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Abstract

In this paper we present a hybridized discontinuous Galerkin (HDG) discretization for

unsteady simulations of convection-dominated flows on mapped deforming domains.

Mesh deformation is achieved through an arbitrary Lagrangian-Eulerian transformation

with an analytical mapping. We present details of this transformation applied to the

HDG system of equations, with focus on the auxiliary gradient equation, viscous stabi-

lization, and output calculation. We discuss conditions under which optimal unsteady

output convergence rates can be attained, and we show that both HDG and discontinu-

ous Galerkin (DG) achieve these rates in advection-dominated flows. Results for scalar

advection-diffusion and the Euler equations verify the implementation of the mesh mo-

tion mapping for both discretizations, show that HDG and DG yield similar results on a

given mesh, and demonstrate differences in output convergence rates depending on the

choice of HDG viscous stabilization. We note that such similar results bode well for

HDG, which has fewer globally-coupled degrees of freedom compared to DG. A sim-

ulation of the unsteady compressible Navier-Stokes equations demonstrates again very

similar results for HDG and DG and illustrates a pitfall of using steady-state adapted

meshes for accurate unsteady simulations.
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1. Introduction

High-order accurate methods in Computational Fluid Dynamics can in many cases

provide superior accuracy compared to lower order methods, but this accuracy improve-

ment typically comes at the cost of increased computational expense. Details of the

trade-off are debatable and depend on the particular high and low-order methods com-

pared, and on their implementation. Nonetheless, a general observation is that high-

order methods could benefit from becoming cheaper. In this work, we consider one such

method, hybridized discontinuous Galerkin (HDG) [1, 2, 3, 4, 5], which under certain

circumstances, notably at high order, can be computationally cheaper than the popular

discontinuous Galerkin (DG) method [6, 7, 8, 9, 10, 11, 12].

A relatively fair way to compare the DG and HDG methods is in an output-based

adaptive setting, where the mesh resolution is automatically dictated by an error estimate

of an output of interest. Much work has been done in this area for steady problems with

finite volume and finite element methods [13, 14, 15, 16, 17, 18, 19], and recently with

HDG discretizations [20, 21, 22]. Unsteady problems pose additional challenges and

computational costs, namely in the unsteady adjoint solution, yet output-based adaptive

methods have also been explored, with various modes of adaptation, including static-

mesh, dynamic-mesh, space-only, and combined space-time [23, 24, 25, 26, 27, 28, 29,

30, 31].

However, the first step in a comparing DG and HDG for problems on deformable

domains is the formulation and verification of the mesh deformation mapping via the

Arbitrary Lagrangian-Eulerian formulation. This has already been done for DG [32],

including in an adaptive setting [31], but not yet for HDG, and hence this is the subject

of the present paper. We note that a space-time HDG formulation that supports mesh

motion has already been presented [33]. In this work, we extend unsteady the ALE

formulation to HDG, paying particular attention to the gradient equation and viscous

stabilization. We discuss implementation details and then compare HDG and DG for
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both verification problems and for a simulation of the compressible Navier-Stokes equa-

tions. A simple adaptive strategy in which steady-state optimized meshes are used for the

unsteady simulation is shown to perform poorly, motivating the need for full unsteady

adaptation.

2. Discretization

For the spatial discretization, we compare the discontinuous Galerkin (DG) and hy-

bridized discontinuous Galerkin (HDG) methods. Figure 1 illustrates the primary dif-

ferences between these discretizations, namely the introduction of additional degrees of

freedom that decouple elements from each other and yield a global system of smaller

size at high order compared to DG.
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û
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uL Ĥ(uL,uR,∇uL,∇uR, ~n)

Figure 1: In the HDG method, additional unknowns on element interfaces allow elimination of the element-
interior unknowns. This results in a global system in which the number of unknowns scales as pdim−1 instead
of pdim for DG.

2.1. Discontinuous Galerkin

Consider a conservation law of the form,

∂u
∂t

+ ∇ · ~H(u,∇u) = 0, u(~x, 0) = u0(~x), (~x, t) ∈ Ω ⊗ [0,T ], (1)

where u(~x, t) ∈ Rs is the state vector, u0(~x) is the initial condition, and ~H = ~F(u) +

~G(u,∇u) is the total flux consisting of inviscid (~F) and viscous (~G) contributions. Bound-

ary conditions are specified on ∂Ω in the form of knowledge of components of the state
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or the flux. The ith spatial component of the viscous flux is linear in ∇u, Gi = −Ki j∂u j

(summation implied on j ∈ 1 . . . dim), where Ki j is the (i, j) component of the viscous

diffusivity tensor.

Denote by Th the set of Ne elements in a non-overlapping tessellation of the domain

Ω. In DG, the state is approximated by polynomials on each element, with no continuity

constraints imposed on the approximations on adjacent elements. Formally, we write

that uh ∈ Vh = [Vh]s, where Vh =
{
u ∈ L2(Ω) : u|Ωe ∈ P

p ∀Ωe ∈ Th
}
, and Pp denotes

polynomials of order p on an element Ωe.

