU] (20)

Combining this result with the output linearization in step 4 gives the output perturbation
in terms of the residual perturbation,

0. aJ [oR]™!
0] =—0U=—— |=—| OJR. 21
/ ou ou {8U] (21)
N————
v’ e RY
Taking the transpose of the equation ¥’ = —g—é [g—f}]_l and moving everything to the
left-hand side gives the adjoint equation,
R\ " aJ\"
— | ¥ —] =0. 22
(55) = (70) 2

The n** component of W is the sensitivity of J to changes in the n'" residual.

Since R(U,) = 0, from step 2 above we have /R = & op and becomes
Up

op

OoR dJ R
§J=w""—| § S =wl 23
op lu,p b= dp op 1o, (23)

Therefore, once we have ¥, no more solves are required for new sensitivities for the same
output. Note that the calculation of %’: is typically very cheap compared to a forward
solve.

Although we have presented the adjoint in the context of a parameter sensitivity
analysis, we will see in the next section that residual perturbations also arise when discrete
solutions are viewed from an enriched space. This will be the motivation for using adjoint
solutions in output error estimation.

2.2.3 Adjoint Consistency

The solution to is a discrete adjoint, ¥, which at the simplest level we can think of as a
vector of N numbers. However, the adjoint also has a continuous counterpart, call it ¥ (Z),
and we can think of the N numbers in ¥ as expansion coefficients in an approximation
of 1) using the same basis functions used for the primal problem. The accuracy of this
approximation is of interest for various reasons, including error estimation.

VKI -15-

2 DISCRETIZATION 2.2 Discrete Adjoint

Suppose that the exact primal solution, u € V, satisfies
R(u,v) =0, Vv e, (24)
for an appropriately defined space V. The exact adjoint ¢ € V then satisfies
R'Mu)(v,v) + T'[u](v) =0, Vv ey, (25)

where the primes denote Fréchét linearization about the arguments in square brackets,
and R and J are the continuous versions of the semilinear form and output functional,
respectively. While we have assumed that both u and %) lie in V, this may not always be
the case [72].

The exact adjoint can be regarded as a Green’s function that relates source perturba-
tions in the original partial differential equation to perturbations in the output[46, 48], as
illustrated schematically in Figure [I0] A sample adjoint solution is shown in Figure

6J = 0IR,

Lift= J(U) 4+ 6J
We have a solution U when R =10

element e

R, W,
. . 0
What if we add a residual source, 0R..7 ULoU

\/

resolving for the state ...

Figure 10: Interpretation of the adjoint as the sensitivity of a scalar output, such as lift, to residual
source perturbations.

for Reynolds-averaged compressible flow over an airfoil. While the adjoint solution often
shares qualitative characteristics similar to the primal, such as the presence of a boundary
layer in a high-Reynolds number flow, it also shows marked differences, such as the “wake
reversal” seen in the far-field view in Figure In this case, the output is drag, and up-
stream of the airfoil, residual perturbations on/near the stagnation streamline (the flow
that is going to hit or come closest to the airfoil) will have a larger magnitude impact on
the drag than residual perturbations elsewhere; hence we see an adjoint “reversed” wake
telling us that there are large sensitivities to perturbations in front of the airfoil. The
figure shown tells us that this is the case for residual perturbations in the conservation of
r-momentum equations, but plots of the other adjoint components show similar behavior.

Figure [12]illustrates an adjoint field for another case: supersonic flow over a diamond
airfoil. The output in this case is a pressure line integral, and nonzero values of the ad-
joint (y-momentum component shown) indicate where perturbations to the (y-momentum)
residuals will affect the output.

The adjoint field depicted in Figure[11]is the discrete adjoint solution on a fine mesh. It
can only be regarded as a faithful representation of the exact adjoint if the discretization

VKI -16 -

2.2 Discrete Adjoint 2 DISCRETIZATION

11.1: z-momentum state (near view) 11.2: z-momentum adjoint (near view)

—5

11.3: z-momentum state (far view) 11.4: z-momentum adjoint (far view)

Figure 11: Comparison of the primal solution (z-momentum component) and the adjoint solution
(conservation of z-momentum equation component) for a drag output in Reynolds-averaged turbulent
flow over an RAE 2822 airfoil. The color scales are clipped to show the interesting features of each
quantity — in the adjoint plots, yellow is near zero.

Figure 12: Sample adjoint solution for a pressure integral output in supersonic flow over a diamond
airfoil. Large regions of zero adjoint indicate areas where residuals have no affect on the output — these
could also be identified via a characteristic analysis.

VKI -17 -

2 DISCRETIZATION 2.2 Discrete Adjoint

is in some manner consistent with the exact adjoint problem. Primal consistency in
the variational problem requires that the exact solution u satisfy the discrete variational
statement,

Rp(u,v) =0, Vv € Wy, (26)

where W), =V, +V ={h=f+g:f € V,,g € V}. Similarly, the combination of
the discrete semi-linear form R;, and the functional 7, is said to be adjoint consistent if
[72], 56, [86]

Ryu](v,v) + T [u](v) =0, Vv e W), (27)

Discretizations that are not adjoint consistent may still be asymptotically adjoint consis-
tent if Eq.[27]holds in the limit A — 0, by which we mean the limit of uniformly increasing
resolution, over suitably normalized v € W),. For non-variational discretizations, the def-
inition of consistency must involve an approximation operator to map exact solutions into
discrete spaces [2§].

Adjoint consistency has an impact on the convergence of not only the adjoint approx-
imation but also the primal approximation[4], 53], 47, [52] [72] (56, [86]. In error estimation,
an adjoint-inconsistent discretization can lead to irregular or oscillatory adjoint solutions
that pollute the error estimate with noise and lead to adaptation in incorrect areas [72].
Enforcing adjoint consistency imposes restrictions on the output definition and on the
interior and boundary discretizations that enter into the semi-linear form. These restric-
tions have been studied by several authors in the context of the discontinuous Galerkin
method [4, [72], [56]. In general, discretizations that are found to be adjoint inconsistent
can often be made adjoint consistent by adding terms to either the semi-linear form or
the output functional.

2.2.4 Adjoint Sensitivity Tests

One way to test a discrete adjoint is to compare output sensitivities computed using
the adjoint to those computed using finite differences. In this example we show this
comparison for a viscous flow over a NACA 0012 airfoil at M = 0.5, Re = 5000, o« = 2°.
We are interested in the sensitivity of the lift coefficient to angle of attack. Since the lift is
defined as the force perpendicular to the free-stream direction, the output depends directly
on the input parameters, so that we need to augment with the partial derivative of
J with respect to the input angle of attack, «,

A _ grdR 07

B 4z 28
da Jda O« (28)
For the present test we compute %—5 using a simple forward difference,
R R(U Aa) — R(U

oo Aa ’
where A« is a small value, e.g. 0.0lrad. In Figure [13] we show a comparison of the
sensitivity computed using , i.e. a local linearized sensitivity, to outputs obtained by
actually perturbing the input parameter. The qualitative agreement is excellent, and a
quantitative look shows convergence at the expected rate as the angle of attack pertur-
bation goes to zero.

VKI - 18 -

2.2 Discrete Adjoint 2 DISCRETIZATION

0.03
o
0.029-
‘T 0.028
0
Qo
% 0.027}
Q
o
£ 0.026"
0.025 : |
O outputs from nonlinear solver
0.02 =—adjoint-based sensitivity
U2 2.05 2.1 2.15 2.2 2.25
angle of attack (deg)
13.1: Mach number contours 13.2: lift coefficient sensitivity

Figure 13: Verification of the discrete adjoint solver using a parameter sensitivity test. The angle of
attack is varied in a viscous flow over a NACA 0012 airfoil, and the resulting data points are overlaid on
a line through the baseline, o = 2°, case, with a slope computed from the discrete lift coefficient adjoint.
The agreement is excellent for small o perturbations; deviations at larger @ are due to the nonlinear
nature of the compressible Navier-Stokes equations.

VKI -19 -

3 OUTPUT ERROR ESTIMATION

3 Output Error Estimation

Numerical errors due to insufficient mesh resolution can affect outputs, often in seem-
ingly subtle but significant ways. The latter point is especially true for the convection-
dominated flows common to aerodynamics. Our goals are to quantify the effect of these
numerical errors and to reduce them through mesh adaptation. In this section, we consider
the first of these: estimation of output error.

3.1 Two Discretization Levels

Without access to infinite resolution, estimating the true numerical error in an output
is practically out of reach for general nonlinear problems. We thus resign ourselves to
estimating the output error between two finite-dimensional spaces: a coarse approximation
space (Vg) on which we calculate the state and output, and a fine space (V;) relative to
which we estimate the error. The equations and output representations on these spaces
are

coarse space: — Ry(Upy) =0 — Uy — Jg(Up)
—— — ~—~
Ny equations state € RV output (scalar)
fine space: — Rp(Up) =0 — U, — Jn(Up)
——— S~~~ N——
Nj, equations state € R™ output (scalar)
We would like to measure the output error in the coarse solution relative to the fine space,

output error: 0J = Jy(Uy) — Jn(Uy). (30)

The fine space is typically constructed by uniformly refining each element in the coarse
space, or by increasing each element’s approximation order. Figure illustrates a fine
space obtained by uniform refinement. We assume that the fine approximation space
contains the coarse approximation space, so that the following lossless state injection,
U is possible:

Ul =1'uy, (31)

where I is the coarse-to-fine state injection (prolongation) operator.

3.2 The Adjoint-Weighted Residual

On the fine space, the exact solution U, € R would give us zero fine-space residuals,

However, the state injected from the coarse space will generally not be a fine space solution
and hence will not give us zero fine-space residuals,

R, (U}) # 0. (33)

VKI -21 -

3 OUTPUT ERROR ESTIMATION 3.3 Approximations

Coarse space Fine space

injection: If

Figure 14: Sample fine approximation space obtained by uniform refinement of each element in the
mesh of the coarse approximation space. An alternative fine space is obtained by incrementing the
approximation order of each element.

Instead, the injected coarse state solves a perturbed fine-space problem,

find U}, such that: R, (U},) —R,(U) =0 = answeris: U} = Ul (34)

SRy,

As this is just the fine-space problem with a residual perturbation, the fine-space adjoint,
W, tells us to expect an output perturbation given by the inner product between the
adjoint and the residual perturbation,

Jn(U}) = Jn(Un) = ¥, 0R, = —¥, Ry(U}/). (35)

(. /
-~

~dJ

This derivation assumes small perturbations in U and R when the output or equations

are nonlinear. Calling the left-hand side §.J assumes Jy(Uy) = J,(U), which is true if

the output definition (e.g. geometry) does not change between the coarse and fine spaces.
In summary, we have

§J ~ —WIR,(UH) (36)

Note that this error estimate does not require the fine-space primal solution, Uy,.

3.3 Approximations

The error estimate in uses the adjoint on the fine space, ¥;. Obtaining ¥, requires
solving a large, possibly expensive, linear system. Suppose we have the coarse-space
adjoint, Wy, which injected into the fine space is ¥; = I7Wy. Define the adjoint
perturbation as

o0, =0 — W,

VKI -22.

3.4 Error Effectivity 3 OUTPUT ERROR ESTIMATION

We then re-write as

67 ~ — (®]1) Ru(U}) + (60,)" R, (U} (37)
computabﬁ;correction remain;gg error

The computable correction is tempting to use as the sole error estimate. It does pro-
vide important information on ¢J for many discretizations, including reconstructed finite
volume. However, it performs poorly as an adaptive indicator because it does not incor-
porate any new information from the fine space. Moreover, it is zero for finite element
discretizations with Galerkin orthogonality. Therefore we need some estimate of Wy.
Several methods are used in practice,

1. Reconstruct ¥, from Wy using information from neighboring elements.
2. Solve for ¥, approximately using a cheap iterative smoother on the fine space.

3. Solve for ¥, exactly on the fine space if the N, x N}, linear system is tractable.

In this work we employ the third option when possible, as it gives the most accurate error
estimates (albeit at the highest cost). When the fine-space solve becomes too expensive,
we turn to one of the first two approximations; although we sacrifice some accuracy in the
error estimate, the adaptive indicator obtained from the error estimate remains similar to
that obtained from solving the fine-space adjoint exactly.

For nonlinear problems the leading term not present in (37) is quadratic in the state
and adjoint errors. This “error in the error estimate” can be reduced to third-order in the
state and adjoint errors by using [98]

57 % — (1) RA(UJ) + L (69,7 Ru(Uf) + 5 (5U)" RE (), (39)

where R;f(\Ith) is the residual vector of the fine-space adjoint problem, , and 60U, =
U/ — U, is the state perturbation. In practice, both the state and adjoint perturbations
could be approximated using one of the three approaches outlined above.

3.4 Error Effectivity

The error estimate calculated above is not a bound. We measure its accuracy by defining
an effectivity,

_ Ju(Ug) — Jy(Uy)
 Jg(Ug)—J

where J is the exact output, i.e. calculated from the exact solution. An effectivity close
to 1 is desirable. In practice this value will depend on the choice of fine space (order
enrichment versus element subdivision), and on approximations made in the fine-space
adjoint error estimation. However, we can make some rough a priori estimates. If the
output converges as Jy(Uy) — J = CHF, uniform element subdivision for the fine space
yields an effectivity of i = 1 — (1/2)* — this does not approach unity as H — 0. On the
other hand, if order enrichment is used for the fine space, then the effectivity converges
as ng = 1 — C1H%F, where 0k is the increase in convergence rate of the fine-space output
relative to the coarse-space output. In this case, the effectivity does approach unity with
mesh refinement [30].

nu (39)

VKI -23-

3 OUTPUT ERROR ESTIMATION 3.5 Examples

3.5 Examples

We now present some examples that test the error estimates described in this section. We
use uniform mesh refinement studies to determine the rate, k, at which certain errors,
notably the output error, asymptotically converge,

error oc ¥, valid as h — 0, (40)

where h is a measure of the size of the mesh elements. FEven though we have many
elements, not all of the same size, we use a single h value that we can think of as indicating
a refinement level. When we do a uniform refinement study, we are not concerned with
the particular value of h; we just want to know how “uniform” changes in h for every
element translate into changes in the error.

In the following studies we will uniformly subdivide mesh elements, by bisecting each
edge EL and measure the resulting effect on the error. In this case, a reasonable definition
of h is \/1/N,, where N, is the number of elements. So a uniform refinement of a two-
dimensional mesh would increase N, by a factor of 4, and decrease h by a factor of 2.
Taking the logarithm of , we obtain

log(error) = C +k log (Ni> . (41)

3.5.1 Drag Error for Euler Flow over a Bump

In this example, we consider inviscid subsonic flow inside a channel that has a smooth
Gaussian perturbation on the bottom wall. The compressible Euler equations govern the
flow, and the output J is the drag (horizontal) force on the bottom wall. The solution on
a fine mesh is shown in Figure [15.1

Figure shows the initial coarse mesh for the uniform refinement study. On this
mesh, we perform the following steps:

1. Solve for the flow using p = 1. This gives us Uy, which is the state in the coarse
approximation space. Also compute Jy = Jy(Upg).

2. Solve the adjoint exactly using p = 2. This gives us Wy, which is in the fine
approximation space.

3. Compute the error estimate using and find the associated corrected output,

corrected output = Jy — d.J. (42)

We then repeat these steps on three successive refinements of the coarse mesh. We also
obtain the “exact” output, J, by solving using p = 3 approximation on a mesh that is
uniformly refined once more compared to the finest mesh in the study.

3When using curved elements it is important to bisect curved edges as close to along the arc length
as possible, and the same applies for element interiors; for example, bisecting a reference element when
using a reference-to-global mapping with a lot of nonlinear stretching would not necessarily reduce the
size of each element by the same amount.

VKI -24 -

3.5 Examples 3 OUTPUT ERROR ESTIMATION

15.1: Mach number contours; range is 0.27 to 0.43

15.2: Coarsest mesh for uniform refinement study: quartic curved triangles

10 1.01
S
5. z
= 10 E 0.99
2 2
o
= L &= 0.98¢
2 ot
. o
o107 £ 097
® L
a 0.96
=B-error in output -B-relative to exact error n
_ =©-error in corrected output -©-relative to fine-space error
10 -1.9 ‘—1 6 ‘—1 3 0.95 ‘—1 9 ‘—1 6 ‘—1 3
10 10 & 10 7 ; 10 10 & 10 7 ;
h = (number of elements)‘1 2 h = (number of elements)‘1 2
15.3: Convergence of baseline and corrected output 15.4: Convergence of error effectivity

Figure 15: Error estimates and effectivity for inviscid flow in a channel with a Gaussian bump, at
My, = 0.3, using p = 1 approximation. The output of interest is the drag force coefficient on the bottom
wall. The adjoint is solved exactly on the fine space.

VKI -25-

3 OUTPUT ERROR ESTIMATION 3.5 Examples

Figure shows the convergence of the errors in the coarse-space output, Jy — J,
and in the corrected output, Jgy — 0J — J. Based on the formula in , we expect
(asymptotically) straight lines on a log-log plot, and this is what we see. The slopes tell
us the convergence rates. First, we observe a rate of k = 3 for the output error Jy —J, and
for our p = 1 approximation, this is a super-convergent result ...approximation theory
would lead us to expect a rate of p + 1 but we are actually seeing a rate of 2p + 1 (we
can verify this with data from higher p). Second, we observe a rate of 4, 2p + 2, for
the corrected output. So we see that the output correction buys us an extra order of
convergence for the output, which is a reasonable result as we are using order enrichment
for the fine space.

Figure m plots the error effectivity, , for the solutions on the 4 mesh refinements.
We actually plot two effectivities: one as defined in (this is relative to the exact output
J), and a similar one but relative to the fine-space output J,. The latter choice gives us
an idea of the errors we make in estimating Jg — Jy, while the former tells us about
Ju — J. We see that as expected (by design), we estimate the error better relative to
the fine space than relative to the true output, but that both effectivities approach 1 as
H — 0.

We mentioned that in practice we sometimes solve the fine-space adjoint problem ap-
proximately, to avoid the cost of a full solve on the fine space. It turns out that this
approximation degrades the accuracy of the error estimates, resulting in worse conver-
gence rates for the corrected output compared to when using an exact fine space adjoint.
Figure[16|shows this degradation when using v iterations of an element-block Jacobi solver
to smooth the fine-space adjoint after injection from the coarse space. We see that when

1.4‘ w
1.3
g S 1.2r ‘
< 5= 117 7
[O
S 2
“qo‘g 10 =B-error in output | 8
3 error in corrected output, v=1 e
2 error in corrected output, v=2 L
A 107"° =+=error in corrected output, v=5 |
=B-error in corrected output, v=10
2 =©-error in corrected output, v=co ‘ ‘

\
-1.6 -1.3 -1.3

107"® 10

10 10
h = (number of elements)‘”2 h = (number of eIements)‘”2
16.1: Convergence of baseline and corrected out- 16.2: Convergence of error effectivities

puts

Figure 16: Effect of inexact fine-space adjoint solve, using v element-block smoothing iterations, on
the error estimates for inviscid flow in a channel with a Gaussian bump, at M, = 0.3, using p = 1
approximation. The output of interest is the drag force coefficient on the bottom wall.

v is small (less work on the fine space), the error estimates are not great, although the
corrected output is still better than the original coarse one. As v increases, the error
estimates approach the exact adjoint solve result (¥ — 00), and the effectivities close in
on 1. The “adequate” number of smoothing iterations will depend on the case and on

VKI - 26 -

3.5 Examples 3 OUTPUT ERROR ESTIMATION

the smoother, in addition to the desired accuracy levels, so these results should not be
interpreted as a recipe for how to choose v. Instead, one take-away message is that to get
the best error estimates possible, we need the best possible fine-space adjoint; however,
another one is that even approximate fine-space adjoints can lead to improved outputs.
Furthermore, in an adaptive setting, the indicators obtained from these error estimates
will turn out to be very good at driving mesh refinement.

3.5.2 Drag Error for Viscous Flow over a NACA 0012 Airfoil

In this example, we consider viscous subsonic (M, = 0.5) flow over a NACA 0012 airfoil
(closed-trailing-edge [32]) at zero angle of attack. The compressible Navier-Stokes equa-
tions, at Re = 5000, Pr = 0.71, and constant viscosity, govern the flow, and the output
J is the drag (horizontal) force on the airfoil, at which an adiabatic no-slip boundary
condition is imposed. The solution on a fine mesh is shown in Figure [17.1]

We follow the same steps as in the previous example for measuring the convergence
rate of the output and the corrected output (i.e. the error estimate)ﬁ Figure m shows
the convergence of the errors in the coarse-space output, Jy — J, and in the corrected
output, Jy —dJ —J. The lines are not straight initially, indicating that the solution is not
yet in the asymptotic regime. However, by the finer meshes we observe relatively straight
lines on the log-log plot. We observe a rate of k =~ 2.7 for the output error Jy — J, and
for our p = 1 approximation, this is still super-convergent relative to the expected rate of
p + 1. For the corrected output, we observe a higher rate of 3.8, and so we see that the
output correction buys us an extra order of convergence, which is again reasonable as we
are using order enrichment for the fine space.

The effectivity story in Figure is similar to that of the previous example. The
error estimate does a better job at predicting the error between the coarse space and
the fine space than at predicting the error relative to the exact output, but both of the
effectivities converge to 1 as H — 0.

4We also follow the remedy for alleviating the effects of p-dependence of the BR2 residual on the
error estimates, by evaluating the fine-space residual with order p integration rules and stabilization
approximation. [126]

VKI - 27 -

3 OUTPUT ERROR ESTIMATION 3.5 Examples

17.1: Mach number contours; range is 0.0 to 0.6

\

17.2: Coarsest mesh for uniform refinement study: quartic curved quadrilaterals

10 1.05
1 -
< 1
210 T
= g 0.9r
3 ol | goss
“ao_:o © 0.8-
e}
> £0.75"
& 10°° w
L 10 ¢ i 0.7F
a8 7 .
3.8 =B-error in output 0.65H =B relative to exact error 1
10 =©-error in corrected output -©-relative to fine-space error
107 107 107 107"
h = (humber of elements)_”2 h = (number of elements)_”2
17.3: Convergence of outputs 17.4: Convergence of error effectivity

Figure 17: Error estimates and effectivity for viscous Re = 5000, M., = 0.5 flow over a NACA 0012
airfoil at @ = 0, using p = 1 approximation. The output of interest is the drag force coefficient on the
airfoil, and the adjoint is solved exactly on the fine space.

VKI - 28 -

4 MESH ADAPTATION

4 Mesh Adaptation

The output error estimate derived in the previous section provides error bars on quantities
of interest from numerical simulations. However, the benefit of these estimates extends
beyond the error bars. Because the output error estimate takes the form of a weighted
residual, and because local mesh refinement decreases residuals, the error estimate pro-
vides a means of targeting for refinement areas of the computational domain that give
rise to the output error. This is the key idea of output-based mesh adaptation.

4.1 Error Localization

The adjoint-weighted residual error estimate in can be localized to the elements by
keeping track of the contributions from each fine-space element, indexed by e below,

Ju(Ug) — J,(U,) ~ —OIR, (U = —Z\Il Ry, (U

= e = |9 Rhe(UH)

where the subscript e indicates restriction to element e, and the adaptive indicator €, is
obtained by taking the absolute value of the elemental contributions. When order enrich-
ment is used for the fine space in error estimation, this ¢, is the adaptive indicator for each
element in the current mesh and can be used directly to drive a mesh adaptation strat-
egy. When element refinement is used for the fine space, then the indicators for the fine
sub-elements of a coarse element need to be summed to obtain the coarse-element adap-
tive indicator. The steps involved in obtaining the adaptive indicator, €, are summarized

graphically in Figure [1§|

4.2 Adaptation Mechanics

Numerous strategies exist for translating the error indicator into a modified computa-
tional mesh. In CFD for aerospace engineering, the most popular adaptation strategy is
h-adaptation, in which only the triangulation forming the mesh is modified. This modifi-
cation usually consists of targeted refinement and coarsening, although pure node reposi-
tioning, sometimes called r-refinement, has also been investigated |21} [78]. For high-order
methods, additional strategies include p-adaptation, in which the approximation order is
changed on a fixed triangulation [116] [72], and hp-adaptation in which both the order and
the triangulation are varied [50, 16}, 97, 2], 62, 27, 59, 80, 61], [65]. For CFD applications,
in which solutions often possess localized, singular features, h-adaptation is key to an effi-
cient adaptation strategy. With the growing availability of high-order methods, however,
hp-adaptation can now be used to further improve efficiency.

4.2.1 Local Refinement

Many approaches to adapting a mesh rely upon the application of local operators through
which the mesh is modified incrementally. A simple example of a local operator is element
sub-division in a setting that supports non-conforming, or hanging, nodes [15], 66}, 98| 27,
1T4]. For triangular and tetrahedral meshes, local mesh modification operators consist of

VKI - 29 -

4 MESH ADAPTATION 4.2 Adaptation Mechanics

18.2: p =1 residual, Ry (Uy) (zero as expected)

pVAY, I
PO X
VANV, ANy, AP A

ERTTING |
SN

e

VAVAYAYANY

\CRAARE
aVAYAva)

18.4: p = 2 residual, R, (UH)

i — """ ".:
I \ o -
ms.’c“

18.5: p = 2 lift adjoint, ¥, 18.6: Error indicator, e, = ¥} Ry (UH)|

Figure 18: Quantities involved in the calculation of the error estimate and adaptive indicator for
Re = 5000, a = 2°, M = 0.1 flow over a NACA 0012 airfoil.

VKI -30 -

4.2 Adaptation Mechanics 4 MESH ADAPTATION

node insertion, face/edge swapping, edge collapsing, and node movement, as illustrated in
Figure m These operators have been studied extensively by various authors [43], 20, 22]

‘ ‘ @ targeted
2" element

| | |
@ @ @ | anging

"""" nodae

Edge Swap Edge Split Edge Collapse

19.1: Unstructured local mesh operators 19.2: Hanging-node refinement

Figure 19: Local mesh modification adaptation operators in two dimensions.

1221 [51], 123, [5, [88], 89] in different contexts. The primary advantage of local operators is
their robustness: the entire mesh is not regenerated all at once, but rather each operator
affects only a prescribed number of nodes, edges, or elements.

Another local operation, especially relevant for discontinuous Galerkin discretizations,
is hanging-node mesh refinement, illustrated for quadrilateral elements in Figure [19.2]
The non-conforming nature of a hanging node mesh does not significantly affect the DG
discretization, which does not enforce solution continuity between elements. Hanging
node refinement could be isotropic or directional [23]. It is particularly useful for initially-
structured, stretched meshes for viscous flows, in which only a few refinements of key
regions may dramatically improve the accuracy of an output.

4.2.2 Global Re-Meshing

Another approach to adapting a mesh is global re-meshing, in which a new mesh is
generated for the entire computational domain. The original, or background, mesh is used
to store desired mesh characteristics during regeneration. For applications to adaptation,
the desired mesh characteristics are often described using a Riemannian metric, the idea
being that in an optimal mesh, all edge lengths will have unit measure under the metric
[22, 51]. In a Cartesian coordinate system of dimension d, an infinitesimal segment 0x
has length 6" under a Riemannian metric M,

5F2 = 5XT M ox = (SCEZ Mij (S.I'j, (43)

where dz; are the components of 6x € RY, M;; are the components of the symmetric,
positive definite metric, M € R%? and summation is implied on the repeated indices
i,j€[l,...,d].

The metric M contains information on the desired mesh edge lengths in physical space.
As M is symmetric and positive definite, the unit measure requirement,

xI' M x =1,

VKI -31-

4 MESH ADAPTATION 4.2 Adaptation Mechanics

describes an ellipsoid in physical space that maps to a sphere under the action of the
metric. The eigenvectors of M form the orthogonal axes of the ellipsoid —i.e. the principal
directions. The corresponding eigenvalues,);, are related to the lengths of the axes, h;,
via

Physically, the h; are the principal stretching magnitudes. A diagram of a possible ellipse
resulting from the unit-measure requirement in two dimensions is given in Figure [20.1]
Thus, the ratio of eigenvalues of M can be used to define a desired level of anisotropy.

20.1: Riemannian metric ellipse 20.2: Sample mesh obtained by global re-meshing

Figure 20: Depiction of adaptation using global metric-based re-meshing. On the left, an ellipse rep-
resenting requested mesh sizes implied by equal measure under a Riemannian metric M, together with
the principal directions, e;, and the associated principal stretching magnitudes, h;. On the right, sample
mesh for viscous flow generated using global re-meshing.

A successful approach for generating simplex meshes based on a Riemannian metric is
mapped Delaunay triangulation, in which a Delaunay mesh generation algorithm [110] is
applied in the mapped space, allowing for the creation of stretched and variable-size tri-
angles or tetrahedra [75]. This method is implemented in the Bi-dimensional Anisotropic
Mesh Generator (BAMG) [17, 58], which has been used in various finite volume [107, 119]
and discontinuous Galerkin [35] [7, 85] applications requiring anisotropic meshes. An ex-
ample of an output-adapted mesh obtained using BAMG is shown in Figure [20.2

4.2.3 Targeting Strategies

In global re-meshing, all elements can be refined or coarsened based on their error indi-
cators. However, when using local operators, such as hanging-node or order refinement,
one must decide which elements to target. The determination of which elements to refine
or coarsen has important implications, as too little refinement at each adaptive iteration
may result in an unnecessary number of iterations, while too much refinement may result
in an expensive solve on an overly-refined mesh. A useful tool for analyzing adaptation
targeting strategies is an error distribution histogram [I], in which elements are binned

VKI -32-

4.2 Adaptation Mechanics 4 MESH ADAPTATION

according to the error indicator. A typical assumption is that in an ideal mesh, the error
is equidistributed among the elements [5], and this situation yields a “delta” histogram, in
which all elements lie in the same bin. In contrast, the initial coarse mesh will generally
have some distribution of error indicators, and the goal of an adaptation targeting strat-
egy is to drive the histogram towards the ideal delta distribution. This characterization
of adaptation targeting strategies also holds for runs in which a maximum element count
is specified instead of an error tolerance. The ideal mesh in this case is one for which the
error is equidistributed among a number of elements within the element budget [125] [126].

Most adaptation targeting strategies are based on a decreasing refinement thresh-
old [83], in which elements with the highest error are targeted for refinement first so that
the mesh size grows gradually. For example, a fixed-fraction approach prescribes a frac-
tion of elements with the highest error indicator to be refined at each adaptation iteration,
such that the decreasing threshold is a function of the shape of the error histogram. Then,
the elements targeted for adaptation are typically refined in a locally uniform manner,
e.g. by splitting all edges in half. This simple approach has been applied to output-based
adaptation in several studies[13] 57, 9, 112l 65, 82, 25]. The fixed-fraction parameter is
often chosen heuristically in a trade-off between an excessive number of iterations and a
risk of over-refinement. Nevertheless, the method works quite well for practical problems.

4.2.4 Incorporating Anisotropy

An important ingredient in h-adaptation for aerodynamics is the ability to generate
stretched elements in areas such as boundary layers, wakes, and shocks, where the so-
lution exhibits anisotropy, which refers to variations of disparate magnitudes in different
directions. Anisotropy can be created to a limited, albeit often sufficient, extent with
hanging-node refinement [111l [115]; yet global re-meshing with unstructured triangular
and tetrahedral grids offers the most flexibility in tailoring the required stretching.

For spatially second-order methods, the dominant method for detecting anisotropy in-
volves estimating the Hessian matrix of second derivatives of a scalar (e.g. Mach number)
computed from the solution [93| [75, 22] 51]. A mesh metric is obtained from the Hessian
by requiring that the approximation error estimate of the scalar quantity u be the same
in any chosen spatial direction. The Hessian matrix stores precisely this information, so
that this requirement leads to a metric that is directly proportional to the Hessian. The
proportionality constant can be tied to the error indicator to incorporate the output error
estimate [119].

The definition of a metric tensor becomes difficult for high-order methods because the
standard Hessian matrix approach assumes linear approximation of the scalar quantity.
One possible extension is based on constructing a metric around the direction of maximum
p + 1st derivative [32], 31, 87]. Another extension involves the calculation of the order
p + 1 derivative tensor that is analogous to the Hessian for p = 1, or the use of surrogate
heuristics based on inter-element jumps for quadrilateral or hexahedral meshes [69].

The metric tensor may also be used to guide an adaptation procedure based on local
operators, for example in an effort to make all edges approximately the same length when
measured using the metric tensor [22] 29, 123, [89).

The methods mentioned so far rely on a priori analysis and heuristics to predict the
desired mesh anisotropy. For example, the approximation error assumptions are made

VKI -33-

4 MESH ADAPTATION 4.3 Examples

without regard to the output of interest by using a single scalar, such as the Mach number,
to control the anisotropy for a system of equations. However, the assumption that the
directional approximation error must be equidistributed for one or more scalar variables
at each point in the domain may not be valid, especially when only a scalar output is
desired. This observation has motivated research into adaptation algorithms that more
directly target the error indicator.

Hessian-based approximation error estimates have been combined with output-based a
posteriori error analysis to arrive at an output-based error indicator that explicitly includes
the anisotropy of each element [42, 141} [40]. Other works have considered directional output
error estimates for quadrilateral and hexahedral meshes [99], and direct node position
optimization using an auxiliary adjoint problem [109].

For general unstructured meshes, output error estimation has been incorporated into
local mesh operators of element swapping, node movement, element collapse, and element
splitting [00]. A direct optimization approach for output error reduction has also been
applied to quadrilateral and hexahedral elements, using anisotropic discrete refinement
options [63, 55, 23]. Finally, a recent work extends the ideas of direct mesh optimiza-
tion to general unstructured meshes with global re-meshing, through optimization of a
parametrized metric field via local refinement sampling [126].

4.2.5 Adapting in Order

In order/p-adaptation [116], the approximation space is refined or coarsened by changing
the order of approximation. With the discontinuous Galerkin method, changing the order
is simple and can be done locally on each element [72, 34]. Advantages of p-adaptation
are that the computational mesh remains fixed and that an exponential error convergence
with respect to degrees of freedom (DOF) is possible for sufficiently smooth solutions.
Disadvantages include difficulty in handling singularities and areas of anisotropy and the
need for a reasonable starting mesh.

hp-adaptation strives to combine the best of both strategies, employing p-refinement
in areas where the solution is smooth and h-refinement near singularities or areas of
anisotropy. The motivation for this strategy is that, in smooth regions, p-refinement is
more effective at reducing the error per unit cost, compared to h-refinement [120, [65].
Implemented properly, hp-adaptation can isolate singularities and yield exponential error
convergence with respect to DOF. In practice, however, the difficulty of hp-adaptation
lies in making the decision between h- and p-refinement, which typically requires either a
solution regularity estimate or a heuristic algorithm [65, [19]. An approach that employs
output error information to make the hp decision and to choose the appropriate element
anisotropy for quadrilateral and hexahedral elements has also been presented [25].

4.3 Examples

The following sub-sections demonstrate applications of output-based refinement to various
aerodynamic flows. We consider inviscid, viscous, and turbulent flows in two and three
dimensions. Our figure of merit will generally be degrees of freedom, although we also
present some results for computational time.

VKI -34-

4.3 Examples 4 MESH ADAPTATION

4.3.1 Inviscid Flow over an Airfoil

In this example we adapt a mesh to predict drag in inviscid flow over a NACA 0012
airfoil at My = 0.5 and o = 2°. Figure 21] shows the Mach number contours and the
initial mesh. initial mesh We compare uniform refinement to output-driven, isotropic,
hanging-node, fixed-fraction refinement with fadapt = (.05.

21.1: Mach contours 21.2: Initial mesh

Figure 21: NACA 0012, M., = 0.5, a = 2°: Contours of the Mach number and the initial mesh.

Figure [22] shows the results of one adaptation run, using p = 2. The drag coefficient
error decreases as the number of elements increases, at a steady rate. At each iteration,
both the estimated and actual errors are shown, and these agree very well, indicating that
the error estimate is effective at predicting the true error. The figure also shows uniform
refinement results, in which the error does not drop as rapidly.

Uniform ref 1 -@- Actual error ;
3 - Estimated error |
—A— Uniform refinement |

_53 Adapt ref 10 |

Drag coefficient error
=
T

—_

_65 i H H H H N | i i i i i HE |
10° 10° 10
Number of elements

0

Figure 22: NACA 0012, M, = 0.5, @ = 2°: actual and estimated drag coefficient errors obtained from
p = 2 output-based adaptation, compared to uniform refinement.

We can gain insight into where adaptive refinement allocates degrees of freedom by
comparing meshes from uniform refinement and adaptive refinement at a similar number
of elements. Figure [22] identifies two such meshes, which are shown in Figure 23] We can
see that for accurate drag prediction, the leading and trailing edges of the airfoil must be
resolved with small elements.

Figure [24] shows the convergence of the drag coefficient error with a measure of the
mesh size, dof /2, for p = 1 and p = 2 approximation. We see that uniform refinement

VKI -35-

4 MESH ADAPTATION 4.3 Examples

23.1: Uniform refinement, 672 elements 23.2: Adaptive refinement, 659 elements

Figure 23: NACA 0012, M., = 0.5, a = 2°: comparison of meshes obtained from uniform refinement
and adaptive refinement, at a similar total number of elements.

converges at a rate of 2.5 for p = 1 and p = 2. This rate is limited due to a singularity of
the flow at the trailing edge, which then dominates the error convergence. On the other
hand, we see that adaptive refinement produces meshes that make better use of degrees
of freedom: the equivalent “convergence rate” for p = 2 adaptation is approximately 5,
i.e. the expected super-convergent rate of 2p + 1 for an inviscid simulation. We note
that although we usually speak of convergence rates only for uniform refinement studies,
this notion generalizes to adaptive mesh refinement [125]. For example, for a case in
which the entire domain is important (e.g. a very smooth solution), adaptive refinement
would (eventually, in turn) target the entire domain too so that its error versus degrees of
freedom would converge at the same rate as for uniform refinement. More interestingly,
when there are (isolated) singularities present, a situation in which uniform refinement
would see its rate limited, adaptive refinement could “quarantine” these singularities with
nominal resources and allocate the rest to resolving the remaining smooth regions at the
optimal rate. This is indeed what we observe in Figure[24] where, while uniform refinement
sees its rate limited by non-smooth solution features for high order, adaptive refinement
attains a higher, super-convergent rate. We also note that correcting the output with the
error estimate further increases the order of accuracy by 1 to 2p+ 2. In this example, the
fine-space problem was solved exactly, but solving it approximately (e.g. with a few block-
Jacobi smoothing iterations) does not appreciably change the results. For more complex
problems, not solving the fine-space adjoint exactly can yield poor error estimates.
Adapting using an output adjoint consumes more resources, i.e. CPU time, than just
solving the primal problem because of the need for a fine-space adjoint. To determine
whether this additional cost pays off, Figure [25] plots the convergence of the drag output
with CPU time, for both an exact and an approximate fine-space adjoint solution. We
see that the cost of an exact adjoint solve pushes the output-based results close to the

VKI - 36 -

4.3 Examples 4 MESH ADAPTATION

10

10

Drag coefficient error

-6

~1/2
)

(degrees of freedom

Figure 24: NACA 0012, M., = 0.5, o = 2°: drag coefficient convergence with mesh size, dof 1/,
using uniform refinement and output-based adaptation. Orders of approximation p = 1 and p = 2 are
shown. The convergence rate is identified for each run: we observe a rate of 2p+ 1 for the output-adapted
results, and 2p + 2 for the adapted results corrected with the error estimate. Uniform refinement yields
suboptimal rates due to a singularity at the airfoil trailing edge.

VKI -37-

4 MESH ADAPTATION 4.3 Examples

uniform refinement results — the corrected results still remain more efficient, however. If
we instead solve the fine-space adjoint problem approximately, we can reduce the CPU
time of the output-based results by a factor of 2 or more.

Drag coefficient error
3

Drag coefficient error
=

f| =B~ Adapt, p=1 f| =8~ Adapt, p=1
= = =Adapt, p=1 (corrected) * = = = Adapt, p=1 (corrected) .
_o[| =©=Adapt, p=2 s _s[|=©=Adapt, p=2 .
10 "4 - - - Adapt, p=2 (corrected) % E 10 "4 - - - Adapt, p=2 (corrected) . 1
=& Uniform, p=1 . =& Uniform, p=1 N
_,[| =%~ Uniform, p=2 . _[|=%=Uniform, p=2 .
10 -1 ‘0 ‘1 ‘2 ‘ 4 10 —1 ‘0 ‘1 ‘2 ‘3 4
10 10 10 10 10 10 10 10 10 10 10 10
CPU time (s) CPU time (s)

25.1: Exact fine-space adjoint

25.2: Approximate fine-space adjoint

Figure 25: NACA 0012, M, = 0.5, a = 2°: output convergence with CPU time for different adaptation
strategies. Using an approximate fine-space adjoint solve of five block-Jacobi smoothing iterations yields
noticeable efficiency improvements over an exact (machine precision) adjoint solve. Correcting the output
with the error estimate further improves efficiency.

Finally, Figure [26| shows the breakdown of the CPU time at each adaptive iteration
when using the exact and approximate adjoint solves. The exact adjoint solve consumes
more than half of the CPU time, whereas the approximate adjoint solve is much cheaper:
less than 10% of the total CPU cost. In both cases, the cost of adapting the mesh is
negligible compared to the primal and adjoint solutions.

"] Adaptation I Primal I Fine Adjoint [Adaptation

I Primal I Fine Adjoint

% CPU time
% CPU time

10 12 14 16 18 20 10 12 14 16 18 20

8 8
Adaptation iteration Adaptation iteration

26.1: Exact fine-space adjoint 26.2: Approximate fine-space adjoint

Figure 26: NACA 0012, M, = 0.5, a = 2°: timing breakdown, summed over all adaptive iterations for
p = 2, when using exact and approximate adjoint solves. output convergence with CPU time for different
adaptation strategies.

4.3.2 Viscous Flow over an Airfoil

We consider again the case of a NACA 0012 airfoil in viscous flow, introduced in Sec-
tion [3.5.2l We use p = 2 solution approximation and fixed-fraction, f24P* = (.05, and

VKI - 38 -

4.3 Examples 4 MESH ADAPTATION

isotropic hanging-node adaptation. The output of interest is the drag coefficient, and the
initial mesh is the same as in the previous example. Figure shows contours of the
primal solution (Mach number) and the drag adjoint solution (z-momentum component).

O —

27.1: Mach number

— a——

27.2: x-Momentum drag adjoint

Figure 27: NACA 0012, M, = 0.5, a = 0°, Re = 5000: contours of the Mach number and the
r-momentum component of the drag adjoint. Note the wake reversal in the adjoint solution, which
indicates high sensitivity of the output to residual perturbations made upstream of the airfoil.

Figure 2§ shows the adaptive results when using a drag-adjoint weighted residual
indicator, compared to uniform refinement. As in the previous example, we see that
adaptive refinement produces meshes that make better use of degrees of freedom: the
equivalent convergence rate for p = 2 is approximately 4.5, slightly above the expected
rate of 2p for a viscous simulation. Uniform mesh refinement at p = 2 only attains a rate
of 2.6. Thus, as in the previous example, adaptive refinement can “uncover” the optimal
convergence rates for high-order discretizations, resulting in a more efficient use of degrees
of freedom.

4.3.3 Which Output?

In this example, we consider a NACA 0012 airfoil with a closed trailing edge and a
far field approximately 40 chord-lengths away. The initial mesh of cubic quadrilateral
elements is illustrated in Figure |31} While the initial mesh appears structured, this
structure disappears with the first adaptation iteration and the mesh storage is always
fully unstructured. In the following results, quadratic solution approximation, p = 2,
was used in the discretization, and isotropic h-adaptation was driven by a fixed-fraction

VKI -39 -

4 MESH ADAPTATION 4.3 Examples

10
=B-uniform, p=1
-©-output-based, p=1
S 1072 =Ac uniform, p=2 .y
% =~ output-based, p=2 . /3
S 107]
S
S = § 107} E
< i Ay A A I
e =
"'Illll" S
'l“‘ o
10 1
(degrees of freedom) ™"/

28.1: Final drag-adapted mesh for p =2 28.2: Output convergence

Figure 28: Adaptation results for viscous Re = 5000, M., = 0.5 flow over a NACA 0012 airfoil at
a = 0. The output of interest is the drag force coefficient on the airfoil, and, at each adaptive iteration,
the adjoint is solved approximately with ¥ = 10 element-block Jacobi smoothing iterations on the fine
space. Using an exact adjoint solve does not perceptibly change the adaptive result.

strategy with f2d8P* = 0.1, meaning that at each step of the adaptation, those elements
lying in the top 10% of the error criterion were chosen for refinement.

Mach number contours for the airfoil in inviscid flow at M., = 0.4, o = 5° are shown
in Figure [29] Three different engineering outputs are considered: drag coefficient, lift co-

29.1: Mach number contours 29.2: z-momentum moment adjoint

Figure 29: NACA 0012, My, = 0.4, o = 5°: Contours of the Mach number and the x-momentum
component of the moment adjoint.

efficient, and leading-edge moment coefficient. All of these outputs were computed using
integrals of the inviscid momentum flux, that is, the pressure, on the airfoil surface. Ad-
joint solutions associated with these outputs were used to drive three different adaptation
runs. One adaptation run was also performed using an “entropy-adjoint” indicator [39],
in which the entropy variables are interpreted as a “free adjoint” for an output that ex-
presses an entropy balance statement. For comparison, an unweighted residual indicator,

VKI - 40 -

4.3 Examples 4 MESH ADAPTATION

equivalent to summing the absolute values of the discrete fine-space residuals, was also
tested.

Figure [30] shows the results of adaptation runs driven by the different indicators. Uni-
form mesh refinement results are given for comparison. The plots show the error in the
engineering outputs versus degrees of freedom. Each “truth” output was calculated from a
p = 3 solution on a mesh obtained by uniformly refining the finest output-adapted mesh.
For all three outputs of interest, the adjoint-based adaptive strategies, including the en-

10 . 10

|
o 10
g E -3
E . 6 107
g 0 =
2 Q
£ © 10t
[} =
8 10°k §
g —— Drag adjoint £ 107 —— Drag adjoint
o —o— Lift adjoint = —o— Lift adjoint
RIS —A—Moment adjoint Y —A—Moment adjoint

—v— Entropy adjoint 107 —v— Entropy adjoint
—»— Residual —»— Residual
s —o— Uniform refinement s —o— Uniform refinement
107 . . 107 . .
10" 10° 10° 10" 10° 10°
Degrees of freedom Degrees of freedom
30.1: Drag output 30.2: Lift output

—&— Drag adjoint

—o— Lift adjoint

—A— Moment adjoint
—v— Entropy adjoint
—»— Residual

—o— Uniform refinement

[Moment coefficient error|
2

.
10 10° 10°

Degrees of freedom

30.3: Moment output

Figure 30: NACA 0012, M., = 0.4, a = 5°: Comparison of output convergence histories for various
adaptation strategies.

tropy adjoint, perform similarly and are orders of magnitude better than uniform mesh
refinement. The unweighted residual indicator performs well for the drag output, and sim-
ilarly to the output adjoints for the lift and moment outputs. Interestingly, the refinement
based on the entropy adjoint actually gives better predictions for lift and moment than
the refinements that specifically target those outputs. These results are certainly surpris-
ing, but not actually paradoxical, because the procedure does have empirical elements.
For example, the lift and moment adaptive indicators target the stagnation streamline in

VKI - 41 -

4 MESH ADAPTATION 4.3 Examples

front of the airfoil, perhaps excessively so. As shown in Figure [29| for the moment output,
the adjoint varies rapidly across the stagnation streamline. This behavior was suggested
in the analysis of Giles and Pierce who found that a square root singularity with respect
to distance from the stagnation streamline exists for sources that perturb the stagnation
pressure [46]. Intuitively, a force output on the airfoil should respond differently to pertur-
bations that affect the flow over the upper surface of the airfoil versus to those that affect
the flow over the lower surface of the airfoil. The singularity is strongest for the lift and
moment outputs, and for these cases the performance of the output adjoint adaptation
deteriorates the most. The noise created by polynomial approximation of the adjoint on
discrete finite elements in this area may be responsible for the excessive refinement.