We obtain the weak form of (1) by multiplying the PDE by test functions wh ∈ Vh

and integrating by parts to couple elements via fluxes. The resulting weak statement

reads: find uh ∈ Vh such that

∫
Ωe

wT
h
∂uh

∂t
dΩ −

∫
Ωe

∇wT
h ·

~H dΩ +

∫
∂Ωe

w+T
h Ĥ · ~n ds

−

∫
∂Ωe

∇wT
h · K̂ · ~n(uh − ûh) ds = 0 ∀wh ∈ Vh, (2)

where (·)T denotes transpose, and on the element boundary ∂Ωe the notations (·)+, (·)−, (·)b

respectively denote quantities taken from the element interior, neighbor element, and

boundary. The last term on the left hand side symmetrizes the semilinear form for ad-

joint consistency [34]. Ĥ = F̂+ Ĝ is the numerical flux, consisting of Roe’s approximate

Riemann solver [35] for F̂, and the second form of Bassi and Rebay (BR2) [34] for the

viscous flux, Ĝ. In particular, on an interior face σ f , the BR2-stabilized viscous flux is

Ĝ =
1
2

(
G+

i + G−i
)

n+
i + η

1
2

(
δ+

i + δ−i
)

n+
i , (3)

where the auxiliary variables δ+
i , δ

−
i ∈ [Vh]d have support on the two elements adjacent

to the interior face σ f and are obtained by solving ∀τhi ∈ Vh

∫
Ω+

e

τT
hiδ

+
i dΩ +

∫
Ω−e

τT
hiδ
−
i dΩ =

∫
σ f

1
2

(
τ+T

hi K+
i j + τ−T

hi K−i j

)
(u+

h − u−h )n+
j ds. (4)
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η is a stabilization factor that should not be less than the number of faces per element,

and in our work is taken to be (at least) twice the maximum number of faces on adjacent

elements.

K̂ is the viscous diffusivity tensor computed from the element-interior state, u+
h ,

for interior faces and from the boundary state, ub
h, for boundary faces. This boundary

state is a function (projection) of the interior state and the boundary-condition data,

ub
h = ub

h(u+
h ,BC). The unique state on an interior face is ûh = (u+

h + u−h )/2, whereas for

boundary states it is ûh = ub
h.

On a boundary face σb, fluxes are typically computed directly from the boundary

state, ub. One exception is the convective flux for a boundary condition in which a

complete exterior state is specified: in such a case, an approximate-Riemann solver is

used to compute the boundary convective flux, F̂b. The BR2-stabilized boundary viscous

flux is

Ĝb = ΠBC
G

[
~G(ub

h,∇u+
h ) · ~n + η~δ · ~n

]
, (5)

where η is a stabilization parameter typically set to the number of faces of the boundary

element, and the auxiliary BR2 variable ~δ ∈ [Vh]dim has support on the element adjacent

to the boundary face σb and is obtained by solving

∫
Ωe

vT
hiδi dΩ =

∫
σb

v+T
hi Kb

i j(u
+
h − ub

h)n+
j ds ∀~vh ∈ [Vh]dim. (6)

The projection ΠBC
G in (5) incorporates boundary conditions on the viscous flux, such

as a prescribed heat flux in the compressible Navier-Stokes equations. For example, in

the case of an adiabatic wall, ΠBC
G would zero out both the mass component (no flow

through the wall) and the energy component (no heat transfer through the wall) of the

flux.

In steady state, choosing a basis for the trial/test spaces turns Eqn. 2 into a nonlinear
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system of equations, R(U) = 0, where U and R are the discrete state and residual vectors,

respectively. We solve this system using a preconditioned Newton-GMRES method,

with full Jacobian storage.

2.2. Hybridized Discontinuous Galerkin

We can write (1) as a first-order system by introducing the state gradient, ~q ∈ [Rs]dim,

as a new variable,

~q − ∇u = ~0, (7)
∂u
∂t

+ ∇ · ~H(u, ~q) = 0. (8)

In HDG, we approximate u by uh ∈ Vh, the same space as in DG. The state gradient, ~q,

is an additional unknown that we represent by ~qh ∈ [Vh]dim. Finally, HDG introduces

a new unknown, û, the state on the faces between elements, which is approximated by

ûh ∈Mh, whereMh = [Mh]s, andMh =
{
λ ∈ L2(Eh) : λ|σ f ∈ P

p(σ f ) ∀σ f ∈ Eh
}
. Eh

is the set of interior faces, σ f , in the tessellation, andPp(σ f ) is the space of polynomials

of order p on face σ f . Note that we do not define or use û on domain boundary faces,

where we instead use the boundary state ub. We obtain the weak form of the PDE system

by weighting the above equations with appropriate test functions, integrating by parts,

and using the interface variable û for the face state,

∫
Ωe

~vT
h · ~qh dΩ +

∫
Ωe

∇ · ~vT
h uh dΩ −

∫
∂Ωe

~vT
h·~n ûh ds = 0 ∀~vh ∈ [Vh]dim, (9)∫

Ωe

wT
h
∂uh

∂t
dΩ −

∫
Ωe

∇wT
h ·

~H dΩ +

∫
∂Ωe

wT
h Ĥ · ~n ds = 0 ∀wh ∈ Vh, (10)∫

σ f

µT
h

{
Ĥ · ~n

∣∣∣
L + Ĥ · ~n

∣∣∣
R

}
ds = 0 ∀µh ∈Mh, (11)