The meshes after eight adaptation iterations of each strategy are shown in Figure [31]
The leading edge, trailing edge, and upper surface of the airfoil are consistently targeted
for refinement by the adjoint indicators. The unweighted residual adaptation targets the
vicinity of the leading edge and the trailing edge, but not the upper surface of the airfoil,
leading to errors in the lift and moment outputs. Refinement of the stagnation stream-
line is evident in the adjoint-based runs, especially for the lift and moment adaptations.
Finally, we remark that although residual-based refinement performs well in this example,
this is not always the case for more complicated flows (e.g. see Section @ In addition,
residual-based adaptation does not provide an error estimate that could be used as a
stopping criterion for the adaptation. The same may be argued for adaptation with the
entropy adjoint, as that output is typically not of direct engineering interest. However,
it turns out that the entropy adjoint output can be related to drag error [30] and hence
could be used as an adaptive stopping criterion when targeting drag.

4.3.4 Transonic Turbulent Flow over an Airfoil

To demonstrate the importance of anisotropy, we present an example of output-based
adaptation for turbulent, transonic flow over an NACA 0012 airfoil. The free-stream
conditions are M = 0.8, = 1.25°, Re = 100,000. In this case, the flow experiences a
relatively strong normal shock on the upper surface and a weak shock on the lower surface.
Element-wise constant artificial viscosity is used to capture the shocks [95]. p = 2 is used
for solution approximation on all elements, and the initial mesh consists of 1740 cubic
quadrilateral elements, as shown in Figure |32

Convergence of the drag and lift coefficients is shown in Figure [33] The plots are
similar in that the lift output converges as rapidly as the drag output for all of the
adaptation schemes. Also, the drag adaptation performs well for the lift output and
vice versa. The anisotropic adaptations, performed using a discrete-choice output-based
approach [23], converge much more rapidly compared to the isotropic adaptations: the
outputs do not change much after 40,000 degrees of freedom with the anisotropic adapta-
tion, while changes are still observed after nearly 100,000 degrees of freedom when using
isotropic adaptation.

Two of the drag-adapted meshes are shown in Figure |32} one from isotropic adaptation
after six iterations and one from anisotropic adaptation after ten iterations. Differences
are evident in the boundary layer and wake, where anisotropic adaptation is more efficient.
The shock also appears to be more tightly resolved in the anisotropically-adapted mesh.

VKI - 42 -

4.3 Examples 4 MESH ADAPTATION

1]

31.2: Drag-adapted

31.1: Initial mesh

L]] L]]

N1

NI

BHH

1

i i

31.4: Moment-adapted

31.3: Lift-adapted
]]
|

::::::

1]

Il
PV RERR

N IR

31.6: Residual-adapted

1]

31.5: Entropy-adjoint-adapted

Figure 31: NACA 0012, M, = 0.4, a = 5°: Meshes after eight adaptation iterations for the tested

adaptation strategies.

VKI - 43 -

4 MESH ADAPTATION 4.3 Examples

T

Ao
e e

/[]

1177

I

32.3: 6" adapted mesh, isotropic (8,736 elements) 32.4: 10" adapted mesh, anisotropic (4,816 ele-
ments)

Figure 32: Turbulent NACA 0012, M = 0.8, = 1.25°, Re = 100, 000: Initial mesh, solution contours,
and adapted meshes. Note, under isotropic adaptation, some elements are refined anisotropically, and
these arise from additional refinements required to keep a maximum refinement ratio between adjacent
elements below 2. of 2-to-1 ratio between is due to

0.0588 0.38
0.0587 4 03781 o
T o.0586 = 0376
9 g
£ °
3 E ool
S 0.05851 © 0374
° 8
g £
) 005841 —I oa72F
—&—Drag adjoint (isotropic) —&— Drag adjoint (isotropic)
—o— Lift adjoint (isotropic) —o— Lift adjoint (isotropic)
0.0583f —&— Drag adjoint (anisotropic)]| .87 ——Drag adjoint (anisotropic)|
—— Lift adjoint (anisotropic) —v— Lift adjoint (anisotropic)
—— Uniform refinement —=— Uniform refinement
0082 5 o T 11‘15
Degrees of freedom Degrees of freedom
33.1: Drag output 33.2: Lift output

Figure 33: Turbulent NACA 0012, M = 0.8, « = 1.25°, Re = 100, 000: Drag and lift convergence with
degrees of freedom using isotropic and anisotropic refinement. Note, outputs from uniform refinement
overshoot the exact values.

VKI - 44 -

4.3 Examples 4 MESH ADAPTATION

4.3.5 Transonic Turbulent Flow over a Wing

In this example, we demonstrate drag-based adaptation for a steady, three-dimensional,
turbulent, transonic flow. We consider the baseline wing geometry (DPW-W1) from the
third ATAA Drag Prediction Workshop [45]. The initial curved mesh, shown in Fig-
ure |34.1] was obtained through agglomeration of cells from a finer structured linear C-
grid generated specifically for this purpose. In the agglomeration, each curved hexahedral
element was obtained by merging twenty seven linear elements using a distance-based
Lagrange interpolation of the nodal coordinates, resulting in cubic (¢ = 3) geometry in-
terpolation. Also, the spacing of the linear mesh is such that the agglomerated mesh
presents y ~ 1 for the first element off the wall as recommended in the workshop guide-
lines [44] and the outer boundary is located at 100 mean-aerodynamic-chord-lengths away
from the wing.

We use the Spalart-Allmaras turbulence model without trip terms, and element-wise
constant artificial viscosity for shock capturing [95]. The baseline flow solution is obtained
with linear (p = 1) approximation order, and we study anisotropic, output-based hp-
adaptation using discrete choices that include order enrichment [25] — in this strategy,
when deciding which discrete refinement option to choose, a figure of merit is used that
takes into account the benefit (error addressed) and the cost (the increased Jacobian
matrix size). The fine-space adjoint used for error estimation is obtained approximately
by using 5" = 5 iterations of an element-block Jacobi smoother. All of the adaptive
schemes start from the same initial solution. For the adjoint-based adaptation methods,
the CPU time taken for the initial adjoint solve is also included in the initial starting
time.

34.1: Initial pressure contours (29310 cubic ele- 34.2: Pressure contours on the 7*" drag-adapted
ments, p = 1). mesh (85377 cubic elements).

Figure 34: DPW Wing 1, M, = 0.76, = 0.5°, Re = 5 x 10°: Initial and drag-adapted meshes with
pressure contours.

We compare two mesh improvement strategies starting from the initial p = 1 solution
shown in Figure[34.1] One of the strategies is uniform h-refinement, in which all hexahedra
are divided into 8 elements. The other is drag-based hp-adaptation in which f2dat = 10%
of the elements is selected for refinement at each adaptation step. Additionally, we fix
the overall budget of CPU wall-time for each of the three runs and the last converged
solutions obtained within that budget are shown in Figure 34

VKI - 45 -

4 MESH ADAPTATION 4.3 Examples

0.027 0.027

=6~ Uniform refinement =6~ Uniform refinement
0.0261 ~©-Drag adaptation o 0.026- —6-Drag adaptation]
-A-Drag adaptation + correction -A-Drag adaptation + correction
£ 0.025 £ 0.025
Q0 Q0
o o
= 0.024 & 0.024
© ©
Q Q
© 0.023 © 0.023
o o)
g g
0 0.022 0 0.022F A,
0.021 0.021} AN A AT
0.02 ‘ 0.02
10° 0 10’ 10° 10 10°
Degrees of freedom CPU time
35.1: Convergence with degrees of freedom 35.2: Convergence with CPU time

Figure 35: DPW Wing 1, M, = 0.76,a« = 0.5°, Re = 5 x 10°: drag coefficient convergence for output-
based adaptation compared to uniform refinement, using both degrees of freedom and CPU time.

Figure [35] shows the drag coefficient convergence for the mesh refinement strategies.
Note that the dashed lines indicate the output corrected with the error estimate. The
difference between these corrected values for the last two adaptation steps of the output-
based strategy is within 0.15 counts of drag. Note that the performance in terms of
degrees of freedom and CPU time of the output-based strategy is better compared to
uniform refinement, especially when using the corrected output results.

Figures |36| and [37] show two cuts at representative span-wise positions for the output-
based strategy. Note the presence of anisotropic cells along the shock and on the boundary
layer, and the minimal use of p-refinement in this case — this is due in part to the under-
resolved nature of the mesh for this flow, and to the relatively large cost ascribed to order
enrichment in the definition of the merit function.

36.1: 7** adapted mesh with Mach contours. 36.2: 7" adapted mesh p-order distribution: the
rangeis p =1 — 5.

Figure 36: DPW Wing 1, M., = 0.76,a = 0.5°, Re = 5 x 10°%: cut at y = 220mm of the drag-adapted
mesh. Note, the reference span is 1524mm.

VKI - 46 -

4.3 Examples 4 MESH ADAPTATION

37.1: 7" adapted mesh with Mach contours. 37.2: 7*" adapted mesh p-order distribution; the
range is p=1— 5.

Figure 37: DPW Wing 1, M, = 0.76,« = 0.5°, Re = 5 x 105: cut at y = 620mm of the drag-adapted
meshes.

An optimization-based mesh adaptation algorithm may offer insight on “best-practice”
gridding guidelines. We notice that several regions of the flow are frequently targeted for
refinement. One of these regions is near the leading edge where the flow accelerates
through the sonic condition. This change in character of the flow causes strong variations
in the adjoint solution, which are responsible for large error indicators. Another region
is the edge of the boundary layer, where the turbulent working variable, &, transitions to
zero rapidly. The other two regions are the location of shock-boundary-layer interaction
and the trailing edge. These regions exhibit strong gradients in 7 that contribute to the
drag output. Figure |38 shows the interaction between the shock and the boundary layer.
Note the concentration of cells in the boundary layer and the sharp variation of 7. Further
downstream, in the trailing edge region (Figure , the beginning of the turbulent wake
is also adapted.

VKI - 47 -

4 MESH ADAPTATION 4.3 Examples

38.1: Mach contours for initial mesh. 38.2: Mach contours for the 7" adapted mesh.

e
el S

38.3: U contours for initial mesh. 38.4: & contours for the 7*" adapted mesh.

Figure 38: DPW Wing 1, M., = 0.76,a = 0.5°, Re = 5 x 108: interaction between shock and boundary-
layer at y = 620mm.

39.1: U contours for initial mesh. 39.2: & contours for the 7*" adapted mesh.

Figure 39: DPW Wing 1, M., = 0.76,« = 0.5°, Re = 5 x 10: trailing edge at y = 620mm.

VKI - 48 -

5 MESH OPTIMIZATION

5 Mesh Optimization

Unstructured meshes offer flexibility in mesh generation and in adaptation, since resolu-
tion can be placed only where necessary. Resolution refers to the size and shape of an
element, as both of these affect the approximation power of the mesh. This information
can be encoded in a metric field [I7, [91] over the computational domain. The goal in mesh
optimization is to relate this metric field to a practical objective, such as minimizing error
or computational cost.

Previous works have derived metric fields from consideration of such objectives through
heuristic [22, 5, 20, [51], semi-heuristic [119, 89, 31l 125], and more recently, rigorous [126]
ways. In this section we present a rigorous output-based approach [126] for determining
the metric that gives the best possible mesh. Some modifications are made from the
original presentation to simplify the implementation and reduce the computational burden
of this method.

5.1 Metric-Based Mesh Optimization Algorithm

Our goal is to optimize the computational mesh, T}, in order to minimize the output error
at a prescribed computational cost. We follow the approach introduced by Yano [126],
which iteratively determines the optimal change in the mesh metric field given a pre-
scribed metric-cost relationship and a sampling-inferred metric-error relationship. In this
section we briefly review the key elements of this method, and in Section we present
a modification to the error sampling procedure.

5.1.1 Metric-Based Meshing

A Riemannian metric field, M(Z), is a field of symmetric positive definite (SPD) tensors
that can be used to encode information about the desired size and stretching of a com-
putational mesh. At each point in physical space, Z, the metric tensor M(Z) provides a
“yardstick” for measuring the distance from Z to another point infinitesimally far away,
Z + 0x. This distance is

50 = V3iT MO, (44)

After choosing a Cartesian coordinate system and basis for physical space, M can be
represented as a d X d SPD matrix. The set of points at unit metric distance from &
is an ellipse, as illustrated in Figure eigenvectors of M give directions along the
principal axes, while the length of each axis (stretching) is the inverse square root of the
corresponding eigenvalue.

A mesh that conforms to a metric field is one in which each edge has the same length, to
some tolerance, when measured with the metric according to , which can be integrated
to obtain the distance between points that are not infinitesimally close together. An
example of a two-dimensional metric-conforming mesher is the Bi-dimensional Anisotropic
Mesh Generator (BAMG) [17], and this is used to obtain the present results.

BAMG generates a mesh given a metric field, which is specified at nodes of a back-
ground mesh — the current mesh in an adaptive setting. The optimization will determine
changes to the current, mesh-implied, metric, M (%), which is obtained on each simplex

VKI - 49 -

5 MESH OPTIMIZATION 5.1 Metric-Based Mesh Optimization Algorithm

| A2

set of points equidistant
from O under metric measure

Figure 40: A metric, M € R%*? is a symmetric positive definite tensor field that provides a “yardstick”
for measuring distances in different directions. In two dimensions, the set of points equidistant to a point
O under the metric measure defines an ellipse.

element of the background mesh by solving a linear system for the d(d+1)/2 independent
entries of M(Z); the equations in this system enforce that each of the d(d + 1)/2 edges
has unit metric measure. The element-based mesh-implied metrics are then averaged to
the nodes using an afﬁne—invariantﬂ algorithm [91]. Given the desired metric at each node
of the background mesh, BAMG generates a new, metric-conforming mesh, as illustrated

in Figure

41.1: Input: background mesh and desired metric 41.2: Output: Metric-conforming mesh

Figure 41: Input and output to/from the Bi-dimensional Anisotropic Mesh Generator [17]. The desired
metric on the background mesh is visualized via ellipses at each node.

Affine-invariant changes to the metric field are made via a symmetric step matriz,
S € R¥4 according to

M = M2 exp(S)ME. (45)

Note that & = 0 leaves the metric unchanged, while diagonal values in S of +2log?2
halve/double the metric stretching sizes.

5.1.2 Error Convergence Model

The mesh optimization algorithm requires a model for how the error changes as the metric
changes. We consider one element, €2, with a current error £, the absolute value of the
element’s contribution to , and a proposed metric step matrix of S,. What will the
new error, &, be over (). following refinement with this step matrix? A typical a priori

SFor example, just averaging matrix entries would be coordinate-system dependent and hence not
affine invariant.

VKI - 50 -

5.1 Metric-Based Mesh Optimization Algorithm 5 MESH OPTIMIZATION

©initial
©new
05 0 0 0.5
S‘{o 0.5} S_[o.es 0}
®©initial Oinitial
©new ©Onew
0 —0.5 0.5 -=0.5
&= {—0.5 0] 5= [—0.5 0 }
®©initial Oinitial
©new Onew
5 —0.5 0 —0.5
5= {—0.5 0 } 5= [—0.5 5 }

Figure 42: Examples of the effect of metric modification via using My = Z and various step
matrices, S. The ellipses show the loci of points of unit metric measure away from the center using

My =7 (blue) and M = ./\/lé eXp(S)Mé (red).

VKI -51-

5 MESH OPTIMIZATION 5.1 Metric-Based Mesh Optimization Algorithm

model may predict

h

a:%@ﬂ:xmwwmwwL (46)

where h/hg are some consistent measures of the new/original element size, and r is the
error convergence rate. A generalization to anisotropic metric tensors, for which the error
may converge differently depending on the direction of change, is that S, plays the role
of log(h/ho) and a symmetric rate tensor R, replaces the scalar r:

o€,
2S.

E =Epexptr(R.S.)] = ER.. (47)
Note, we include a linearization with respect to S, for use in Section [5.1.4, The total error
over the mesh is the sum of the elemental errors,

Ne
E=) & (48)
e=1

During optimization we will want to keep £ small, and we will be able to change the step
matrices at the mesh vertices, S,. The rate tensor, R., will be determined separately for
each element through the sampling procedure described in Section [5.2

5.1.3 Cost Model

To measure the cost of refinement, we use degrees of freedom, dof, which on each element
just depends on the approximation order p, assumed constant over the elements. By
and properties of the metric tensor, when the step matrix .S, is applied to the metric of
element e, the area of the element decreases by exp [%tr(Se)]. Equivalently, the number
of new elements, and hence degrees of freedom, occupying the original area €). increases
by this factor. So the elemental cost model is

C, = C.pexp Etr(&'e)} (49)

—_—
Areag/Area

where C,y = dof.q is the current number of degrees of freedom on element e, and Z is the
identity tensor. Again we include a linearization with respect to S, for use in Section [5.1.4]
The total cost over the mesh is the sum of the elemental costs,

Ne
c=Yc. (50)
e=1

5.1.4 Metric Optimization Algorithm

Given a current mesh with its mesh-implied metric (Mg(Z)), elemental error indicators
&0, and elemental rate tensor estimates, R., the goal of the metric optimization algorithm
is to determine the step matrix field, S(Z), that minimizes the error at a fixed cost.

VKI -52-

5.1 Metric-Based Mesh Optimization Algorithm 5 MESH OPTIMIZATION

The step matrix field is approximated by values at the mesh vertices, S,, which are
arithmetically-averaged to adjacent elementﬂ

S. |V| > S, (51)

vEV,

where V, is the set of vertices (|V,| is the number of them) adjacent to element e (see
Figure . The optimization problem is to determine S, such that the total error £ is
minimized at a prescribed total cost C.

V. = set of vertices
adjacent to
element e

E, =setof elements
adjacent to vertex v

Figure 43: Definition of vertices surrounding an element and vice versa, used for expanding lineariza-
tions of the error and cost functions with respect to the step matrix at the nodes.

First-order optimality conditions require derivatives of the error and cost with respect
to S,. From the equations in Sections[5.1.2] and [5.1.3] and using (51]), these are

0E — 0E. 0S. 9C < OC. BS. 52)
oS, oS, 0S,’ oS, oS, 0S,’
eCEy N~ €€l N~
@7 1/|Vel @9 1/[Vel

where F, is the set of elements adjacent to vertex v (see Figure . We note that the
cost only depends on the trace of the step matrix; i.e. the trace-free part of S, stretches
an element but does not alter its area. We therefore separate the vertex step matrices
into trace (s,Z) and trace-free (S,) parts,

S, =5, +S,. (53)

Derivatives of the error with respect to s, and gy are

agtr<ag) 0 0E OET

ds, \dS, oS, 0S, 9s,d (54)

The optimization algorithm is then the same as presented by Yano [120]:

1. Given a mesh, solution, and adjoint, calculate &,,C., R. for each element e.
2. Set 6 = 0Smax/Nsteps Sy = 0.
3. Begin loop: ¢ = 1. .. ngep

SThere is no need for an affine-invariant average because entries of S are coordinate system indepen-
dent.

VKI -53-

5 MESH OPTIMIZATION 5.2 Element-Local Error Sampling

(a) Calculate S, from , gg from , and ggz from ‘D
(b) Calculate derivatives of €& and C Wlth respect to s, and S, using .

(¢) At each vertex form the ratio A, gg?gz: and

e Refine the metric for 30% of the vertices with the largest |\, |: S, = S,+dsZ
e Coarsen the metric for 30% of the vertices with the smallest |\,|: S, =
S, — 0sT
(d) Update the trace-free part of S, to enforce stationarity with respect to shape
changes at fixed area: S, = S, + 85(0€/0S,)/ (€ |Ds.,).
(e) Rescale S, — S, + Z, where (3 is a global constant calculated from (49)) to
constrain the total cost to the desired dof value: 3 = 2 5 log == C“rge“ , where Ciarget
is the target cost.

Note, A, is a Lagrange multiplier in the optimization. It is the ratio of the marginal
error to marginal cost of a step matrix trace increase (i.e. mesh refinement). The above
algorithm iteratively equidistributes A, globally so that, at optimum, all elements have
the same marginal error to cost ratio. Constant values that work generally well in the
above algorithm are nge, = 20 and 0s,.x = 2log 2.

In practice, the mesh optimization and flow/adjoint solution are performed several
times at a given target cost, Ciarget, until the error stops changing. Then the target cost
is increased to reduce the error further if desired. Figure [44] illustrates this process. For
reporting the final error and cost at each adaptive iteration, the values are averaged over
the last few solution iterations at each target cost.

log(error) increase dof log(dof)

0 10 20 solution iterafion

Figure 44: Illustration of the typical error (left axis) and cost/dof (right axis) history during mesh
optimization. At each solution iteration, the primal and adjoint problems are solved and the mesh
optimization algorithm is applied to determine the metric for the mesh for the next solution iteration.
The target cost is held fixed for multiple (e.g. 10) solution iterations, during which the error eventually
stabilizes as each mesh “hovers” about the optimum. Following an allowable cost increase, the error drops
over a few solution/optimization iterations and settles to a lower value. Note that the primal and adjoint
solutions can be transferred from one mesh to the next, making the solves at each iteration much cheaper
compared to solving from scratch (e.g. using the freestream state).

5.2 Element-Local Error Sampling

The mesh optimization algorithm requires that the error convergence rate tensor, R. be
known for each element e. We estimate this rate tensor a posteriori by sampling a small

VKI -54 -

5.2 Element-Local Error Sampling 5 MESH OPTIMIZATION

number of element refinements (cuts) for each element and performing a regression. This
is also the approach taken by Yano [126], and our work differs in that we do not solve any
primal or adjoint problems on the refined elements. Indeed, we never actually modify the
mesh when considering the refinement samples, and this simplifies data structure handling
in the implementation, especially in parallel.

For a triangular element, we consider four refinement options, as shown in Figure [45]
We would like to know how much the error would decrease under each refinement option.

ANENIENAN

Original Option 1 Option 2 Option 3 Option 4

Figure 45: Four refinement options for a triangle. Each one is considered implicitly during error
sampling, though the elements are never actually refined.

One expensive option is to refine the element with the proposed cut, re-solve the primal
and fine-space adjoint problems globally, and re-compute the error estimate. Though
accurate, this would be impractically expensive. Another option is to only solve the
primal /adjoint problems on a subset of the original mesh: the current element and its
neighbors. This approach, taken by Yano, is less accurate but still performs very well as
globally-exact primal/adjoint states are not necessary to estimate the error rate tensor. In
this work we further simplify the estimation by not solving additional problems, even on
a local patch of elements. Instead, our proposed algorithm uses element-local projections
of the fine-space adjoint to semi-refined spaces associated with each refinement option.
Consider one element e. The fine space adjoint WZH ‘Q gives, via , an estimate of
the output error in the current order p solution, as measured relative to a “truth” order
p + 1 solution: this is . If the fine-space adjoint were of order p + 2, we would have an
estimate of the error relative to an even finer space. Now, suppose that we are looking
at refinement option 7 in Figure 45| Refining an element with such an option creates a
solution space that is finer than the original, though (we assume) not as fine as increasing
the order to p + 1 — we still use p + 1 as the “truth” space. Suppose we have an order p
adjoint on this refined space; call it ¢Zi|ge, where the ¢ indicates that we are considering
refinement option 7. With this adjoint we can compute an error indicator A&,;: this
estimates the error between the coarse solution and that on refinement option i. The
remaining error associated with refinement option ¢ is then given by the difference,

gei =Ce0 — Agei' (55>

Calculating A&,; requires an adjoint-weighted residual evaluation on the element re-
fined under option i. We bypass this complication with an additional simplification: we
project @bﬁi} Q. into the p + 1 space on the original element and evaluate the adjoint
weighted residual there. That is, we perform

~5Pp
A&y = Ry (uf, ¢hi|ge)|a (56)

VKI -55-

5 MESH OPTIMIZATION 5.2 Element-Local Error Sampling

where 17)21 is ¢}, projected from order p on refinement option ¢ into order p 4+ 1 on the
original element. The final simplification is to not actually calculate 7, ’Qe for refinement
option 7. Instead, we simply project the known fine-space order p 4+ 1 adjoint onto order
p in refinement option .

In summary, the error uncovered by refinement option i, A&, is estimated by the
adjoint-weighted residual in (56[), with all calculations occurring at order p + 1 on the
original element. Figure breaks down the key computation of QZZ into individual
projections. Using least-squares projections in reference space, the combination of the

BNl PN DN

p+1 D
¥y, h1

Figure 46: Projection of the fine-space adjoint, 1/)1,';“, down to the space created by refinement option
i = 1, and then back up to order p+1 on the original element. This sequence of projections is encapsulated
in a single transfer matrix in .

steps deplcted in Figure 6] can be encapsulated into one transfer matrix that converts
Ph 1 into 1,b ni» both represented in the order p + 1 space on the original element:

17’;2@' = Ti"/)ZH? (57)
T, = [Mowg“,%“)}‘lim, (58)
T = My(6h™, o) Ml o)) Mo ™) (Ml 5] ™ Ml 4 (50)

In these equations, n; is the number of sub-elements in refinement option ¢, k is an index
over these sub-elements, ¢7, qﬁi“ are order p and p + 1 basis functions on sub-element £k,
0, gbgH are order p and p + 1 basis functions on the original element, and components of

the mass-like matrices are defined as

Mk(¢l7 ¢m> = ¢l¢man MO(¢I) (bm) = ¢l¢man (60>

O Q0

where €2, is sub-element k£ and € is the original element. Note that the transfer matrix
T; can be calculated for each refinement option ¢ once in reference space and then used
for all elements, so that the calculation of A&,; consumes minimal additional cost — and
most importantly, no solves or residual evaluations are needed on the refined element, as
these generally require cumbersome data management and transfer.

Finally, after calculating &;, the errors remaining after each refinement option ¢ ac-
cording to , we use least-squares regression to estimate the rate tensor R.. Note that
for triangles, we have 4 refinement options and 3 independent entries in the symmetric R,
tensor. Using , we formulate the regression to minimize the following error, summed

VKI - 56 -

5.3 Examples 5 MESH OPTIMIZATION

over refinement options,

> [log g— - tr(ReSei)] 2 . (61)

p e0

In this equation, S,; is the step matrix associated with refinement option ¢, given by (from

@),
S = log (Mg * MM *). (62)

where M; is the affine-invariant metric average of the mesh-implied metrics of all sub-
elements in refinement option i. Differentiating with respect to the independent
components of R, yields a linear system for these components.

5.3 Examples
5.3.1 Inviscid Flow over a NACA 0012 Airfoil

We first consider inviscid flow over a NACA 0012 airfoil at M., = 0.5 and o« = 2°. The
output of interest is the drag coefficient. Figure [47]shows the Mach number contours and
the initial coarse mesh for this case. Curved elements of geometry order ¢ = 4 are used
adjacent to the airfoil to represent the geometry, and the farfield boundary is over 2000
chord-lengths away.

N
> a2
'} AVA‘VA‘VA‘VA"QV" £\

RVANZAVANE

47.1: Mach number contours 47.2: Initial mesh (356 triangles)

Figure 47: NACA 0012, M., = 0.5, a = 2°, inviscid: Mach number contours and the initial coarse
mesh for metric-based mesh optimization.

Starting from the coarse mesh, adaptive runs were performed using approximation
orders p = 1,2,3, and at four dof targets: 2000, 4000, 8000, and 16000. Note that for
a given dof target, we expect coarser meshes (fewer elements) at higher p, when each
element consumes more dof. At each dof target, ten solution iterations were performed
before moving to the next dof target. Figure 48| shows a sample run using p = 2. Note
how quickly the error drops in the first ~ 3 iterations after increasing the dof target and
after starting from the coarse mesh. Since the 356-element initial mesh has 2136 dof at
p = 2, the dof plot shows little change in the first ten iterations, when the target is 2000

VKI -57-

5 MESH OPTIMIZATION 5.3 Examples

-3
510 ¢
o
= -4
_g 107
o F
©
810 ¢
o F
© r
0 10° >0 4
0 10 20 30 _ 40 50 60
Solution iteration
10°

Degrees of freedom
=
[

1
1
1
1
1
1
3 ! 1 ! i !

0 10 20 - 30 _ 40 50 60
Solution iteration

Figure 48: NACA 0012, My, = 0.5, o = 2°, inviscid: output error and degrees of freedom histories for
mesh optimization with p = 2 approximation and 15 solution iterations at each target dof value.

dof, even though the error drops as the ~ 350 elements are resized and repositioned to
an optimal configuration for drag prediction.

Figure [49| compares the convergence of the error in the drag coefficient with a measure
of the mesh size, dof~'/2, when using the presented mesh optimization algorithm and
when using uniform refinement of the initial mesh. The uniform refinement results ex-
hibit stagnating convergence, even at high order, due to the presence of singular solution
features (e.g. at the trailing edge) which limit the attainable rate. Indeed there is little
benefit in using p = 3 compared to p = 2 on the uniform refinement sequence. On the
other hand, the adaptive results with the presented optimization algorithm show greatly-
improved convergence. Orders of magnitude error reductions are achieved compared to
uniform refinement, and there is a clear benefit to higher-order approximation. Note that
Figure {49 presents data points for every solution iteration in the mesh optimization, with
larger symbols denoting the output and dof averaged over the five iterations at each dof
target. As shown, the 2000 initial dof target required refinement of the initial mesh for
p = 1 and coarsening of the initial mesh at p = 3; at p = 2 the total number of elements
remained virtually unchanged at this target.

Figures show the adapted meshes for p = 1,2,3 approximation, at the four
target dof values. The differences in the number of elements among the various meshes are
evident: the p = 1 adapted meshes are the finest, whereas the p = 3 ones are the coarsest.
The adaptation adds mesh resolution to the most interesting areas in the flowfield: the
leading and trailing edges of the airfoil. Especially at the trailing edge, small elements
persist even at p = 3, in order to resolve the strong singularity.

VKI - 58 -

5.3 Examples 5 MESH OPTIMIZATION

10
_ 107 :
o
= oin-3]
8 10 = Optimized: p=1
3 107 1| ® Optimized: p=2
© A Optimized: p=3
5 107] |—==Uniform: p=1
8 —e—Uniform: p=2
O 46 —&—Uniform: p=3
c 10 ¢ E
(]

107 :

-8 ;
10 107
1/sqrt(dof)

Figure 49: NACA 0012, M., = 0.5, = 2°, inviscid: comparison of output error convergence with
dof for uniform refinement and mesh optimization at orders p = 1,2,3. In the optimization results,
the smaller symbols denote the output at each solution iteration, whereas the larger symbols show the
average over the last five iterations at each target dof.

SAVAVAV 7 NS VAVAN Zg)N
A N A S
D R AVA e NATAR B
R g&m&‘i&"

Y VAV
’ e
1>yAvA'AV

AKX

/R o
BN
REEA

PR

WAVASGVAVATA
Rl
Wi
IR R A
VATV SR RS
R N g
o ‘ b%%%g S NAAVAVAVAY S S ‘é&gg&gh
- s - o
NSRRI S S R PRNNDLSSNE g
SNSRI 7| R ol
QAR A RSIOERTS AV e R S TAVAVAVIS S O A
VAANM CTIAARK ORI I
SOOI ok a ety

50.3: dof = 8000 50.4: dof = 16000

Figure 50: NACA 0012, M, = 0.5, o = 2°, inviscid: optimized meshes (last in sequence for each target
dof) for p = 1.

VKI -59-

5 MESH OPTIMIZATION 5.3 Examples

51.4: dof = 16000

Figure 51: NACA 0012, M, = 0.5, @ = 2°, inviscid: optimized meshes (last in sequence for each target
dof) for p = 2.

NI N N KT
)

R iy

'Q'EVAV} <'Av
R OOREP

<

Al

'ﬁ'ﬁﬁﬁ

AV, 2
NSy, A/ 7

52.3: dof = 8000 52.4: dof = 16000

Figure 52: NACA 0012, M, = 0.5, a = 2°, inviscid: optimized meshes (last in sequence for each target
dof) for p = 3.

VKI - 60 -

5.3 Examples 5 MESH OPTIMIZATION

5.3.2 High-Reynolds Number Flow over a Flat Plate

This case is laminar flow over a flat plate at M., = 0.5, = 0, Re;, = 10°5. The com-
pressible Navier-Stokes equations are solved over the domain shown in Figure 53], where
Ly = Ly = L = 1. The Prandtl number is Pr = 0.72 and the ratio of specific heats is
v = 1.4. The output of interest is the drag coefficient on the flat plate.

Pressure Exit 1

Subsonic Lv Przssyre 05
Inflow xit o4r
0.3
0.2
L Adiabatic Wall o

S Y — — ==———|

ymlnetry -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 08 1

53.1: Domain and boundary conditions 53.2: Initial mesh (336 triangles)

Figure 53: Flat plate, M., = 0.5, Rey, = 10°: problem setup and the initial coarse mesh for metric-based
mesh optimization.

Figure [53] also shows the initial mesh used for uniform refinement and mesh optimiza-
tion runs. This mesh was obtained from subdivision of elements in an initially structured
quadrilateral mesh that was generated with extra refinement in the boundary layer and
leading-edge of the flat plate. In the uniform refinement runs, each triangular element
was subdivided isotropically into four new elements to obtain the next mes. In addition,
“quasi-uniform” refinement was considered in which a hand-generated fine mesh, also with
stretched spacing, was coarsened by removal of every other grid line. The resulting mesh
sequence was no longer nested but did a better job at resolving the boundary layer and
leading-edge regions.

10~
= 407 |
S 10 = Optimized: p=1
o Optimized: p=2
[Tl || A Optimized: p=3
-g —=—Uniform: p=1
= —e—Uniform: p=2
Q8 —&—Uniform: p=3
Q -]
g1 —=—Quasi-uniform: p=1
Q —e—Quasi-uniform: p=2
A 107" | |~*—Quasi-uniform: p=3
—12
10 :
10° 107 107

1/sqrt(dof)

Figure 54: Flat plate, M., = 0.5, Re;, = 10°: comparison of output error convergence with dof for
uniform refinement, quasi-uniform refinement (coarsening of a grated fine mesh), and mesh optimization
at orders p = 1,2,3. In the optimization results, the smaller symbols denote the output at each solution
iteration, whereas the larger symbols show the average over the last five iterations at each target dof.

VKI -61 -

5 MESH OPTIMIZATION 5.3 Examples

Figure |54] shows the results of the uniform refinement and adaptive runs for approxi-
mation orders p = 1,2,3. Note that among the uniform refinement runs, increasing the
order does decrease the error, but that no higher-order convergence rate is observed due
to insufficient resolution of the singular region of the flow (i.e. the leading edge of the
flat plate). The quasi-uniform meshes show better results because they are not nested
and the finer meshes intentionally have high resolution at the leading edge and in the
boundary layer. The meshes optimized using the proposed method show, for a given
order, the best results. Note that in this case four cost (dof) values were considered:
2000, 4000, 8000, 16000. For each cost value, fifteen iterations of mesh optimization were
performed, and errors from the last five were averaged to produce the large symbols shown
in Figure . The stall in convergence around error values of 1071 is likely due to the
residual tolerance used (eight orders of magnitude drop).

Figures [55| and [56| show the optimized meshes for p = 2 and p = 3, respectively. The
meshes are shown over the entire computational domain and zoomed-in with a stretched
vertical axis to see refinement in the boundary layer. Comparing p = 2 and p = 3, we
see coarser meshes for p = 3 since the number of degrees of freedom is the same for
both orders, and p = 3 consumes, with full-order approximation, 10 degrees of freedom
compared to 6 for p = 2.

From the un-zoomed figures, we see that the optimized meshes show no sign of the
initial-mesh refinement pattern: not much resolution is required away from the boundary
layer. In the zoomed-in figures we see very high resolution in the leading-edge region,
and in an arc-shaped region extending from the leading edge to the trailing edge. The
boundary layer of course does not disappear to zero height at the trailing edge, but errors
made away from the wall this far down the plate have little impact on the drag. The
adaptive algorithm picks up on this. In addition, we see reasonably-high anisotropy of the
elements in the boundary layer region — note that the ratio of horizontal to vertical axis
scaling is 100-to-1 in the zoomed-in figures. This anisotropy is detected automatically by
the error sampling procedure that yields the rate tensor for each element, as described in

Section 5.2

5.3.3 NACA 0012 Airfoil in Laminar Viscous Flow

In this case we consider viscous flow over a NACA 0012 airfoil at M, = 0.5, a = 2°,
and Re = 5000. The output of interest is the drag coefficient. Figure |57] shows the Mach
number contours and the initial coarse mesh for this case. Curved elements of geometry
order ¢ = 4 are used adjacent to the airfoil to represent the geometry, and the farfield
boundary is over 2000 chord-lengths away.

Starting from the coarse mesh, adaptive runs were performed using approximation
orders p = 1,2,3 and four dof targets: 2000, 4000, 8000, and 16000. Figure shows
drag error and dof histories for a sample run using p = 2. Compared to the inviscid case
the error does not drop as quickly after each dof target increase, but it does plateau after
10-15 solution iterations. The output and dof values reported are again averages over the
last 5 solution iterations at each target dof.

Figure [59 compares convergence of the error in the drag coefficient with a measure
of the mesh size, dof ~'/2, when using the presented mesh optimization algorithm, when
using uniform refinement of the initial mesh, and when using an alternative adaptation

VKI - 62 -

5.3 Examples

5 MESH OPTIMIZATION

0.01

0.009

0.008 -

0.007

0.006 -

0.005 -

0.004 -

0.003

0.002 -

0.001

-0.4 -0.2 0 0.2 0.4 0.6 0.8

95.3: dof = 4000

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

55.2: dof = 2000 (zoom)

-0.6

-0.4 -0.2 0 0.2 0.4 0.6 0.8

95.5: dof = 8000

0.8

0.7

0.6

05

041

0.3

0.1F

-1

-0.8

-0.4 -0.2 0 0.2 0.4 0.6 0.8

55.7: dof = 16000

0.009

0.008

0.007

0.01

=\

0.004 -

0.005

—— =Nl
‘A‘ </]
“%%%\ i

0.001

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

—

|
|

)

L
EiDs
=
=
AN

=S

Y2S

<
-0.8 -0.6 0.4 0.2 0.6 0.8 1

55.6: dof = 8000 (zoom)
|

| STaraYi!
NAR

) S

A

Bﬁu |

f

<SS SNl
W
I}

VAN
e

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

55.8: dof = 16000 (zoom)

Figure 55: Flat plate, M., = 0.5, Rey, = 10%: optimized meshes (last in sequence for each target dof)
for p = 2. Note the vertical axis stretching in the zoomed plots.

VKI

- 63 -

5 MESH OPTIMIZATION 5.3 Examples

0 I I I I L I I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

56.1: dof = 2000 56.2: dof = 2000 (zoom)

= 0 I I T ! I L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

56.3: dof = 4000 56.4: dof = 4000 (zoom)

SRS/ =

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

56.5: dof = 8000 56.6: dof = 8000 (zoom)

M;ﬂ»‘

L L L f
1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

592 : b

| ‘!ﬁ"’\ VI‘W

QAN
L)

0.01

Wi

st

>
0al 0.003F 'Aig%hﬂg
0.2 0.002H
01F 0.001 »4{,;'
, N I I : BN
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
56.7: dof = 16000 56.8: dof = 16000 (ZOOIH)

Figure 56: Flat plate, M., = 0.5, Rey, = 10%: optimized meshes (last in sequence for each target dof)
for p = 3. Note the vertical axis stretching in the zoomed plots.

VKI - 64 -

5.3 Examples 5 MESH OPTIMIZATION

Aﬁ%ﬂ»‘éhv

EAVAanraANA AT AN /g)
ARy

R

57.1: Mach number contours 57.2: Initial mesh (356 triangles)

Figure 57: NACA 0012, M, = 0.5, a = 2°, Re = 5000: Mach number contours and the initial coarse
mesh for metric-based mesh optimization.

Drag coefficient error

| | -
0 10 20 30 . 40 50 60
Adaptive iteration

Degrees of freedom

3 \

| |
0 10 20 30 _ 40 50 60
Adaptive iteration

Figure 58: NACA 0012, M, = 0.5, o = 2°, Re = 5000: output error and degrees of freedom histories
for mesh optimization with p = 2 approximation and 15 solution iterations at each target dof value.

VKI - 65 -

5 MESH OPTIMIZATION 5.3 Examples

algorithm: one in which the output error indicator is used to set the mesh size while the
anisotropy comes from the Hessian matrix associated with the Mach number [119, [31]. As
in the inviscid case, the uniform refinement results exhibit stagnating convergence, even
at high order, due to the presence of singular solution features — there is little benefit
to high order in this scenario. On the other hand, the adaptive results show greatly-
improved convergence, especially with the presented optimization algorithm. Using the
Mach number Hessian in lieu of the metric optimization yields reasonable results for p = 1
and p = 2, but stalls out for p = 3. This should not come as a surprise, since: (1) the
Hessian matrix approach was derived for linear (p = 1) solution approximation; and (2)
the use of the Mach number Hessian is a heuristic that is not guaranteed to provide
optimal meshes for the prediction of an output.

-1

10

® Optimized: p=1
Optimized: p=2
A Optimized: p=3
* Hessian: p=1
Vv Hessian: p=2
4 Hessian: p=3
—=—Uniform: p=1
4 |—e—Uniform: p=2
—&—Uniform: p=3

Drag coefficient error

10°
1/sqrt(dof)

Figure 59: NACA 0012, M, = 0.5, a = 2°, Re = 5000: comparison of output error convergence with
dof for uniform refinement, adaptation using the Mach number Hessian to determine anisotropy, and
adaptation using the mesh optimization algorithm described in this section. The approximation orders
are p = 1,2,3. In the adaptive results, the smaller symbols denote the output at each solution iteration,
whereas the larger symbols show the average over the last five iterations at each target dof.

Figures and [61] show the adapted meshes for p = 2 and p = 3 approximation,
respectively, at the four target dof values. The adaptation algorithm adds resolution in
the boundary layer, wake, and in the vicinity of the leading-edge stagnation streamline.
The two sets of meshes, one optimized using the error sampling procedure and the other
generated using the Mach number Hessian, show resolution of similar regions but with
different anisotropy. In the boundary layer and in the edges of the wake, using the
Mach number Hessian leads to elements with somewhat larger anisotropy. However, on
the leading-edge stagnation streamline, the sampling-based meshes exhibit flow-aligned
anisotropy, a result of features in the adjoint solution that the Mach Hessian cannot
identify. In general, the Mach number Hessian is a reasonable heuristic for identifying
anisotropy, but it is not perfect, as the output convergence results show that the sampling-
based optimized meshes are more efficient.

VKI - 66 -

5.3 Examples 5 MESH OPTIMIZATION

N

60.1: dof = 2000, optimized

60.3: dof = 4000, optimized

NS
KR,
VAV
SRRAAPA

60.7: dof = 16000, optimized 60.8: dof = 16000, Mach Hessian

Figure 60: NACA 0012, M., = 0.5, « = 2°, Re = 5000: adapted meshes (last in sequence for each
target dof) for p = 2 using mesh optimization and, for comparison, the Mach number Hessian to set
anisotropy.

VKI - 67 -

5 MESH OPTIMIZATION 5.3 Examples

61.1: dof = 2000, optimized 61.2: dof = 2000, Mach Hessian

NAA =

=

NAAIARAIN
SAVAARS
iy 5 Aev;v o TAvav4

61.7: dof = 16000, optimized 61.8: dof = 16000, Mach Hessian

Figure 61: NACA 0012, M., = 0.5, « = 2°, Re = 5000: adapted meshes (last in sequence for each
target dof) for p = 3 using mesh optimization and, for comparison, the Mach number Hessian to set
anisotropy.

VKI - 68 -

5.3 Examples 5 MESH OPTIMIZATION

5.3.4 RAE 2822 Airfoil in Turbulent Transonic Flow

The final case is an RAE 2822 airfoil in transonic turbulent flow: M, = 0.734, a = 2.79°,
Re = 6.5 x 10°. The Spalart-Allmaras [3] closure is used to model the turbulent flow, and
element-constant artificial viscosity [95] is used to capture shocks. The output of interest
is the drag coefficient. Figure [62| shows the Mach number contours and the initial coarse
mesh for this case. Note that the initial mesh is much coarser in the boundary layer than
required for accuracy. Curved elements of geometry order ¢ = 4 are used adjacent to the
airfoil to represent the geometry, and the farfield boundary is over 500 chord-lengths away.
A linear elasticity analogy is used to deform anisotropic linear meshes to curve them to
the ¢ = 4 boundary geometry approximation.

62.1: Mach number contours 62.2: Initial mesh (758 triangles)

Figure 62: RAE 2822, M, = 0.734, a = 2.79°, Re = 6.5 x 10%: Mach number contours and the initial
coarse mesh for metric-based mesh optimization.

Starting from the coarse mesh, adaptive runs were performed using approximation
orders p = 1,2,3, and at four dof targets: 5000, 10000, 20000, and 40000. At each dof
target, fifteen solution iterations were performed before moving to the next dof target.
Figure [63] shows a sample run using p = 2. The error drops more slowly in this case
compared to the inviscid and laminar cases, and the behavior of the error from mesh to
mesh is more oscillatory. This is likely due to the highly nonlinear nature of the RANS
equations and the sensitivity of the output to anisotropy in the boundary layer.

Figure [64) shows the convergence of the drag coefficient error with respect to the mesh
size, dof /2, when using the presented mesh optimization algorithm, and when using
uniform refinement. Here we see a dramatic benefit from the optimized meshes. Uniform
refinement of the coarse mesh does not appear to consistently reduce the error at any of
the orders — the refined meshes are still not fine enough to resolve the boundary layer. On
the other hand, the adapted meshes show excellent error reduction: almost four orders of
magnitude lower error on the finest meshes compared to the error on the initial mesh. The
differences in the adapted results among the three orders are minor, with slight efficiency
gains for p = 2 and p = 3 at the lower error levels.

Finally, Figures [65][66][67] show the adapted meshes for the different orders and dof
targets. These meshes are much different from the initial one: we observe high levels
of anisotropy in the thin boundary layer adjacent to the airfoil, and in the wake and
leading-edge stagnation streamline resolution. We also see some refinement in the foot of

VKI - 69 -

5 MESH OPTIMIZATION

5.3 Examples

10

Drag coefficient error

—_
oI
o0

o

10 20

Adaptive iteration

o
T

50

—_
o
T

Degrees of freedom

3 !

0 10 20

3
Adaptive iteration

50

60

Figure 63: RAE 2822, M., = 0.734, o = 2.79°, Re = 6.5 x 10%: output error and degrees of freedom
histories for mesh optimization with p = 2 approximation and 15 solution iterations at each target dof

value.

-
o
T

Drag coefficient error
=

= Optimize
Optimize

A QOptimize
—a—Uniform:
—e—Uniform:
—&—Uniform:

T o OT QLQQ

p
D p=
p

10 10

1/sqrt(dof)

-2

Figure 64: RAE 2822, M, = 0.734, a = 2.79°, Re = 6.5 x 10%: comparison of output error convergence
with dof for uniform refinement and adaptation using the mesh optimization algorithm described in this
section. The approximation orders are p = 1,2, 3. In the adaptive results, the smaller symbols denote the
output at each solution iteration, whereas the larger symbols show the average over the last five iterations

at each target dof.

VKI

-70 -

5.3 Examples 5 MESH OPTIMIZATION

the shock on the upper surface, and resolution of the “A\” feature of the adjoint solution
above the airfoil. Note that resolution of the entire shock is not needed for accurate drag
calculation: the important regions are the foot of the shock and the characteristics that
connect to the shock-boundary layer junction.

o DRV AN
v~ i *‘

N

— ok
S5
AVAAVAWAY s

vgm&%

nﬂhﬂi’ggﬂ‘
v
"/ K
FAVAYAIS

N
NRARNT
YRNSAAD

% AN
NERKAN

X
AN q
VA

NN = R)4 ‘("‘ NZ VAV s o (NN ANy SR
XN v NSRRI N Y N
ooy Wi R W, >

AP
‘ A"Avuy§

Ay N EEE';Véiilﬂ%Z?Xé?égi NN /N NV Iﬁﬁiﬁ“
R ORI X R RN 7
QAN RSN PARORS KV Y
R KA RO R A DORORK]
ARSI A KRR A ARSI
< N RRASRRRNACRRRPA AN AP IN

65.3: dof = 20000 65.4: dof = 40000

Figure 65: RAE 2822, M, = 0.734, a = 2.79°, Re = 6.5 x 105: optimized meshes (last in sequence for
each target dof) for p = 1.

VKI -71 -

5 MESH OPTIMIZATION 5.3 Examples

=

N
",

KDY

N
- S NNERY
‘7&» A=A S~ _~—>

N

A=
SR

<7

|

< /K5
B

66.1: dof = 5000

PN RS INNATA
MR </
MVW’ Y Av‘y QORI

AR ANDRY
Vi AN A
AN P ”““K

K/
RROCRRIA

KA
REPH R

66.3: dof = 20000 66.4: dof = 40000

Figure 66: RAE 2822, M., = 0.734, a = 2.79°, Re = 6.5 x 10°: optimized meshes (last in sequence for
each target dof) for p = 2.

~A‘ e
VANV

VAVAI

67.2: dof = 10000

W<

WA

Rl
AN ‘

N
VMM(%‘

R

67.3: dof = 20000 67.4: dof = 40000

Figure 67: RAE 2822, M., = 0.734, a = 2.79°, Re = 6.5 x 105: optimized meshes (last in sequence for
each target dof) for p = 3.

VKI -72-

6 UNSTEADY SYSTEMS

6 Unsteady Systems

Results in the previous section showed that adapting a mesh using an indicator obtained
from an adjoint-weighted residual can improve robustness (through error estimates) and
efficiency (through targeted refinement) of a steady-state CFD simulation. The motivation
for such adaptation becomes even stronger in unsteady simulations, where we have control
of both spatial and temporal resolution. Identifying the regions in both space and time
that require adaptation is more challenging than identifying spatial regions alone. In
addition, with an extra dimension, the percentage of the total space-time domain that is
important for predicting an output is likely to be reduced compared to a steady problem,
which improves the prospects of efficiency gains.

The idea of output-error estimation through an adjoint-weighted fine-space residual
extends to unsteady problems without significant theoretical changes. However, unsteady
problems do pose challenges for solver efficiency and adaptation mechanics. In this section
we address some of these challenges and present adaptive results for reasonably-complex
unsteady simulations.

6.1 Primal and Adjoint Discretizations

We discretize time using a semi-discrete approach, i.e. independently of the spatial dis-
cretization. Although our adaptive results employ a finite-element temporal discretization,
we also present multi-step methods to simplify the presentation of the adjoint extension.

6.1.1 Multi-Step Methods

Primal Form: The discrete residual equation R(U) = 0, see , represents a steady
system. A simple method of incorporating unsteady variations is to use a semi-discrete
formulation, in which a PDE that is already discretized in space becomes

M% +R(U) =0, (63)

where M € RY*¥ ig the mass matrix,
Q

In the above expression, I, € R**? is the state identity matrix, and 1 <+¢,5 < N index the
global degrees of freedom. Note that in DG, ¢; will have support over only one element,
which means that the mass matrix is element-wise block diagonal.

In a multi-step discretization, the time derivative in is discretized using finite-
differences. Denote by a superscript n or m the time nodes: e.g. in a uniform temporal
subdivision, the time at each time node would be given by t,, = mAt, where At = T/N,
is the time step size for integration with N, time intervals over a time 0 < ¢t < T. For
example, a backward Euler method uses the approximation

du| _um—um!

) PO 65
dt |, At (65)

VKI -73-

6 UNSTEADY SYSTEMS 6.1 Primal and Adjoint Discretizations

so that the fully-discrete form of , evaluated at t™, becomes

U™ — Um—l
M— m pum— .
A TRUM=0 (66)

N J/
-

unsteady residual: R™
The initial condition sets the state at ¢t = t5. We have defined the unsteady residual, R™,
as the left-hand side of the discrete equation. In general the unsteady residual will depend
on states at several time nodes, and so we write R™(U™). These NN, residual vectors have
to be driven to zero (usually sequentially) to obtain the full unsteady solution.

Adjoint Form: Let’s look at the adjoint for an unsteady multi-step discretization. The
unsteady version of the sensitivity chain in is

p—R™"(U", pu)=0—U" - J(U"), (67)

where, as in the primal form, 0 < n,m < N, are the time indices in the unsteady
discretization. The equations derived for the steady adjoint in Section [2.2] apply directly,
but the vectors are now much larger (length RN¥™t). The adjoint equation is

Ny T T
RN o \T

m=1

Due to the transpose on the unsteady Jacobian matrix, the adjoint system is most easily
solved by marching backwards in time. For example, given a backward Euler temporal
discretization, the unsteady Jacobian 28" and its transpose will look like (x=NxN

‘oun
block),
Primal unsteady Jacobian Adjoint unsteady Jacobian
[% | [« % i
* ok *
OR™ *:* oR™\" *:*
our s our) s
* ok * ok
i x x| i x|

We see that the primal Jacobian is zero above the main diagonal, making forward substi-
tution in time the method of choice for solving the primal problem. On the other hand,
the adjoint Jacobian is zero below the main diagonal, so that backward substitution is the
natural solution strategy. Hence, an unsteady adjoint solution requires marching backward
in time from the final state to the first state.

For nonlinear problems, the state history U™ needs to be stored for computing the
linearizations in the adjoint solve. These states are typically written to disk, and solution
checkpointing can alleviate storage requirements if they are burdensome [49]. Once the
unsteady adjoint solution is available, the sensitivities are calculated as

m=1

VKI - 74 -

6.1 Primal and Adjoint Discretizations 6 UNSTEADY SYSTEMS

6.1.2 Discontinuous Galerkin in Time

Primal Form: Instead of finite differences we could also consider finite elements for the
temporal discretization. This is in fact a reasonable approach for output error estimation,
which is most rigorous in a variational formulation. In particular, for our adaptive work,
we use a discontinuous Galerkin method in time. This consists of time slabs on which
the temporal solution variation is approximated with polynomials of order r. The term
“time slab” is used only to emphasize that no local-in-space time stepping is performed,
and that, at a given time, all elements advance at the same time step, At. This At is just
the width of the current time slab, which can vary once adaptation is performed.

Figure [6§] illustrates the concept of time slabs for a two-dimensional simulation. We

time slab k

tg --j_:-- CT T T T T 1 dynamic spatial order
te—1[—" —
prd
s -
/ = element (e, k=1)
[
x

Figure 68: Illustration of time slabs and dynamic-order (depicted by color) refinement for a DG-in-time
discretization.

enumerate elements in the spatial mesh by 1 < e < N,, and these are assumed fixed (not
moving or refined) over the course of the simulation. We enumerate the time slabs by
1 < k < Ng, where Ny, is the total number of time slabs. Each space-time element is then
identified by two indices, (e, k). p¥ denotes the order of approximation in element e, time
slab k, and this can vary across elements and time slabs.

On each space-time element (e, k), we approximate the state spatially using a standard
DG-in-space approximation, as introduced in Section [2] The result of the spatial approx-
imation is that on each element we have N, spatial unknowns, U . In DG-in-time, we
approximate the temporal variation of these unknowns using polynomials in time,

r+1
Ui(t) = > URep(), (70)
n=1
where ¢}(t) are order r temporal basis functions. The subscript h on the above terms
indicates the space-time mesh, i.e. the approximation space. When discussing error
estimation, we will be dealing with coarse and fine spaces, which we will denote by H and
h subscripts, respectively.
For compactness of notation, we lump all spatial degrees of freedom associated with
time node n on slab k into one vector,

Uyt = {Upt}, e RV, (71)

VKI -75-

6 UNSTEADY SYSTEMS 6.1 Primal and Adjoint Discretizations

As a shorthand, we will denote by UF the sets of unknowns over a whole time slab, k.
Finally, the set of states over the entire space-time domain will be referred to simply as
[Jh-

A nonlinear system of equations on each time slab is obtained by substituting the
approximation from into (63), multiplying by test functions in the same space as the
approximation functions, and integrating by parts to incorporate discontinuities at time
slab and spatial element interfaces. We group the resulting set of discrete equations by
time nodes on each time slab into (r + 1) unsteady residual vectors, enumerated by m,

123
Ri™ = ™" M, U — o (b) M0 4 / oi ()R (UR(1)) dt =0, (72)

tk—1

where Mz’l € RNwxNw g the spatial mass matrix formed by spatial basis functions on
neighboring time slabs £ and [, which could be different in cases of dynamic spatial order
refinement. Ufb_l’ﬂrl is the end-of-slab state from the previous time slab, as shown in
Figure . For the first time slab, £k = 1, this is U?f“ = UY, which is the initial

condition.

Interval kK — 1 th_1 Interval k tx

Figure 69: DG in time for r = 2: depiction of temporal basis functions on one time slab and definitions
of key quantities in (72)). The vertical axis represents a “state” — from the spatial discretization, we
actually have Ny states, and we can imagine having N such plots.

The values a™” in constitute a temporal stiffness matrix and are given by

tr d m
= = [G i+ genn). (73)
tk—1

Using a Lagrange temporal basis on equally-spaced nodes, we have,
/2 2/3 —-1/6

}; forr=2a™=| —2/3 0 2/3 1. (74)
1/6 —2/3 1/2

1/2 1/2

forr=1,a :[_1/2 1/2

The time integral in is evaluated with (r + 1) points of Gauss quadrature for order
2r 4+ 1 accuracy.

VKI - 76 -

6.2 Deformable Domains 6 UNSTEADY SYSTEMS

Adjoint Form: The discrete adjoint equation, (68), remains valid for a DG-in-time
discretization. The number of time nodes is now N; = Ny (r + 1), where Ny, is the number
of time slabs, since each time slab has r + 1 temporal unknowns. Denoting the adjoint at
time slab k, time node m, by \I’];Im, a more descriptive version of is

aRgm)T i (8Jh>T
) w4 () = 0, (75)
(aug h oul

[J/
-~

R (23")

where k,[index time slabs and n,m index time nodes. We have defined the adjoint
residual, R%(\I”,?Lm), as the entire left-hand side of the adjoint equation. Linearizing the
residual expressions in , the r 4+ 1 adjoint residual vectors on time slab k are

T

RI® — gmoNhhpim n e \ VL gL K oR
yh — @ n L = o (t) My, T

oJy *
n v l h
- Oy 750 W, (t)dt + (—) (76)

aulr

Uy (t)

In this equation, W} (t) = 3> /™7 (t), and W™ is the adjoint vector associated with
the start of the next time slab. When calculating on the last time slab, ‘I’fl’l = 0.

Both the primal and adjoint equations are solved using a Newton iteration based on
an approximate factorization. This solver requires solutions of systems that are the same
size as a steady-state solution. Details are given in [37].

6.2 Deformable Domains
6.2.1 An Arbitrary Lagrangian Eulerian Treatment

In an Arbitrary Lagrangian Eulerian (ALE) method, the mesh can move at a velocity
different from that of the flow. This is useful for analyzing problems in which the compu-
tational domain undergoes deformation (e.g. flutter or flapping flight in aerodynamics),
as in these situations the mesh generally needs to “move with” the geometry so that much
of the computational domain may be affected.

The key idea of an ALE formulation is to map the original PDE on the deforming
physical domain to a modified PDE on a static reference domain, as solving on a static
domain is something we already know how to do. This transformation is illustrated
graphically in Figure [70] and Table [2| defines key quantities.

The expressions for the transformations of the normals are obtained using dv = gdV'
for infinitesimal volumes and dl = GdL for infinitesimal vectors [04]. The system of
conservation laws on the physical domain is, repeating ,

o+ 0;H;(u,Vu) = 0, H; = F;(u) — G;(u, Vu), (77)

where both inviscid and viscous fluxes are included. Integrating over a time-varying
volume v(t) yields,

/ Jyudv + H - 7ida=0, 7i is outward-pointing on dv(t), (78)
v(t) ov(t)

VKI - 77 -

6 UNSTEADY SYSTEMS 6.2 Deformable Domains

Reference domain: X , Uy, F X Mapping Physical domain: Z,u, F
= #(X,t)
_ OF
- aX
= det(Q) d
gll
oz =
ot
= g¢G'F —uxG lig
= gg_TNdA % ﬂ+V~f"(u,Vu) =0

g 6T ida /[\ \

Figure 70: Summary of the mapping between reference and physical domains. The equations
are solved on the reference domain, which remains fixed for all time. When denoting reference-
domain quantities, we use a subscript X.

Table 2: Definitions of variables used in the ALE mapping. Bold indicates a state vector and
an arrow indicates a spatial vector.

X = reference-domain coordinates z = physical-domain coordinates

ux = state on reference domain u = physical state

Fx = flux vector on reference domain F = flux vector on physical domain

dA = differential area on reference domain dq = differential area on physical domain
N = normal vector on reference domain 7 = normal vector on physical domain
V= reference domain (static) v(t) = physical domain (dynamic)

g = mapping Jacobian matrix g = grid velocity, 0%/0t

g = determinant of Jacobian matrix

VKI - 78 -

6.2 Deformable Domains 6 UNSTEADY SYSTEMS

where H is a spatial vector with components H;. We now transform to the reference
domain, V. The boundary integral of the flux is

— —

/ H-da= | H-(9G"N)dA= / (9G'H) - N dA. (79)
du(t) v v

The first integral in transforms using Leibniz’s rule,

u _ 4 udv—/ (uvg) - fida
oty Ot dt Sy du(t)
_ 4 ung—/ (uty) - (967" N)dA
dt Jv ov
/ a(ag“) dv — / (quG ') - N dA. (80)
v Ot ov

Substituting and into and applying the divergence theorem gives the PDE

on the reference domain,

811){

T +Vx- ﬁx(u)ovxu)() = 0, (81)

—

X
where uy = gu,

Hy = ¢G 'H—uxG 'vs.

Vx denotes the gradient with respect to the reference coordinates. We break up the
transformed flux, Hy, into inviscid and viscous fluxes by lumping the grid-velocity term
into the inviscid flux,

Hy = Fx — Gy, Fy =g¢G 'F —uxG ', Gx = g6 'G. (82)

The gradient of the state transforms via the chain and product rules. Using implied
summation,

ou 9(g'ux)9Xy Oux 5 0g 1
= 149 6_Xd -9 8_XduX gdj

0:10]- N 8Xd 8:16]-
Ju 0
_ 1 x _ -199 -1
. (aXd g aXduX) Yo (83)

where d and j index the reference and physical coordinates, respectively. We also have,

3@ (93@- . 3@ (9Xd . 8Xd

G =Gju= 90X, 05 = or; 0X4 Or, = o

=GGs = G'=g;

In a DG setting, discretization of the new reference-domain equation requires modifica-
tions to the numerical flux function on inter-element faces, to the boundary conditions, to
the face normal vectors, and to the quadrature integration weights. These modifications
are based on the reference-to-global mapping and its derivatives.

The weighted residual statement on the reference domain is obtained from the PDE
by multiplying by test functions (defined in the reference domain) and integrating over

VKI -79-

6 UNSTEADY SYSTEMS 6.2 Deformable Domains

reference-domain elements. The discretization would be straightforward were it not for
the fact that fluxes and boundary conditions are specified on the physical domain. A
natural approach that minimizes intrusion into the code is to express the reference-space
fluxes and boundary conditions in terms of the physical fluxes and boundary conditions.

For example, the inviscid flux on the reference domain includes the standard Galilean
transformation expected from changing reference frames and also a multiplication by gG 1,
which is done by post-processing the equation-set specific flux,

Fy = g6 'F — uxG 10s = gG (ﬁ - u170> . (84)

To account for the Galilean transformation on element interfaces, the Riemann solver
needs to operate on F — uty instead of just F.
The reference-domain viscous flux is related to the physical viscous flux through

Gx = ¢G'G. (85)

Since the physical viscous flux is calculated using a diffusion matrix and the physical state
gradient, G; = K;;0;u, then, using for the physical gradient, the reference-domain
viscous flux is

GX,d = ggdiilKijaxju
994 Kijg~ ! (Ox.ux —uxg '0x.9) G
= G, K;;G;' (Ox.ux —uxg '0x.9), (86)
——_———

KX,dc

where ¢, d index the reference domain coordinates. Ky 4. represents the diffusion matrix
on the reference domain. It can be re-written in a more symmetrical form as

Kxa = G, Ki;G.,' = G,'Ki;G:." (87)

Boundary conditions also require modifications when simulating problems on deformable
domains. In particular, the physical boundary flux must be aware of motion on the bound-
ary, vg. For example, on a moving wall, the flow tangency boundary condition states that
the normal component of the fluid velocity is equal to the normal component of the
boundary motion velocity (which would be zero without mesh motion). This physical
consideration is separate from the subtraction of u’v; from the flux — both must be
included.

Calculation of the viscous contribution on a boundary requires not only the boundary
state, u®, but also the boundary flux. For pure Dirichlet boundary conditions, the state
gradient information is taken from the interior. In other cases, the physical viscous flux is
prescribed on the boundary (e.g. zero heat flux for an adiabatic wall), and in these cases,
the viscous flux contribution is added directly to the residual. Note that no transformation
needs to be applied to the viscous flux dotted with the normal, since

G - fida = (gflgidéx) . <gg’1]\7> dA = Gy - NdA. (88)

VKI - 80 -

6.2 Deformable Domains 6 UNSTEADY SYSTEMS

6.2.2 Blended Analytical Mesh Motions

The ALE method described above requires an analytically defined mapping between ref-
erence and physical domains. Therefore, the user must prescribe a motion (e.g. sinusoidal
pitch/plunge) in a certain region of the domain. If only a portion of the domain needs to
move, the mapping can be smoothly blended into the static domain outside the moving
region. As Persson et al present in [94], a polynomial blending function is a simple way

71.1: Airfoil 71.2: Wing

Figure 71: Airfoil and wing undergoing analytical motions. The blue regions are those in which
the prescribed inner motion is blended into the static outer mesh. The boundaries of these
blending regions are circular in 2D and spherical in 3D.

to transition between deforming and static regions. A typical scenario is to have an inner
disk in 2D (or sphere in 3D) undergo a prescribed rigid-body motion, and to then blend
this motion into the static mesh via the polynomial blending function. Figure [71] shows
an example of this blending for an airfoil and a wing.

6.2.3 The Geometric Conservation Law

The ability to preserve a free stream is a desirable property of numerical schemes. How-
ever, for schemes employing a finite-dimensional basis (say a set of polynomials in space-
time), a constant state u in the physical domain will generally not be a solution to the
discrete form of in the reference domain. This means that for an arbitrary motion of
the mesh, an initially free-stream state will not be preserved.

This lack of free-stream preservation can be explained by noting that, for general map-
pings, the Jacobian g will be non-polynomial in both space and time. Hence, the reference
state uxy = gu will likewise be non-polynomial, which means it cannot be represented ex-
actly with the reference-domain bases. This inexact representation will introduce both
spatial and temporal errors into an initially free-stream state, which manifest as conser-
vation errors that accumulate in time.

VKI -81-

6 UNSTEADY SYSTEMS 6.2 Deformable Domains

To eliminate these conservation errors, a separate Geometric Conservation Law (GCL)
is enforced alongside the governing equations. The idea of the GCL is twofold: (i) to
address the representation issues mentioned above, replace the analytical g with a new
variable, g, which is a polynomial approximation to g in space-time; and (ii) to ensure
that this g actually allows for free-stream preservation, compute it from the following
equation [94]:

9 _ Vx - (96~ ") = 0. (89)
ot

This equation ensures that the change in element area (i.e. the change in g) is directly
linked to what the grid velocities on element boundaries claim it should be. Hence, there
is no disagreement between grid velocities and Jacobians on what the geometry is, and in
that sense we have “geometric conservation.”

The strategy then is to use this g to define a new reference-domain state ug =
g9 'ux = gu, which is used instead of the original state ux = gu. If g is discretized
using the same spatial basis as the state and is marched in time using the same unsteady
solver, a free-stream state t will be preserved. In the end, what we have done is replaced
the original analytical g with a “best fit” space-time polynomial g, which then makes the
free-stream state ug = gu exactly representable in the discrete space.

Once g is obtained on each element, it is used instead of g to convert the stored
reference state to the physical state. The final form of the reference-domain equation is
then

ouy - _
a_tXX—i_VX'HX(uXavXuX7g> = 0? (90>

where ﬁg is just Hy but with uy /g replacing uyx /g in the calculation of the physical
state.

Figure [72| shows the effect of the GCL on a free-stream preservation test. In this
case, we solve the Navier-Stokes equations on a rectangular domain with an analytical
sinusoidal deformation mapping defined in the domain interior. The temporal and spatial
discretization are both discontinuous Galerkin, with order » = 1 and p, respectively.
Without the GCL, the free-stream solution is not preserved, though the Ly error converges
with both A- and p-refinement of the spatial mesh. With the GCL, the free stream is
maintained to residual tolerance, which was approximately ten orders of magnitude for
these runs. To achieve this level of accuracy, high order quadrature rules are required,
with rules of order 6p used in this case to demonstrate the GCL’s full effect. In practical
cases we use more modest rules, namely 2p + 5 for the Navier-Stokes equations, since
discretization errors tend to dominate and make high quadrature rules unnecessary.

Finally, note that has introduced an additional numerical quantity, g, which is
subject to discretization errors just like the state quantities, and this is relevant for error
estimation.

VKI -82-

6.3 Error Estimation and Adaptation 6 UNSTEADY SYSTEMS

255 e —a
0 —
10 b
3.71
w2l 4.29 i
S
fin} 5.22 No GCL
N 10 |
[0}
£
N ——p=1
ERTN —4—p=2 1
i —®—p=3
—th—p =4
10 1
GCL
R N A - - A
10 GmmmmE==z=c=zz=z==f======smsss§ |
1 1 1
1070.1 100 100.1 100.2
Mesh size (h)

Figure 72: Free-stream errors with and without the GCL. A large number of time steps is used
so that the spatial error dominates the temporal error in each case.

6.3 Error Estimation and Adaptation
6.3.1 The Adjoint-Weighted Residual and Error Localization

The adjoint-weighted residual output error estimate in extends directly to unsteady
problems,

N r+1
0T ~ =T RL(U) = =)) ((wrm) " RE™ (UL, (91)

k=1 m=1

The effect of the GCL can be incorporated into the above formula by extending the state,
residual, and adjoint vectors to include the GCL variable and equation. The contribution
of the GCL to the error estimate is important because, when the GCL is used, the GCL
residuals tell us where the mesh or time step should be refined to more accurately represent
the true motion [67].

To localize the error contributions to individual space-time elements in the mesh, we
note that the output error estimate in can be written as a sum over all space-time
elements,

Ne

N
0J ~ izg’“ (92)

k=1 e=1

where the error contribution of a given space-time element (e, k) is, assuming a temporal
order of r,

r+1

=S (~um R (UL (93)

m=1

VKI - 83 -

6 UNSTEADY SYSTEMS 6.3 Error Estimation and Adaptation

This is just the adjoint-residual product restricted to the element (e, k), with a sum taken
over the intra-slab temporal degrees of freedom m. The error indicator is then taken as
the absolute value of this elemental contribution to the output error,

error indicator for element e of time slab k = e = [e|. (94)

We are sometimes also interested in a “conservative” error estimate given by the sum of
the individual error indicators,

Ni Ne
sum of error indicators = € = Z Z e (95)

k=1 e=1

6.3.2 Incorporating Space-Time Anisotropy

The indicator in is sufficient for isotropic space-time refinement in which elements
are targeted for refinement in both space and time. However, isotropic refinement can
produce inefficient meshes. For example, if the discretization is under-resolved in the time
domain, spatial elements would needlessly be refined on account of the temporal error.
Therefore, important for an efficient adaptation strategy is a measure of the space-time
anisotropy of the error; in other words, is the error on a given space-time element due
primarily to the spatial or temporal discretization?

As a heuristic measure of space-time anisotropy, one could consider inter-element
jumps in the solution. For each space-time element, the average jump in the state com-
puted across the spatial interfaces and across the time slab interfaces could serve as an
estimate of which direction (space or time) is better resolved. Although cheap to eval-
uate, such a heuristic requires normalization and some arbitrary decisions, especially for
systems of equations.

We can eliminate some of the heuristics by basing the anisotropy measure on the
output error estimate [33],34]. Specifically, we calculate the error anisotropy using separate
projections of the fine-space adjoint onto semi-coarsened spatial and temporal spaces, as
illustrated in Figure[73] The spatial and temporal error estimates for space-time element
(e, k) are obtained by using these projected adjoints in , resulting in separate ghspace

e

and eh'me estimates. We then use the ratio of these values to estimate the fractions ()

of spatial and temporal error on element (e, k) as

‘Els,space‘

k7‘ P k? i P k“7‘
ﬁe space __ |€k7space‘ n ‘ek,time|’ Be time __ 1 — Be space. (96)
e (&

6.3.3 Space-Time Mesh Adaptation

With the above estimates of spatial and temporal error, we have the fundamental in-
formation needed for adaptation. We adapt by resolving the unsteady problem several
times on successively refined space-time meshes, as illustrated in Figure [74 After each
primal solve, the adjoint equations are marched backward in time, new error indicators
are obtained, and a new adapted mesh is generated. This process is repeated until the
output error drops below a specified tolerance. A key choice in adaptation is the decision
of what to adapt. First, to address temporal errors, we could refine the time-step on each

VKI -84 -

6.3 Error Estimation and Adaptation 6 UNSTEADY SYSTEMS

time . .
v projection of ¥, to v, v,
g o
2 coarse spatial resolution 2
= =
2 2 et
4 g projection of ¥y to
Tg ctime _ _‘P;Lime,TR;Lime(UH) 75 coarse temporal resolution
3 3
& time error g
8 8 ‘I’space
h
H UH space, Ty space :
P = PP RIP(U) = spatial error
spatial resolution spatial resolution
73.1: Estimation of gtme 73.2: Estimation of gPace

Figure 73: Measure of space-time anisotropy via projections of the fine-space adjoint into semi-coarsened
spaces. In this work, the coarse spatial and temporal resolutions are obtained by order decrement, and
the projection is least-squares.

t=20 t=1T
(5 Forward solve A
Start O O O
: _ saved
states
® ® ®
: Adjoint solve

First adaptive iteration)
Error estimation s

Mesh adaptation]

4 N\
g Forward solve
>@ ® ® ® ®
Adapted solut‘wn ‘ ° ® ® ®
and error estimate Adjoint solve :
L Second adaptive it?emtwﬂ

Figure 74: Adaptive solution process for unsteady problems. Adjoint vectors are written during each
adaptive iteration, which consists of a forward and adjoint solve.

VKI -85 -

6 UNSTEADY SYSTEMS 6.3 Error Estimation and Adaptation

space-time element separately, and this would require a type of hanging-node treatment
in time. However, to enable efficient solution of the DG-in-time discrete system by our
approximate Newton solver, we limit the temporal refinement to entire time slabs, as
described below. Second, to address spatial errors, we can adapt a mesh and leave it
adapted for the course of the simulation (static spatial refinement) or we can devise an
adaptive schedule in which the refinement changes during the course of the simulation
(dynamic refinement). We consider both options, as described below.

Temporal Refinement: To address temporal errors, we adapt the DG-in-time dis-
cretization by adjusting the size of each time slab. When adaptation consists of only
refinement (no coarsening), then this adjustment consists of simple bisection of those
time slabs targeted for refinement, as shown in Figure [75.1] However, when coarsening
also occurs, the boundaries of a coarsened slab will typically encroach on those of the
neighboring slabs, and the entire temporal grid must be shuffled to make room for the
coarsened slab, as illustrated in Figure To perform this shuffling, time slabs are
redistributed using one-dimensional metric-based meshing, the details of which are given
in Appendix [B]

U U

75.1: Time slab bisection 75.2: Time-slab shuffling

Figure 75: Temporal mesh refinement using bisection and shuffling. Time slabs shaded in blue are
flagged for refinement, and those in gold are flagged for coarsening.

Static Spatial Refinement: One simplification that minimizes storage and complexity
of the data structures is to have refinement of the spatial mesh remain fixed throughout
the unsteady simulation. That is, the number/location of elements and approximation
order on each element are both constant in time, as illustrated in Figure [T6] Although
this can limit efficiency of the adaptation, especially for problems that exhibit spatially-
localized sources of error that move in time, there are many problems for which such a
static refinement strategy works well.

In static spatial refinement, the “objects” to be adapted are (i) spatial elements and
(ii) time slabs. Adaptive indicators identifying the spatial error on each spatial element

VKI - 86 -

6.3 Error Estimation and Adaptation 6 UNSTEADY SYSTEMS

t
1
e
% time slab k
tr --? CT T T T T static spatial refinement
tp—1i[—" y
¥
Y = =
/ = element (e, k = 1)
R
x

Figure 76: Illustration of static spatial refinement for a DG-in-time discretization, using hanging-node
spatial mesh refinement. Static order refinement follows a similar approach.

and the temporal error on each slab are given by

Ng
aggregate spatial indicator on element e = €P*°¢ = Z ek phspace. (97)
k=1
Ne
aggregate temporal indicator on time slab k = btime = Z ek phitime (98)

e=1

With these indicators, we could then conceivably lump all time slabs and space-time
elements into the same “bin,” rank them according to their error indicators, and determine
which to adapt based on their relative positions in that ranking. However, this approach
would neglect the cost of each refinement option. For example, if a time slab and a
spatial element had the same error but there were many more time slabs than spatial
elements, one would not want to weigh refining the time slab equally compared to refining
the element. Rather, refining the time slab would be cheaper because it would add fewer
degrees of freedom compared to refining a spatial element. Thus, rather than adapting
directly on errors, we adapt on a slightly different figure of merit — the amount of error
on a given element or slab (Eqns. |97 and divided by the additional degrees of freedom
associated with adapting that element or slab. This figure of merit then ensures that we
eliminate the most output error for the least additional cost.

To first approximation, the number of degrees of freedom introduced in a time slab
division is estimated as the number of spatial degrees of freedom in the current mesh,
while the number of degrees of freedom introduced in a spatial refinement is estimated as
N}, times the number of new spatial degrees of freedom obtained from a refinement of that
element. The respective adaptive indicators €®%m® and P2 are divided by these quan-
tities and then sorted highest to lowest. The element or time slab with the highest error
indicator per proposed additional number of degrees of freedom is chosen for refinement
first, and the process continues until a growth budget is reached or surpassed. This is
effectively a fixed-growth adaptation strategy. We note that in some cases the refinement
could target only spatial elements or only time slabs, depending on the relative resolution
in time and space.

VKI - 87 -

6 UNSTEADY SYSTEMS 6.3 Error Estimation and Adaptation

Dynamic Spatial Refinement: In dynamic spatial refinement, the spatial resolution
of an element can change during the course of the simulation. This change could arise from
hanging node refinement, mesh motion, or order refinement. We focus on order refinement,
illustrated in Figure[68] as it is one of the simplest options for a DG discretization in space
and time.

Recall that p* is the order of spatial approximation on spatial element e at time slab
k. So the “objects” to be adapted are both (i) individual space-time elements in order
and (ii) time slabs. Adaptive indicators identifying the spatial error on each space-time
element and the temporal error on each slab are given by

spatial indicator on space-time element e,k = € = exf) ", (99)
Ne

aggregate temporal indicator on time slab k = ebtime = Z €erBers, (100)
e=1

These definitions are similar to the static refinement case, except that now the spatial
indicator exists for every space-time element, instead of just as a sum over time slabs for
each element. As in static spatial refinement, we make a decision of what to adapt based
on a figure of merit that incorporates both the localized error estimate and the cost (in
terms of additional degrees of freedom) of the refinement operation. We now also allow
for order decrease, i.e. coarsening of the spatial mesh, in addition to refinement. More
details on this algorithm are given in Appendix [B]

6.3.4 Implementation Notes

The adjoint equations require several derivative terms, including residual Jacobians and
output linearizations. In the current work, we perform all differentiation analytically, with
the exception of some terms required when using the geometric conservation law, which
we evaluate using finite differences for ease of implementation.

When solving the adjoint equations, we use the entire time history of the primal state
and GCL variable, which we store to disk during the primal solve. While for the present
work this storage has not been prohibitive, for larger problems solution checkpointing [49]
or local-in-time adjoint solvers [124] may be considered.

The space-time error indicators are computed on the fly during the backwards time-
marching solution of the unsteady adjoint problem. Following each unsteady adaptive
iteration, the error indicators are sorted and space-time elements are identified for refine-
ment and coarsening. A schedule of orders p* and time slab sizes is then written to disk
for the next adaptive iteration. This schedule takes the form of individual files that are
read in by the forward solver during the next forward solve.

Error estimation requires that the adjoint be solved in an enriched space, and for our
work we use order refinement in both space and time: p — p+1, and r — r+ 1. For large
(e.g. 3D) simulations, the cost of an adjoint solution on this space may become prohibitive
due to memory limitations associated with the linear solve (we store the full residual
Jacobian matrix). To address this issue, in these cases we employ a reconstruction-based
strategy in lieu of computing the fine-space adjoint directly. That is, we compute the
adjoint in the same space as the primal problem, and then reconstruct it in both space
and time to obtain an approximation to the fine-space adjoint. This reconstruction is

VKI - 88 -

6.4 Examples 6 UNSTEADY SYSTEMS

performed locally, with patches of neighboring elements used to generate a least-squares
spatial reconstruction, and pairs of neighboring time slabs used to obtain a high order
temporal interpolant [33], as illustrated in Figure [77]

o((At)*+1)
i r=1 adjoint solution

QUAD™™) o(anr)

-
-
-
A
(LK

' reconstructed :
r=2 adjoint :
:© solution 55
—t : d t
tke1 Zpr tr te Tkt
77.1: Spatial reconstruction 77.2: Temporal reconstruction

Figure 77: Illustration of spatial and temporal adjoint reconstructions. On the left, a patch of nearest-
neighbor elements used for spatial high order reconstruction via least-squares interpolation. On the right,
reconstruction of an r = 1 adjoint to 7 = 2 using the left node from the adjacent future time slab and
superconvergent nodes on the current time slab. tg indicates the root of the left Radau polynomial for
r=1.

6.4 Examples
6.4.1 Static h-Refinement for an Impulsively-Started Airfoil

In this example we demonstrate the performance of static hanging-node spatial mesh
refinement together with time slab bisection for an unsteady computation on a static do-
main. The adaptive mechanics consist of only refinement (no coarsening) in space and
time, driven by a prescribed fixed-growth of degrees of freedom, f&°"*" = 2. per adaptive
iteration. Adaptation using the output-based error indicator is compared to several other
strategies: adaptation using an indicator obtained from an unweighted residual; adapta-
tion driven by a measure of inter-element jumps; and uniform space and time refinement.
Details on these adaptive strategies are given in [33].

We consider an impulsively-started NACA 0012 airfoil in viscous flow, where for ¢ > 0,
the freestream conditions are M., = 0.25, a = 8°, Re = 5000. To prevent a non-physical
step change in the velocity of the fluid at the airfoil surface, the initial condition at
t = 0 consists of the freestream with the velocity blended smoothly to zero in a circular
disk around the airfoil. Specifically, the velocity in the blended region, r; < r < 719
is v.= V(1 —cos(m(r —ry)/(ry —r1)))/2 where r; and ry are radial distances from
the airfoil mid-chord (set to one and three chord lengths respectively) and V, is the
freestream velocity. No steady solve is performed prior to the unsteady simulation.

Figure shows the entropy contours at t = 10 units, the final time in the simulation.
By this time an alternating pattern of shed vortices has developed and is clearly visible.
The output of interest is the lift coefficient integral from ¢t = 9 to ¢ = 10, as illustrated
in Figure [{9a. A snapshot adjoint solution for the y-momentum equation at ¢ = 6 is

VKI -89 -

6 UNSTEADY SYSTEMS 6.4 FExamples

illustrated in Figure [78b. A “reverse wake” is evident in the adjoint solution, signifying
an oscillatory sensitivity of the output to y-momentum residual perturbations upstream.

3.74
3.72
.
i\ e \®*
78.1: Entropy contours at ¢t = 10 78.2: y-momentum adjoint at ¢t = 6

Figure 78: Impulsively-started airfoil: primal state at the final time and the adjoint state at t = 6.

For the adaptive runs, an initial spatial mesh of 510 elements is used, and the initial
temporal mesh contains 16 time slabs. The output convergence for the various indicators is
shown in Figure[79b. The residual indicator does not perform well at all again: the output
varies significantly from iteration to iteration. The other indicators converge, with the
fastest being output-based adaptation, followed by approximation error and then uniform
refinement. The advantage of the output-based refinement with degrees of freedom is a
factor of 3-4 savings over the approximation error indicator. The error estimates under-
predict the error in the middle stages of output-based refinement, while the conservative
whiskers at 4¢ are more robust.

Figure 80k shows the time histories of the lift coefficient for adapted space-time meshes
of similar size. The source of the error in the residual-adapted case is clear: it does not
predict oscillatory vortex shedding, but rather an increasing lift coefficient. The other
three adaptive indicators track the actual time history well. Figure shows the Lo
time history error convergence for all of the methods, versus the cube root of the degrees
of freedom. Under uniform refinement, the observed convergence rate is a suboptimal
1.5, which could be caused by high-order derivative discontinuities in the blended initial
condition or the resolution not yet being in the asymptotic regime. Of primary interest,
however, is the performance of output-based adaptation, which remains the fastest out
of the methods tested. Even though the output is only measured on the final 10% of the
simulation time, accurate resolution prior to this metric time is important as it affects the
state at the start of the output measurement.

The corresponding adapted meshes are shown in Figure 81 Output-based adaptation
targets the airfoil leading and trailing edges, the boundary-layer region above the front
of the airfoil, and slightly the stagnation line in front and the wake behind the airfoil.
The approximation-error indicator also targets the leading and trailing edges and puts

VKI -90 -

6.4 Examples 6 UNSTEADY SYSTEMS

0.8 ‘ ‘ ‘ :
—e— Output error

0.7+] 0.8r —v— Approximation errorH
L0 Residual
< 0.7 —+— Uniform adaptation [|
QD 06F 1
£ 0.6¢ i
D o5l output 1
e 05 p 05l 1
o -—
et | | i
£ 04 3 04
» =] PV yr------ - -
3 03t A 03 Actual
@
c 0.2- g
8 o2r
< 0.11 1
3 o1t
£ or 1

0 _oAl i
01 0.2 L L L L
0 2 4 6 8 10 10° 10° 10" 10°
Time degrees of freedom
79.1: Output definition 79.2: Output convergence

Figure 79: Impulsively-started airfoil: time integral output definition and its convergence under the
adaptive indicators. Error bars at +£0J and whiskers at +€ are shown for the output-based results. The
“actual” output is computed on a uniformly-refined final output-adapted space-time mesh.

0.45 T T T ‘
O Output error, DOF=7.56E+06
04l I. V Approximation error, DOF=9.08E+06}|
k. Residual, DOF=1.51E+07 10° F
035 W + Uniform adaptation, DOF=3.76E+07 ||
Y Actual

Instantaneous lift coefficient

~2l| —&— Output error 4
—— Approximation error| o
Residual
—+— Uniform adaptation
i
10°
Time (Degrees of freedom)”s
80.1: Sample output histories 80.2: Lo error convergence

Figure 80: Impulsively-started airfoil: sample lift coefficient time histories and convergence of the Lo
time history error for various adaptive indicators. The “actual” time history is computed on a uniformly-
refined final output-adapted space-time mesh.

VKI -91 -

6 UNSTEADY SYSTEMS 6.4 Examples

more emphasis on the wake, where the shed vortices propagate. The residual indicator is
distracted by effects of the initial condition: the velocity blending near the airfoil sends
out acoustic waves that the residual indicator attempts to track as they propagate away
from the airfoil.

[[]

%/VN/Y/N//N\IIIIII\‘\\\\ { %v y A s~ — o ——— T T

81.1: Adapted on output error (5956 elements) 81.2: Adapted on approx. error (4585 elements)

x10°

|Temporally—-marginalized output error|
Lr._'_,.l-

05F

e]

T T T T T T T T T T

I

AR R R

[/ T T

0 1 2 3 4 .5 6 7 8 9 10
NNNTNTOLTTTTTT T 1 1 Time
81.3: Adapted on residual (7929 elements) 81.4: Temporal meshes

Figure 81: Impulsively-started airfoil: adapted spatial and temporal meshes for the seventh adaptive
iteration. Localized output error estimates e, and €* are shown for the output-error adapted meshes.

The temporal meshes are shown in Figure 8I1.4, The output-based indicator creates
a fairly uniform temporal refinement, with slightly higher resolution prior to the metric
time. The approximation error focuses on the initial time, as it tracks the evolution of
the blended velocity field, and the latter 1/3 time when the shed vortices develop. The
residual indicator again creates a mostly-uniform temporal mesh as it tracks the acoustic
waves.

VKI -92.

6.4 Examples 6 UNSTEADY SYSTEMS

6.4.2 Dynamic-Order Adaptation for Pitching and Plunging Airfoils

In this example we demonstrate the performance of dynamic-order spatial mesh refine-
ment /coarsening together with time slab refinement/coarsening for an unsteady compu-
tation on a deformable domain. The adaptive mechanics consist of refinement driven by
a prescribed fixed-growth factor for degrees of freedom of f&o"*h — 1.35 per adaptive
iteration, together with a coarsening fraction of f«*™* = 05. Adaptation using the
output-based error indicator is compared to adaptation using an indicator obtained from
an unweighted residual, and to uniform A and p refinement of the spatial mesh. The
temporal adaptation is always time slab refinement /coarsening.

This case involves two airfoils pitching and plunging in series at low Reynolds num-
ber [67]. The airfoils start from an impulsive free-stream condition and undergo three
periods of motion. The plunge amplitude is 0.25 chords, the pitch amplitude is 30°, and
the period of both motions is 7" = 2.5. The Strouhal, Mach, and Reynolds numbers are
2/3, 0.3, and 1200, respectively. The airfoils are offset 4.5 chords horizontally and 1 chord
vertically, and are situated in a 60 x 60 chord-length mesh with 3, 534 triangular elements.

Entropy contours at various phases of the motion are shown in Figure 82} A reverse
Karman vortex street develops behind each airfoil, and the second airfoil interacts with
the wake from the first airfoil near the end of the simulation. Our output of interest is
the lift on the second airfoil integrated from time ¢ = 7.25 to ¢ = 7.5 (the final time).

Adaptations were performed starting from an initial p = 1, 90 time step solution, with
a 35% growth factor and 5% coarsening factor used for the output- and residual-based
methods. The spatial order p was constrained to lie between 0 and 5, and a DG1 scheme
was used in time.

The output convergence for each adaptive method as a function of total space-time
degrees of freedom is shown in Figure |83, We see that the output-based adaptation
converges much faster than uniform refinement, requiring roughly two orders of magnitude
fewer degrees of freedom. These gains relative to uniform refinement are impressive,
though not entirely unexpected. Equally interesting is the difference between the output-
based and residual adaptation. The residual indicator targets regions of the domain where
the governing equations are not well-satisfied, and hence usually performs well for static
problems. However, in this case, its performance is erratic and no better than uniform
refinement. This erratic behavior is a consequence of the acoustic waves that emanate
from the airfoils as they pitch back and forth. The residual indicator becomes distracted
by these waves and exhausts degrees of freedom trying to resolve them as they propagate
throughout the domain. The output-based method, on the other hand, dismisses the
majority of these waves as irrelevant and simply ignores them.

The spatial and temporal meshes from the final output-based adaptation are shown in
Figures [84) and [85] respectively. We see that the near-airfoil and vortex shedding regions
are targeted for adaptation, as well as the group of large elements surrounding the mesh
motion regions. While somewhat difficult to observe in the still-frames, the initial vortex
shed from the first airfoil is heavily targeted throughout the simulation, since this vortex
later collides with the second airfoil near the final time.

To highlight one of the factors driving the adaptation, contours of the GCL adjoint
are shown alongside the entropy contours in Figure 82} The time ¢ = 0.707 is the instant
before the initial vortex is shed, and the large sensitivity of the output to this event can be

VKI -93-

6 UNSTEADY SYSTEMS 6.4 Examples

82.1: t = 0.70T

82.2: t =1.25T

82.3: t =2.75T

Figure 82: Two-airfoil case: Entropy (left) and GCL adjoint (right) contours at various stages of the
motion on a fine mesh. The GCL adjoint contours have been re-scaled to more clearly show the features
(black is -2, white is 1). Both acoustic and convective modes of error propagation can be seen in the first
two contours, while at the final time, the adjoint field collapses on the second airfoil.

VKI -94 -

6.4 Examples 6 UNSTEADY SYSTEMS

-0.06
—0.065; —@— Output-based i
| —&— Output-based, corrected |
-0.07F —— Residual |
| —=— Uniform—-p |
~0.075 —&— Uniform-h
-0.08
“g- L
£ -0.085
o L
£ _0.09
-0.095
-0.1
-0.105
~0.11
= L L PR SRR i | L L P S S R | L L P S S R |
10° 10’ 10° 10°

Total space-time DOF

Figure 83: Two-airfoil case: Output convergence for various adaptive methods. The output-based
method performs the best. Note that for all plots, the “actual” value is taken from the final uniform
p-refinement.

seen in the adjoint contours. As the simulation proceeds, the output sensitivity gradually
shifts from the first airfoil to the second, before collapsing upon the second airfoil at the
final time.

Some other aspects of the GCL adjoint are worth pointing out. In the first two
contours, the near-circular rings represent inward-moving (adjoint) acoustic waves, which
converge upon a particular region as the simulation proceeds. The existence of a ring
implies that an important event in space-time is about to occur, and any errors made
within the circumference of the ring have the ability to influence this event. In this
simulation, the important events tend to be instances of vortex shedding, and the rings
converge on the trailing edge regions. Lastly, between the two airfoils, a path can be seen
tethering them together. This path appears because any errors within it ultimately reach
the second airfoil via convection, and can therefore directly affect the output.

Above, we solved the fine-space adjoint to machine precision to ensure accurate error
estimates and efficient allocation of mesh degrees of freedom. In practice, CPU time
is another important factor, and solving the adjoint to machine precision is generally
not the most efficient strategy. In Figure [86] we show a wall time comparison for the
various adaptive strategies, with the adjoint smoothed to a residual tolerance of 1 x 1073.
This tolerance is not necessarily optimal, and we note that the code itself has not been
optimized for CPU time. However, our aim is simply to give an idea of the relative timings.
While the performance gains for the output-based method are not as substantial in this
context, it converges roughly 5 — 10 times faster than the uniform refinement strategies.
It also significantly outperforms the residual-based adaptation, which fails to converge in
any reasonable amount of time.

VKI -95-

6 UNSTEADY SYSTEMS 6.4 Examples

ATavAN,
R
(1
NN

A%
VA O

Wi i
Worzy:

84.3: t =2.75T

Figure 84: Two-airfoil case: Output-adapted meshes at various stages of the motion. Blue is p = 0, red
isp=>5.

VKI - 96 -

6.4 Examples 6 UNSTEADY SYSTEMS

W
|

Output error: 284 time slabs

Residual: 294 time slabs

1 2 3 4 5 6 7
Time

Figure 85: Two-airfoil case: Temporal grids from the seventh adaptation of both output-based and
residual runs. For clarity, only every other time slab is plotted.

-0.065—
-0.07F —4&— Output-based, corrected | |
L —p— Residual
-0.0751 —#— Uniform-p 4
L —aA— Uniform-h
-0.08F
. —0.085F
=}
3 |
3 -0.09F
= |
-0.095F
_01 L
-0.105F
-0.11+
R T R T
107 10° 10’ 10°

Wall Time (hrs)

Figure 86: Two-airfoil case: Wall-time comparison for the adaptive methods. The output-based method
converges the fastest.

VKI -97-

6 UNSTEADY SYSTEMS 6.4 FExamples

6.4.3 Dynamic-Order Adaptation for a Three-Dimensional Wing

In this example we demonstrate the performance of dynamic-order spatial mesh refine-
ment /coarsening together with time slab refinement/coarsening for an unsteady compu-
tation on a deformable domain in three dimensions. The adaptive mechanics consist of re-
finement driven by a prescribed fixed-growth factor for degrees of freedom of ferovth = 1.3
per adaptive iteration, together with a coarsening fraction of f<**" = (05. Adaptation
using the output-based error indicator is compared to adaptation using an indicator ob-
tained from an unweighted residual, as well as to uniform h and p refinement of the spatial
mesh — the temporal adaptation is always time slab refinement/coarsening.

In three dimensions, the underlying ideas for mesh motion and adaptation remain the
same, but the increased algorithmic complexity and new dimensional scaling do not allow
for a simple extrapolation of the 2D results. In particular, the extra dimension makes the
scaling for the adjoint problem less favorable. For a (p=1, r=1) primal solve in 2D, the
dimension of the fine-space adjoint is approximately 3 times that of the primal, while in
3D this factor increases to over 5. When combined with additional CPU costs, computing
(or even smoothing) the adjoint on the fine space becomes an expensive proposition. We
therefore employ spatial and temporal reconstruction of the adjoint in lieu of a solution
on the fine space, as discussed in Section [6.3.4]

0.2
chords

30°

+10° AoA

Figure 87: 3D wing: Schematic of the flapping motion. The flow regime is approximately that of a
housefly.

To test this strategy, we proceed in a similar manner as in 2D, though now simulating
a full wing rather than just an airfoil. The wing is shown in Figure 87 along with a
schematic of the flapping motion. The wing moves in all dimensions, with a 30° stroke
angle, a slight vertical plunge simulating movement of the “shoulder joint,” and an angle
of attack variation of £10°. The Mach number is 0.3, while the Reynolds number of 500,
Strouhal number of 0.4, and aspect ratio of 1.5 place the wing in the flight regime of a
small housefly.

Three periods of motion were simulated, and the solution at various times is shown in
Figure 88 Strong vortex cores develop near the leading edge and wingtip regions before
detaching and shedding into the wake. For adaptation purposes, the output of interest
is taken to be the lift integrated over the final 5% of the simulation time (from ¢ = 7.1

VKI - 98 -

6.4 Examples 6 UNSTEADY SYSTEMS

to t = 7.5). To solve the problem, output-based, residual, and uniform p-refinement
strategies were employed. Adaptations were performed starting from an initial p = 0,
75 time step solution, the spatial order p was constrained to lie between 0 and 5, and a
DG1 (i.e. r = 1) scheme was used in time. The convergence for each adaptive method is

t=28T

Figure 88: 3D wing: Mach contours projected onto entropy isosurfaces, shown for several stages of the
flapping motion. The maximum Mach number (in red) is approximately 0.5. The images are taken from
the final (p=3) uniform refinement.

shown in Figure 89, and the results are encouraging. We see that although reconstructed
adjoints were used, the output-based adaptation still performs well, and converges with
about two orders of magnitude fewer degrees of freedom than uniform refinement. As
expected, the accuracy of the error estimate itself is not great (judging by the fact that
the corrected output converges no faster than the uncorrected one), but is enough to guide
the adaptation in the correct direction. Convergence as a function of wall time is shown
in Figure B9 and we see that the method also performs well in this context.

VKI -99 .

6 UNSTEADY SYSTEMS 6.4 FExamples

—=@— Output-based

—— Output-based, corrected
—>— Residual 1 1.2r
—#— Uniform-p —&— Output-based

1.1r —4&— Output-based, corrected
—»— Residual

—&— Uniform-p

Lift output
)
©
Lift output
o
2

o
=)
T
o
®
T

e
3
T
e
3
T

o
o
T

Actual

o
=)

——o— T Actual

——¥ v

o
o
T

o
o

2 3

I I
10 10 10 107 10° 10 10

10"
Total space-time DOF Wall Time (hrs)

89.1: Convergence versus DOF 89.2: Convergence versus wall time

Figure 89: 3D wing: Output convergence as a function of degrees of freedom and wall time.

Of additional interest is the performance of the residual-based adaptation, which is so
poor that the curve is easy to miss in the plots. The reason for this behavior is evident
in Figure 00} which shows the orders midway through the final residual adaptation. The
residual indicator flags only large elements in the mesh blending region for refinement, and
leaves all elements near the wing at their original low order. The output-based adaptation,
on the other hand, refines elements near the wing as needed. The adapted spatial meshes
from the output-based runs are shown in Figure 01 while adapted temporal grids are
shown in Figure We see that, at early times, the output-based indicator leaves the
mesh relatively coarse, but progressively increases the resolution in both space and time
as the simulation progresses.

VKI - 100 -

6.4 Examples 6 UNSTEADY SYSTEMS

\Output error: 51 tim
[T IIT TTT

0 1 2 3 4 5 6 7
Time
90.1: Residual-adapted orders 90.2: Temporal grids

Figure 90: : On the left, spatial orders from the residual adaptation midway through the simulation
(blue is p = 0, red is p = 3). The adaptation targets only elements far from the wing, leading to poor
output convergence. On the right, temporal grids from the final output-based and residual adaptations.
The residual adaptation refines periodically with the motion, while the output-based adaptation increases
the resolution near the final times.

VKI - 101 -

6 UNSTEADY SYSTEMS 6.4 Examples

91.1: ¢t =T

91.3: t =2.8T

Figure 91: 3D wing: Spatial orders from the final output-based adaptation, shown at several stages of
the flapping motion. Dark blue is p = 0, red is p = 3. The images on the left show the interpolation
orders projected onto entropy isosurfaces.

VKI -102 -

7 CONCLUSIONS

7 Conclusions

In this set of lecture notes we have presented some of the core ideas, methods, and
results for high-order output-based adaptive simulations of aerodynamic flows. Many
of the presented methods can be generalized to more than one discretization; we chose
the discontinuous Galerkin (DG) finite element method for various reasons, including
ease of high-order implementation, adaptive flexibility including natural support for hAp-
adaptation, parallel scalability, and of course code availability.

Numerical error estimates that use an adjoint solution to target a specific scalar out-
put are particularly useful for convection-dominated aerodynamic simulations, in which
even seemingly-small errors in one area of the computational domain can affect a large
portion of the flow field and significantly impact an output of interest. Weighting residu-
als by the adjoint solution produces an error estimate that takes such propagation effects
into account. The result is a type of “error bar” on the chosen output of the numerical
simulation. The cost of this error estimate lies in the computation of the adjoint solution
via a linear solve, possibly in an enriched “fine” approximation space. For the complex
nonlinear systems often encountered in aerodynamics, even a fine-space linear solve is
generally cheaper than the solution of the original primal system on the coarse space.

Moreover, because an output-error estimate is residual-based, it can be localized to
cells/elements in a finite volume/element calculation for the purpose of mesh adaptation.
Targeted local adaptation, such as refinement of a fraction of the elements with the high-
est indicator, reduces local residuals, which then reduces the local contributions of the
targeted elements to the error. Furthermore, global unstructured remeshing using models
for the cost and error yields optimal meshes with equidistributed marginal error to cost
ratios. As we have shown, mesh adaptation using output based methods extends to a wide
variety of complex problems, including three-dimensional, transonic, Reynolds-averaged
turbulent flow over a wing, and unsteady simulations on deforming domains. Below we
highlight some key conclusions garnered from the presented examples.

e Output-based adaptation can quarantine singularities, as long as they do not span
too much of the domain, so that these singularities do not affect the results and so
that optimal convergence rates, such as 2p+ 1 or 2p for inviscid or viscous problems,
are recovered. Uniform refinement, on the other hand, is limited by the lowest-order
singularity.

e For many steady problems, output-based adaptation shows benefits compared to
uniform refinement or heuristic indicators in both degrees of freedom and compu-
tational time. The latter is especially true for three-dimensional problems with
complex physics, e.g. RANS, in which the cost of an adjoint solve is low relative to
that of the primal solve.

e The mechanics of adaptation can be difficult in situations when curved anisotropic
elements are required, in particular in three dimensions. We have presented adapta-
tion results using hanging-node refinement of initially-structured quadrilateral and
hexahedral meshes, and this works quite well in the near-body region, where the
flow follows the body. However, such an approach requires a reasonable initial mesh

VKI - 103 -

7 CONCLUSIONS

and exhibits much more limited resolution capabilities compared to anisotropic un-
structured meshes. Improving the robustness of the latter is still an active research
area.

e Unsteady problems add another dimension — time — as a candidate for refinement,
and this generally bodes well for adaptation, as additional dimensions often translate
to a larger portion of the domain being “unimportant” for the prediction of an output.
With an ALE formulation, it is possible to handle complicated problems involving
geometry deformation, and we have demonstrated adaptation for such problems
with dynamic p refinement and coarsening. The adjoint becomes more expensive
in the unsteady case due to storage requirements for nonlinear problems. Yet, for
sufficiently strict error tolerances, we still observe benefits in computational time
relative to uniform refinement and heuristic indicators. Adaptation becomes even
trickier in unsteady problems with the added complexity of temporal refinement,
and we have presented a projection-based measure of space-time anisotropy that
helps guide the space versus time refinement decision.

e A sampling-based approach to metric-based anisotropic mesh regeneration can yield
meshes optimized for the prediction of an output with minimal computational re-
sources. The marginal error to cost ratio can be equidistributed over the elements
in the domain using a simple iterative procedure. Anisotropy arises naturally in
this approach from sampling the error and cost using a set of hypothetical cuts of
the elements, and this anisotropy reflects efficiency gains due to features in both the
primal and adjoint solutions, via the adjoint-weighted residual combination. Success
of this method relies on the availability of a metric-based global re-mesher, which is
a challenging task in three spatial dimensions.

Finally, adaptive high-order methods likely are not yet being used to their full po-
tential. Additional challenges that need to be addressed include: reducing the cost of
adjoint solves, in particular for unsteady problems; applying adjoint methods to chaotic
simulations; calculating bounds instead of just estimates of the output error; investigating
the possibility of cheaper surrogates such as the entropy adjoint; developing better adap-
tive mechanics for complex spatial meshes; and generalization of the unsteady adaptive
methods to other discretizations, such as multi-step or multi-stage time integration.

VKI -104 -

8 ACKNOWLEDGMENTS

8 Acknowledgments

These notes were made possible by contributions of numerous undergraduate students,
graduate research assistants, and post-doctoral scholars working in the CFD Group at the
University of Michigan. The research was supported by the University of Michigan, the
U.S. Air Force Office of Scientific Research (grant FA9550-11-1-0081), the U.S. Depart-
ment of Energy (grant DE-SC0010341), and student fellowships from the U.S. National
Science Foundation and the U.S. Department of Defense.

VKI - 105 -

REFERENCES REFERENCES

References

1]

[10]

[11]

M.J. Aftosmis and M.J. Berger. Multilevel error estimation and adaptive h-
refinement for Cartesian meshes with embedded boundaries. AIAA Paper 2002-
14322, 2002.

Mark Ainsworth and Bill Senior. An adaptive refinement strategy for hp-finite
element computations. Applied Numerical Mathematics, 26:165-178, 1998.

S.R. Allmaras, F.T. Johnson, and P.R. Spalart. Modifications and clarifications for
the implementation of the Spalart-Allmaras turbulence model. Seventh International
Conference on Computational Fluid Dynamics (ICCFD7) 1902, 2012.

Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini.
Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM
Journal on Numerical Analysis, 39(5):1749-1779, 2002.

Timothy J. Baker. Mesh adaptation strategies for problems in fluid dynamics. Finite
Elements in Analysis and Design, 25:243-273, 1997.

Pinhas Bar-Yoseph and David Elata. An efficient L2 Galerkin finite element method
for multi-dimensional non-linear hyperbolic systems. International Journal for Nu-
merical Methods in Engineering, 29:1229-1245, 1990.

Garrett E. Barter. Shock Capturing with PDE-Based Artificial Viscosity for an
Adaptive Higher—Order Discontinuous Galerkin Finite Element Method. PhD thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 2008.

T. J. Barth. Numerical methods for gasdynamic systems on unstructured meshes.
In D. Kroner, M. Ohlberger, and C. Rhode, editors, An Introduction to Recent
Developments in Theory and Numerics for Conservation Laws, Proceedings of the
International School on Theory and Numerics for Conservation Laws, Berlin, Lec-
ture Notes in Computational Science and Engineering. Springer-Verlag, 1999.

Timothy Barth and Mats Larson. A posteriori error estimates for higher order Go-
dunov finite volume methods on unstructured meshes. In R. Herban and D. Kroner,
editors, Finite Volumes for Complex Applications III, pages 41-63, London, 2002.
Hermes Penton.

Timothy J. Barth. Space-time error representation and estimation in Navier-Stokes
calculations. In Stavros C. Kassinos, Carlos A. Langer, Gianluca laccarino, and
Parviz Moin, editors, Complex Effects in Large Eddy Simulations, pages 29-48.
Springer Berlin Heidelberg, Lecture Notes in Computational Science and Engineer-
ing Vol 26, 2007.

F. Bassi and S. Rebay. GMRES discontinuous Galerkin solution of the compressible
Navier-Stokes equations. In Karniadakis Cockburn and Shu, editors, Discontinuous
Galerkin Methods: Theory, Computation and Applications, pages 197-208. Springer,
Berlin, 2000.

VKI

- 107 -

REFERENCES REFERENCES

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[24]

F. Bassi and S. Rebay. Numerical evaluation of two discontinuous Galerkin methods
for the compressible Navier-Stokes equations. International Journal for Numerical
Methods in Fluids, 40:197-207, 2002.

R. Becker and R. Rannacher. A feed-back approach to error control in finite el-

ement methods: Basic analysis and examples. FEast-West Journal of Numerical
Mathematics, 4(4):237-264, 1996.

R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in finite element methods. In A. Iserles, editor, Acta Numerica, pages
1-102. Cambridge University Press, 2001.

M.J. Berger and A. Jameson. Automatic adaptive grid refinement for the Euler
equations. AIAA Journal, 23:561-568, 1985.

Kim S. Bey and J. Tinsley Oden. hp-version discontinuous Galerkin methods for
hyperbolic conservation laws. Computer Methods in Applied Mechanics and Engi-
neering, 133:259-286, 1996.

H. Borouchaki, P. George, F. Hecht, P. Laug, and E Saltel. Mailleur bidimensionnel
de Delaunay gouverné par une carte de métriques. Partie I: Algorithmes. INRIA-
Rocquencourt, France. Tech Report No. 2741, 1995.

F. Brezzi, L.D. Marini, and E. Siili. Discontinuous Galerkin methods for first-
order hyperbolic problems. Mathematical Models and Methods in Applied Sciences,
14:1893-1903, 2004.

Nicholas K. Burgess and Dimitri J. Mavriplis. An hp-adaptive discontinuous
Galerkin solver for aerodynamic flows on mixed-element meshes. AIAA Paper 2011-
490, 2011.

Gustavo C. Buscaglia and Enzo A. Dari. Anisotropic mesh optimization and its
application in adaptivity. International Journal for Numerical Methods in Engi-
neering, 40(22):4119-4136, November 1997.

P. J. Capon and P. K. Jimack. On the adaptive finite element solution of partial
differential equations using h-r refinement. Technical Report 96.03, University of
Leeds, School of Computing, 1996.

M. J. Castro-Diaz, F. Hecht, B. Mohammadi, and O. Pironneau. Anisotropic un-
structured mesh adaptation for flow simulations. International Journal for Numer-
wcal Methods in Fluids, 25:475-491, 1997.

Marco A. Ceze and Krzysztof J. Fidkowski. Output-driven anisotropic mesh adap-
tation for viscous flows using discrete choice optimization. ATAA Paper 2010-0170,
2010.

Marco A. Ceze and Krzysztof J. Fidkowski. A robust adaptive solution strategy for
high-order implicit CFD solvers. AIAA Paper 2011-3696, 2011.

VKI

- 108 -

REFERENCES REFERENCES

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]

[37]

Marco A. Ceze and Krzysztof J. Fidkowski. An anisotropic hp-adaptation frame-
work for functional prediction. American Institute of Aeronautics and Astronautics
Journal, 51:492-509, 2013.

Bernardo Cockburn and Chi-Wang Shu. Runge-Kutta discontinuous Galerkin meth-
ods for convection-dominated problems. Journal of Scientific Computing, 16(3):173—
261, 2001.

L. Demkowicz, W. Rachowicz, and Ph. Devloo. A fully automatic hp-adaptivity.
Journal of Scientific Computing, 17:117-142, 2002.

Bruno Despres. Lax theorem and finite volume schemes. Mathematics of Compu-
tation, 73(247):1203-1234, 2003.

Julien Dompierre, Marie-Gabrielle Vallet, Yves Bourgault, Michel Fortin, and
Wagdi G. Habashi. Anisotropic mesh adaptation: towards user-independent, mesh-
independent and solver-independent CFD. Part III: Unstructured meshes. Interna-
tional Journal for Numerical Methods in Fluids, 39:675-702, 2002.

K. J. Fidkowski, M. A. Ceze, and P. L. Roe. Entropy-based drag error estimation
and mesh adaptation in two dimensions. AIAA Journal of Aircraft, 49(5):1485-1496,
September-October 2012.

K. J. Fidkowski and D. L. Darmofal. A triangular cut-cell adaptive method for
high-order discretizations of the compressible Navier-Stokes equations. Journal of
Computational Physics, 225:1653-1672, 2007.

Krzysztof J. Fidkowski. A Simplex Cut-Cell Adaptive Method for High—order
Discretizations of the Compressible Navier-Stokes Equations. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 2007.

Krzysztof J. Fidkowski. Output error estimation strategies for discontinuous
Galerkin discretizations of unsteady convection-dominated flows. International
Journal for Numerical Methods in Engineering, 88(12):1297-1322, 2011.

Krzysztof J. Fidkowski. An output-based dynamic order refinement strategy for
unsteady aerodynamics. ATAA Paper 2012-77, 2012.

Krzysztof J. Fidkowski and David L. Darmofal. An adaptive simplex cut-cell method
for discontinuous Galerkin discretizations of the Navier-Stokes equations. AIAA
Paper 2007-3941, 2007.

Krzysztof J. Fidkowski and David L. Darmofal. Review of output-based error esti-
mation and mesh adaptation in computational fluid dynamics. American Institute
of Aeronautics and Astronautics Journal, 49(4):673-694, 2011.

Krzysztof J. Fidkowski and Yuxing Luo. Output-based space-time mesh adaptation
for the compressible Navier-Stokes equations. Journal of Computational Physics,
230:5753-5773, 2011.

VKI

- 109 -

REFERENCES REFERENCES

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Krzysztof J. Fidkowski, Todd A. Oliver, James Lu, and David L. Darmofal. p-
Multigrid solution of high—order discontinuous Galerkin discretizations of the com-
pressible Navier-Stokes equations. Journal of Computational Physics, 207:92-113,
2005.

Krzysztof J. Fidkowski and Philip L. Roe. An entropy adjoint approach to mesh
refinement. SIAM Journal on Scientific Computing, 32(3):1261-1287, 2010.

L. Formaggia, S. Micheletti, and S. Perotto. Anisotropic mesh adaptation with
applications to CFD problems. In H. A. Mang, F. G. Rammerstorfer, and J. Eber-
hardsteiner, editors, Fifth World Congress on Computational Mechanics, Vienna,
Austria, July 7-12 2002.

Luca Formaggia and Simona Perotto. New anisotropic a priori error estimates.
Numerische Mathematik, 89(4):641-667, 2001.

Luca Formaggia, Simona Perotto, and Paolo Zunino. An anisotropic a posteriori
error estimate for a convection-diffusion problem. Computing and Visualization in
Science, 4:99-104, 2001.

Lori A. Freitag and Carl Ollivier-Gooch. Tetrahedral mesh improvement using swap-
ping and smoothing. International Journal for Numerical Methods in Engineering,
40:3979-4002, 1997.

Neal T. Frink. 3rd AIAA CFD drag prediction workshop gridding guide-
lines. NASA Langley, 2007. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-
dpw/Workshop3/gridding_guidelines.html.

Neal T. Frink. Test case results from the 3rd AIAA drag prediction workshop.
NASA Langley, 2007. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/
Workshop3/final_results_jm.tar.gz.

M. B. Giles and N. A. Pierce. Adjoint equations in CFD: duality, boundary condi-
tions and solution behavior. AIAA Paper 97-1850, 1997.

M. B. Giles and E. Siili. Adjoint methods for PDEs: a posteriori error analysis and
postprocessing by duality. In Acta Numerica, volume 11, pages 145236, 2002.

M.B. Giles and N.A. Pierce. Analytic adjoint solutions for the quasi-one-dimensional
Euler equations. Journal of Fluid Mechanics, 426:327-345, 2001.

Andreas Griewank and Andrea Walther. Revolve: An implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM
Transactions on Mathematical Software, 26(1):19-45, 2000.

W. Gui and I Babuska. The h, p, and h — p versions of the finite element method
in 1 dimension. Part III. the adaptive h — p version. Numerische Mathematik,
49(6):659-683, 1986.

VKI

- 110 -

REFERENCES REFERENCES

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Wagdi G. Habashi, Julien Dompierre, Yves Bourgault, Djaffar Ait-Ali-Yahia, Michel
Fortin, and Marie-Gabrielle Vallet. Anisotropic mesh adaptation: towards user-
independent, mesh-independent and solver-independent CFD. Part I: general prin-
ciples. International Journal for Numerical Methods in Fluids, 32:725-744, 2000.

K. Harriman, D. Gavaghan, and E. Siili. The importance of adjoint consistency
in the approximation of linear functionals using the discontinuous Galerkin finite
element method. Technical Report Technical Report NA 04/18, Oxford University
Computing Lab Numerical Analysis Group, 2004.

K. Harriman, P. Houston, B. Senior, and Endre Siili. hp-version discontinuous
Galerkin methods with interior penalty for partial differential equations with non-
negative characteristic form. Technical Report Technical Report NA 02/21, Oxford
University Computing Lab Numerical Analysis Group, 2002.

R. Hartmann and P. Houston. Goal-oriented a posteriori error estimation for mul-
tiple target functionals. In T.Y. Hou and E. Tadmor, editors, Hyperbolic Problems:
Theory, Numerics, Applications, pages 579-588. Springer-Verlag, 2003.

R. Hartmann and P. Houston. Error estimation and adaptive mesh refinement

for aerodynamic flows. In H. Deconinck, editor, 36th CFD/ADIGMA course on hp-
adaptive and hp-multigrid methods: VKI Lecture Series 2010-01 (Oct. 26-30, 2009).
von Karman Institute for Fluid Dynamics, 2010.

Ralf Hartmann. Adjoint consistency analysis of discontinuous Galerkin discretiza-
tions. SIAM Journal on Numerical Analysis, 45(6):2671-2696, 2007.

Ralf Hartmann and Paul Houston. Adaptive discontinuous Galerkin finite element
methods for the compressible Euler equations. Journal of Computational Physics,
183(2):508-532, 2002.

F. Hecht. BAMG: Bidimensional anisotropic mesh generator. INRIA—Rocquencourt,
France, 1998. http://pauillac.inria.fr/cdrom/www/bamg/bamg/eng.htm.

V. Heuveline and R. Rannacher. Duality-based adaptivity in the hp-finite element
method. Journal of Numerical Mathematics, 11(2):95-113, 2003.

P. Houston, R. Hartmann, and E. Siili. Adaptive discontinuous Galerkin finite ele-
ment methods for compressible fluid flows. In M. Baines, editor, Numerical Methods
for Fluid Dynamics VII, ICFD, pages 347-353, 2001.

P. Houston, B. Senior, and E. Siili. Sobolev regularity estimation for hp-adaptive
finite element methods. In F. Brezzi, A. Buffa, S. Corsaro, and A. Murli, editors, Nu-
merical Mathematics and Advanced Applications, pages 619-644. Springer-Verlag,
2003.

P. Houston and E. Siili. hp-adaptive discontinuous Galerkin finite element meth-
ods for first-order hyperbolic problems. SIAM Journal on Scientific Computing,
23(4):1226-1252, 2001.

VKI

-111 -

REFERENCES REFERENCES

[63]

[71]

[72]

[73]

[74]

Paul Houston, Emmanuil H. Georgoulis, and Edward Hall. Adaptivity and a pos-
teriori error estimation for DG methods on anisotropic meshes. In G. Lube and
G. Rapin, editors, Proceedings of the International Conference on Boundary and
Interior Layers (BAIL). University of Gottingen, 2006.

Paul Houston, Bill Senior, and Endre Siili. hp-Discontinuous Galerkin finite element

methods for hyperbolic problems: Error analysis and adaptivity. International Jour-
nal for Numerical Methods in Fluids, 40:153-169, 2002.

Paul Houston and Endre Siili. A note on the design of hp-adaptive finite element
methods for elliptic partial differential equations. Computer Methods in Applied
Mechanics and Engineering, 194:229-243, 2005.

Hans Johansen and Philip Colella. A Cartesian grid embedded boundary method
for Poisson’s equation on irregular domains. Journal of Computational Physics,
147:60-85, 1998.

Steven M. Kast and Krzysztof J. Fidkowski. Output-based mesh adaptation for high
order Navier-Stokes simulations on deformable domains. Journal of Computational
Physics, 252(1):468-494, 2013.

C.M. Klaij, J.J.W. van der Vegt, and H. van der Ven. Space-time discontinuous
Galerkin method for the compressible Navier-Stokes equations. Journal of Compu-
tational Physics, 217:589-611, 2006.

Tobias Leicht and Ralf Hartmann. Multitarget error estimation and adaptivity
in aerodynamic flow simulations. International Journal for Numerical Methods in
Fluids, 56:2111-2138, 2008.

R.W. Logan and C.K. Nitta. Comparing 10 methods for solution verification and
linking to model validation. Journal of Aerospace Computing, Information, and
Communication, 3:354-373, 2006.

Robert B. Lowrie, Philip L. Roe, and Bram van Leer. Properties of space-time
discontinuous Galerkin. Los Alamos Technical Report LA-UR-98-5561, 1998.

James Lu. An a Posteriori Error Control Framework for Adaptive Precision Opti-
mization Using Discontinuous Galerkin Finite Element Method. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 2005.

Karthik Mani and Dimitri J. Mavriplis. Discrete adjoint based time-step adaptation
and error reduction in unsteady flow problems. ATAA Paper 2007-3944, 2007.

Karthik Mani and Dimitri J. Mavriplis. Error estimation and adaptation for func-
tional outputs in time-dependent flow problems. Journal of Computational Physics,
229:415-440, 2010.

D. J. Mavriplis. Adaptive mesh generation for viscous flows using Delaunay trian-
gulation. Journal of Computational Physics, 90:271-291, 1990.

-112 -

REFERENCES REFERENCES

[76]

[77]

[81]

[82]

[33]

[84]

[85]

[36]

[87]

3]

[89]

[90]

D. J. Mavriplis. Results from the 3rd drag prediction workshop using the NSU3D
unstructured mesh solver. ATAA Paper 2007-256, 2007.

Dimitri J. Mavriplis, John C. Vassberg, Edward N. Tinoco, Mori Mani, Olaf P.
Brodersen, Bernhard Eisfeld, Richard A. Wahls, Joseph H. Morrison, Tom Zickuhr,
David Levy, and Mitsuhiro Murayama. Grid quality and resolution issues from the
drag prediction workshop series. ATAA Paper 2008-930, 2008.

D. Scott McRae. r-Refinement grid adaptation algorithms and issues. Computer
Methods in Applied Mechanics and Engineering, 2000(4):1161-1182, 189.

D. Meidner and B. Vexler. Adaptive space-time finite element methods for parabolic
optimization problems. SIAM Journal on Control Optimization, 46(1):116-142,
2007.

Peter K. Moore. Applications of lobatto polynomials to an adaptive finite element
method: A posteriori error estimates for hp-adaptivity and grid-to-grid interpola-
tion. Numerische Mathematik, 94:367-401, 2003.

Joseph H. Morrison and Michael J. Hemsch. Statistical analysis of CFD solutions
from the third ATAA drag prediction workshop. ATAA Paper 2007-254, 2007.

Marian Nemec and Michael J. Aftosmis. Error estimation and adpative refinement
for embedded-boundary Cartesian meshes. ATAA Paper 2007-4187, 2007.

Marian Nemec, Michael J. Aftosmis, and Mathias Wintzer. Adjoint-based adaptive
mesh refinement for complex geometries. AIAA Paper 2008-0725, 2008.

William L. Oberkampf and Matthew F. Barone. Measures of agreement be-
tween computation and experiment: Validation metrics. Journal of Computational
Physics, 217:5-36, 2006.

Todd A. Oliver. A High—order, Adaptive, Discontinuous Galerkin Finite Elemenet
Method for the Reynolds-Averaged Navier-Stokes Equations. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 2008.

Todd A. Oliver and David L. Darmofal. Impact of turbulence model irregularity on
high—order discretizations. ATAA Paper 2009-953, 2009.

Doug Pagnutti and Carl Ollivier-Gooch. A generalized framework for high order
anisotropic mesh adaptation. Computers and Structures, 87(11-12):670 — 679, 20009.

M. A. Park. Adjoint-based, three-dimensional error prediction and grid adaptation.
ATAA Paper 2002-3286, 2002.

M. A. Park. Three-dimensional turbulent RANS adjoint—based error correction.
ATAA Paper 2003-3849, 2003.

Michael A. Park. Anisotropic Qutput-Based Adaptation with Tetrahedral Cut Cells
for Compressible Flows. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, 2008.

VKI

-113 -

REFERENCES REFERENCES

[91]

[92]

[93]

[94]

[98]

[99]

100]

[101]

[102]

103]

[104]

[105]

[106]

Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A riemannian framework for
tensor computing. International Journal of Computer Vision, 66(1):41-66, 2006.

J. Peraire and P.-O. Persson. The compact discontinuous Galerkin (CDG) method
for elliptic problems. SIAM Journal on Scientific Computing, 2007.

J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz. Adaptive remeshing
for compressible flow computations. Journal of Computational Physics, 72:449-466,
1987.

P.-O. Persson, J. Bonet, and J. Peraire. Discontinuous Galerkin solution of the
Navier-Stokes equations on deformable domains. Computer Methods in Applied
Mechanics and Engineering, 198:1585-1595, 2009.

P.-O. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin
methods. AIAA Paper 2006-112, 2006.

Niles A. Pierce and Michael B. Giles. Adjoint recovery of superconvergent function-
als from PDE approximations. SIAM Review, 42(2):247-264, 2000.

W. Rachowicz, L. Demkowicz, and J.T. Oden. Toward a universal h — p adaptive
finite element strategy, part 3. design of h—p meshes. Computer Methods in Applied
Mechanics and Engineering, 77:181-212, 1989.

R. Rannacher. Adaptive Galerkin finite element methods for partial differential
equations. Journal of Computational and Applied Mathematics, 128:205-233, 2001.

Thomas Richter. A posteriori error estimation and anisotropy detection with the
dual-weighted residual method. International Journal for Numerical Methods in
Fluids, 62:90-118, 2010.

Patrick J. Roache. Error bars for CFD. AIAA Paper 2003-408, 2003.

P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.
Journal of Computational Physics, 43:357-372, 1981.

Philip Roe and Hiroaki Nishikawa. Adaptive grid generation by minimizing residu-
als. International Journal for Numerical Methods in Fluids, 40:121-136, 2002.

Christopher J. Roy. Strategies for driving mesh adaptation in CFD. AIAA Paper
2009-1302, 2009.

Christopher J. Roy and Frederick G. Blottner. Review and assessment of turbulence
models for hypersonic flows. Progress in Aerospace Sciences, 42:469-530, 2006.

Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Jour-
nal on Scientific Computing, 14(2):461-469, 1993.

Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM Journal on Scientific Com-
puting, 7(3):856-869, 1986.

VKI

-114 -

REFERENCES REFERENCES

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

115

[116]

[117]

[118]

[119]

E. Schall, D. Leservoisier, A. Dervieux, and B. Koobus. Mesh adaptation as a

tool for certified computational aerodynamics. International Journal for Numerical
Methods in Fluids, 45(2):179-196, 2004.

Michael Schmich and Boris Vexler. Adaptivity with dynamic meshes for space-time
finite element discretizations of parabolic equations. SIAM Journal on Scientific
Computing, 30(1):369-393, 2008.

R. Schneider and P. K. Jimack. Toward anisotropic mesh adaptation based upon
sensitivity of a posteriori estimates. Technical Report 2005.03, University of Leeds,
School of Computing, 2005.

J.R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation.
Computational Geometry: Theory and Applications, 22:21-74, 2002.

Kunibert G. Siebert. An a posteriori error estimator for anisotropic refinement.
Numerische Mathematik, 73:373-398, 1996.

P. Solin and L. Demkowicz. Goal-oriented hp-adaptivity for elliptic problems. Com-
puter Methods in Applied Mechanics and Engineering, 193:449-468, 2004.

Thomas Sonar. Strong and weak norm refinement indicators based on the finite
element residual for compressible flow computation. Impact of Computing in Science
and Engineering, 5:111-127, 1993.

Shuyu Sun and Mary Wheeler. Mesh adaptation strategies for discontinuous
Galerkin methods applied to reactive transport problems. In H.-W. Chu, M. Savoie,
and B. Sanchez, editors, International Conference on Computing, Communication
and Control Technologies, volume 1, pages 223228, Austin, Texas, August 2004.

Shuyu Sun and Mary F. Wheeler. Anisotropic and dynamic mesh adaptation for
discontinuous Galerkin methods applied to reactive transport. Technical Report
05-15, ICES, 2005.

Barna A. Szabo. Estimation and control of error based on p convergence. In
I. Babuska, O. C. Zienkiewicz, J. Gago, and E. R. de Oliveira, editors, Accuracy
Estimates and Adaptive Refinements in Finite Element Computations, pages 61-78.
John wiley & Sons Ltd., 1986.

J.J.W. van der Vegt. Space-time discontinuous Galerkin finite element method with

dynamic grid motion for inviscid compressible flows. National Aerospace Laboratory
NLR-TP-98239, 1998.

H. van der Ven and J.J.W. van der Vegt. Space-time discontinuous Galerkin fintie
element method with dynamic grid motion for inviscid compressible flows I1. Effi-
cient flux quadrature. Computer Methods in Applied Mechanics and Engineering,
191:4747-4780, 2002.

D. A. Venditti and D. L. Darmofal. Anisotropic grid adaptation for functional
outputs: application to two-dimensional viscous flows. Journal of Computational
Physics, 187(1):22-46, 2003.

VKI

- 115 -

REFERENCES REFERENCES

[120]

[121]

[122]

[123]

[124]

[125]

[126]

V. Venkatakrishnan, S. R. Allmaras, D. S. Kamenetskii, and F. T. Johnson. Higher
order schemes for the compressible Navier-Stokes equations. AIAA Paper 2003-3987,
2003.

G. P. Warren, W. K. Anderson, J. L. Thomas, and S. L. Krist. Grid convergence
for adaptive methods. ATAA Paper 1991-1592, 1991.

William A. Wood and William L. Kleb. On multi-dimensional unstructured mesh
adaptation. ATAA Paper 99-3254, 1999.

Guoping Xia, Ding Li, and Charles L. Merkle. Anisotropic grid adaptation on
unstructured meshes. ATAA Paper 2001-0443, 2001.

Nail K. Yamaleev, Boris Diskin, and Eric J. Nielsen. Local-in-time adjoint-based

method for design optimization of unsteady flows. Journal of Computational
Physics, 229:5394-5407, 2010.

M. Yano, J.M. Modisette, and D.L. Darmofal. The importance of mesh adaptation
for higher-order discretizations of aerodynamics flows. AIAA Paper 2011-3852, 2011.

Masayuki Yano. An Optimization Framework for Adaptive Higher-Order Discretiza-
tions of Partial Differential Equations on Anisotropic Simplex Meshes. PhD thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 2012.

VKI

- 116 -

A COMPRESSIBLE NAVIER-STOKES EQUATIONS

A Compressible Navier-Stokes Equations

This appendix presents the Euler, compressible Navier-Stokes, and Reynolds-averaged
compressible Navier-Stokes equations.

A.1 Euler Equations

The Euler equations of gas dynamics are

dip + Oi(pus) =0
A(pu;) + Oi(pujuj +pdy;) = 0
dh(pE) + Oi(pu;H) =0

where p is the density pu; is the j® momentum component, and pE is the total energy.
The pressure and total enthalpy are given by

1
p = (v—1) (pE - §pukuk) :

H = e+
p

Note, i, j, k index the spatial dimensions and summation is implied over repeated indices.
These equations can be written in compact conservation form as

8tu -+ &Fl =0
where
P Pl
u = PU; s Fz = PUU; + péij
pE pu; H

A.2 Compressible Navier-Stokes

The compressible Navier-Stokes equations are given by

Op + 0i(pw;) =0
O(pw;) + Oi(puu; +pdi;) = 0imij
o(pE) + Oi(pwH) = Oi(Tijuj — qi)

where the viscous stress tensor and the heat flux vector are

VKI -117 -

A COMPRESSIBLE NAVIER-STOKES EQUATIONA.2 Compressible Navier-Stokes

Relevant physical quantities for air are,

D . . it T 1 Tref + 71s
namic viscosity: = fhref | 75— |
ynamic viscosity: pu Lhref T T+
(Sutherland’s law: Ty = 288.15K, Ty = 110K)
2
Bulk viscosity coefficient: A = -3 L,
Kinematic viscosity: v = 'L—L,
’ R
. . TH
Thermal conductivity: kp = ———,
(y=1)Fr
Specific-heat ratio: = 1.4,
Prandt]l number: 0.71,

>3
|

Gas constant:

To clarify the viscous implementation, we make the dependence of the viscous flux on the
gradient of the state vector explicit by writing the equations in the form

8tu + 8,F, — 81(KU8J11) = 0,

where u = [p, pu;, pE]" is the state vector and F is the inviscid flux vector. The viscous
flux coefficient matrices can be written as

0 0 0
_ PUG,P pUg;PUC
szj P KZ PUc KpE,pE

Y

where for a given pair i, j,

2
K{)jud,ﬂ — (dlm X 1) matrix = v udéij — ui(de + gujéid>

2
szd,puc = (dlm X dlm) matrix = v (5dc5ij + 5dj5ci — gédiécj)
1
KZE’p = (1 X 1) matrix = v (—ukuké}j — gUin + IiTTp)

Kiij’p"C = (1 x dim) matrix = v —gui(scj + wj0e; + Ul + KTTpuC)
Kij’pE = (1 x 1) matrix = v (krT))
and the temperature derivative vector is
To =Ty, Tp. Tpr) = % [—FE + upug, —u, 1] .

Note that the indices d, ¢, k index the spatial dimension.

VKI - 118 -

A.3 Reynolds-Averaged Comprassible N&XRdESSIEEd NAVIER-STOKES EQUATIONS

A.3 Reynolds-Averaged Compressible Navier-Stokes

We use the Spalart-Allmaras one-equation turbulence model to close the Reynolds-averaged
Navier-Stokes (RANS) equations. The augmented equations are

Orp + Oi(pw;) =0

O(pu;) + Oi(puiuj +pdi;) = 0iyj

h(pE) + 0Oilpu;H) = 0i(Tiu; — ;)

at(pﬁ) + 8 (p) - (91 (g@ll;) + Cf”@-ﬂ@iﬁ + P - D

where the Reynolds stress, 75, is
1 1
= 2(,u -+ /uLt)Eij, Gij = 5(&% -+ @uz) — gﬁkuk%

4 is the laminar dynamic viscosity and the eddy viscosity, u, is

| pifa 720) _
Iut_{o ﬂ<07 fvl_X3+C13}1’ X_

R

The heat flux, ¢;, is given by
= (k+ k)0,T, k = Cyu/Pr, ky = Cpp/ Pry.
The diffusivity for the SA working variable, v, is given by /o, where

_ [p(+x) x>0
p(1+x+x%) x<0

The production term, P, is

S‘i‘g SZ—CUQS

Spi x>0 G &

P:{cblp~ > g— S(c2,8 + csS)
Sprg, 0’ S - — S < —cpS’
Co1opPVGn X < +(CU3—2CU2)S—S < —C2

where S = /2Q;;(2;; is the vorticity magnitude and

1000y >
g'fl = 1 - 2
I+x
Also,
o ﬁfv2 X
S =) v2 —
e L+ /o
The destruction term, D, is given by
~9
%
Cwlfw? x>0
D = ol
1%
Cuw1 de X <0

VKI -119 -

B UNSTEADY ADAPTIVE STRATEGY

where

1+, \"°] 7
fw—g(m> s g—T+Cw2<T T), T—m.

The closure coefficients are

1 = 0.1355 Cw2 = 0.3
o = 2/3 Cw3 = 2
. = 0.622 1 = 7.1

k = 0.41 Cr2r = 0.7
1
Cwl = C_le + + G Cyz — 0.9
K o
Pr, = 09

In discretizing the v viscous term, we have to be aware that we store pr, so that

Fy = 2o = —Lap+ Lo pw),
o po po
from which the contributions to the diffusion matrix can be read off directly.

The SA working variable, 7, will generally be orders of magnitude smaller than the
other state components. Scaling or “non-dimensionalization” of ¥ is used to make the
stored values of 7 closer to the other state components, which helps during the discrete
linear solves and when using finite residual convergence tolerances. Instead of 7 we store
V', given by

where ND is a scaling factor, usually on the order of vkga, where v is the laminar kinematic
viscosity. kga is a user-prescribed factor, typically 100 or 1000, that makes 2’ on the order
of unity. The associated changes in the above expressions are obtained by re-writing all
of them in terms of 7/. In addition, the S A equation is divided by ND,

P—-D

This has the effect of bringing the SA equation residual to the same order as that of the
other equations.

B Unsteady Adaptive Strategy

This appendix describes the merit-function-based adaptive strategy used to adapt the
spatial and temporal discretizations in an unsteady simulation. This strategy is geared
for a slab-based temporal discretization (e.g. DG-in-time), where the size of the time
slabs can vary in time, and for dynamic hanging-node or order refinement in space.

VKI -120 -

B.1 Greedy Fixed Growth Selection AlgoritBm UNSTEADY ADAPTIVE STRATEGY

B.1 Greedy Fixed Growth Selection Algorithm

The error-addressed versus cost-added figure of merit is used in a fixed-growth adaptive
strategy in which some combination of time slabs and space-time elements are marked
for coarsening or refinement. The user specifies the fraction of degrees of freedom to be
coarsened (farsen) as well as the growth factor f&°"*® which dictates the total number

of degrees of freedom in the next mesh as D"t = ferowth pewrrent (whepe peurrent jg the
number of current degrees of freedom). The coarsening and refinement budgets are then

Bcoarsen fcoarsen Dcurrent

Y

Breﬁne — (fgrowth _ 1) Dcurrent + gcoarsen

In practice, we typically use a coarsening fraction of ~5% (fe°@=*® = (0.05) and a growth
factor of 1.30-1.35. With these budgets defined, the following algorithm is then used to
decide which space-time elements or time slabs to adapt:

1. Sort
Sort all space-time elements and time slabs based on the figure of merit: the amount
of output error addressed divided by the degrees of freedom added if the element/slab
were to be refined. For temporal refinement, the latter is approximated as the
degrees of freedom in the targeted slab k, dof, = > _dof(p.x), and for spatial
refinement as the number of additional degrees of freedom dof(pe j + 1) — dof(pe i)
associated with an order increase of element e, k.

2. Coarsen
Set coarsening degree-of-freedom tally to zero. Choose an unmarked space-time
element or time slab with the lowest merit function. If a time slab was chosen, mark
it for a factor of 2 coarsening and add 0.5 dofy, to the coarsening tally. If a space-time
element was chosen, mark it for an order decrement and add dof(p ;) — dof(p. —1)
to the coarsening tally. If the tally meets or exceeds the coarsening budget, B
stop. Otherwise choose the next space-time element or time slab and repeat.

3. Refine
Set refinement degree-of-freedom tally to zero. Choose an unmarked space-time
element or time slab with the highest merit function. If a time slab was chosen, mark
it for a factor of 0.5 refinement and add dofy, to the refinement tally. If a space-time
element was chosen, mark it for an order increment and add dof(pe x+1) — dof(pe x)
to the refinement tally. If the refinement budget, B ", is met or exceeded, stop.
Else, choose the next element or time slab.

B.2 Temporal-Mesh Optimization

When we say “factor of 2 coarsening” and “factor of 0.5 refinement”, this essentially means
that the width of a slab marked for coarsening will be doubled, while the width of a slab
marked for refinement will be halved. If only refinement occurs, this is exactly the case,
as each marked slab will be perfectly bisected; however, when coarsening also occurs, the

VKI -121 -

B UNSTEADY ADAPTIVE STRATEGY B.2 Temporal-Mesh Optimization

boundaries of a coarsened slab will typically encroach on those of the neighboring slabs,
and the entire temporal grid must be shuffled to make room for the coarsened slab. We
shuffle time slabs using one-dimensional metric-based meshing, as described below.

—~—desired

1. For each time slab £, define At, = cA™™ where ¢ is 0.5 for refinement, 2
—~—desired
for coarsening, and 1 if the time slab is not marked. Atkes ‘ represents the new

time step size that we desire on the current time slab k. The given choices of ¢ are
consistent with the choices made for the degree-of-freedom counts above.

—~—desired

2. Define Ndesired = [~ (Aggwrent /Ag,)], where [| is the greatest integer (ceiling)
function. This will be the total number of time slabs on the new temporal mesh.
Note that the ceiling function ensures that this number is an integer.

3. To ensure that the desired time step size is consistent with this total number of time
steps, define the new desired time step size as

—~—desired

desired __ o desired Zk(Atiurrent/Atk)
Atk o Atk N desired '

4. Finally, define a function n(t) that is piecewise-constant over the current time slabs,
and that takes on the value 1/Atd®ed on each current slab k. Define the new time

slab breakpoints as times t; where fgl n(t)dt is an integer.

At n(t)

—~—desired

i S c=05
c=1

c=1 5 Bl

P [

Atcurrent
‘coarsen " refine ¢ A H : A ' A A ' ¢

new time slab breakpoints

Figure 92: Demonstration of the one-dimensional remeshing algorithm used to define new time
slab breakpoints.

VKI -122 -

	Introduction
	Motivation
	Finite Element Discretization
	Background

	Discretization
	The Discontinuous Galerkin Method
	Conservation Equations
	Solution Approximation
	Weak Form
	Discrete System
	Nonlinear Solver

	Discrete Adjoint
	Local Sensitivity Analysis
	The Adjoint System
	Adjoint Consistency
	Adjoint Sensitivity Tests

	Output Error Estimation
	Two Discretization Levels
	The Adjoint-Weighted Residual
	Approximations
	Error Effectivity
	Examples
	Drag Error for Euler Flow over a Bump
	Drag Error for Viscous Flow over a NACA 0012 Airfoil

	Mesh Adaptation
	Error Localization
	Adaptation Mechanics
	Local Refinement
	Global Re-Meshing
	Targeting Strategies
	Incorporating Anisotropy
	Adapting in Order

	Examples
	Inviscid Flow over an Airfoil
	Viscous Flow over an Airfoil
	Which Output?
	Transonic Turbulent Flow over an Airfoil
	Transonic Turbulent Flow over a Wing

	Mesh Optimization
	Metric-Based Mesh Optimization Algorithm
	Metric-Based Meshing
	Error Convergence Model
	Cost Model
	Metric Optimization Algorithm

	Element-Local Error Sampling
	Examples
	Inviscid Flow over a NACA 0012 Airfoil
	High-Reynolds Number Flow over a Flat Plate
	NACA 0012 Airfoil in Laminar Viscous Flow
	RAE 2822 Airfoil in Turbulent Transonic Flow

	Unsteady Systems
	Primal and Adjoint Discretizations
	Multi-Step Methods
	Discontinuous Galerkin in Time

	Deformable Domains
	An Arbitrary Lagrangian Eulerian Treatment
	Blended Analytical Mesh Motions
	The Geometric Conservation Law

	Error Estimation and Adaptation
	The Adjoint-Weighted Residual and Error Localization
	Incorporating Space-Time Anisotropy
	Space-Time Mesh Adaptation
	Implementation Notes

	Examples
	Static h-Refinement for an Impulsively-Started Airfoil
	Dynamic-Order Adaptation for Pitching and Plunging Airfoils
	Dynamic-Order Adaptation for a Three-Dimensional Wing

	Conclusions
	Acknowledgments
	Compressible Navier-Stokes Equations
	Euler Equations
	Compressible Navier-Stokes
	Reynolds-Averaged Compressible Navier-Stokes

	Unsteady Adaptive Strategy
	Greedy Fixed Growth Selection Algorithm
	Temporal-Mesh Optimization