The third equation weakly imposes the continuity of the flux across interfaces and is

required to close the system. Note that the µh are test functions taken from the approxi-

mation space of û,Mh. As constants are part of this space, conservation is guaranteed.
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The “one-sided” fluxes are defined as

Ĥ · ~n = ~H(ûh, ~qh) · ~n + τ(ûh,uh, ~n), (12)

where τ = τF + τG is a stabilization flux consisting of convective (τF) and viscous (τG)

contributions. τF is chosen to yield a Roe-like flux,

τF =

∣∣∣∣∣ ∂∂uh
(~F(ûh) · ~n)

∣∣∣∣∣ (uh − ûh). (13)

τG is chosen to penalize jumps in the state, and two forms of τG are considered,

τG =
1
`visc

niKi jn j(uh − ûh) or τG = η~δ · ~n, (14)

where `visc is an O(1) user-defined viscous length scale, and η~δ is the BR2 stabilization

term that lifts the jump uh − ûh from faces to element interiors. The BR2 stabilization

results in an O(1/h) viscous length scale, which is not theoretically optimal for conver-

gence [36] but which can improve solver robustness.

In steady-state, choosing bases for the trial/test spaces turns Eqns. 9–11 into a non-

linear system of equations, ~RQ = ~0, RU = 0, RΛ = 0, with the Newton update system


AQQ AQU BQ

AUQ AUU BU

CQ CU D



∆~Q

∆U

∆Λ

 +


~RQ

RU

RΛ

 =


~0

0

0

 , (15)

where ~Q, U, and Λ are the discrete unknowns in the approximation of ~qh, uh, and ûh,

respectively; ~RQ, RU , and RΛ are the discrete residual vectors; and [A,B; C,D] is the

primal Jacobian matrix partitioned into element-interior and interface unknowns. Note

that (15) shows the Q and U block components of matrices A, B, and C. Statically
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condensing out the element-interior states gives a smaller system,

(
D − CA−1B

)︸           ︷︷           ︸
K

∆Λ +
(
RΛ − CA−1

[
~RQ; RU

])
= 0,

whereK is a sparse, compact-stencil, condensed Jacobian matrix for the face degrees of

freedom.

Boundary conditions for HDG are incorporated in the same fashion as in DG: we

define a boundary flux using the element-interior state, the outward-pointing normal, the

element-interior ~q, and boundary condition data,

Ĥ · ~n
∣∣∣
boundary = Ĥb(u, ~qh, ~n,BCs) + τ(ub

h,u
+
h , ~n). (16)

We emphasize that there is no separate face-based state defined on the boundary faces.

The boundary condition comes in through a flux that is constructed directly using the

element interior state and boundary condition data. As in DG, stabilization is included

in the boundary flux to penalize jumps between the element-interior state, u+
h , and the

boundary state, ub
h.

2.3. Unsteady

The above discretizations extend to implicit unsteady formulations. For DG, the

unsteady discrete system is

M
dU
dt

+ R = 0, (17)
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where M is the spatial mass matrix. In HDG, the unsteady term appears only in (10), so

that the unsteady discrete system is

~RQ = ~0,

MU dU
dt + RU = 0,

RΛ = 0,

(18)

where MU is the spatial mass matrix built using the basis functions for U – this is an

invertible matrix. Define the solution vector W ≡ [~Q; U;Λ], and the agglomerated

residual R ≡ [~RQ; RU ; RΛ], so that (18) can be written compactly as

M
dW
dt

+ R(W) = 0, (19)

where the general, non-invertible, mass matrix is

M =


0 0 0

0 MU 0

0 0 0

 .

Note, for DG, W = U and M = MU .

2.3.1. Diagonally-Implicit Runge Kutta

When time-marching (19) using an nstage DIRK scheme, each time step requires

nstage nonlinear solves. The algorithm for advancing from W0 at t0 to W1 at t1 in a time
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step of size ∆t proceeds as follows:

for i = 1 : nstage

Si = −
M
∆t

W0 +

i−1∑
j=1

ai jR(W j, t j)

solve:
M
∆t

Wi + aiiR(Wi, ti) + ZUSi = 0

end

where ti = t0 + bi∆t, and ZU is a mask matrix that zeros out all components of a vector

except for those associated with the U unknowns – this is just the identity for DG. At the

end of these stages, W1 is set to Wnstage . In this work we use a five-stage, fourth-order

accurate scheme, for which

ai j =



1
4 0 0 0 0
1
2

1
4 0 0 0

17
50 − 1

25
1
4 0 0

371
1360 − 137

2720
15

544
1
4 0

25
24 −49

48
125
16 −85

12
1
4


, bi =



1
4

3
4

11
20

1
2

1


.

3. Arbitrary Lagrangian-Eulerian Formulation

3.1. Mapping

In an arbitrary Lagrangian-Eulerian (ALE) method, the mesh can move at a velocity

different from that of the flow, which is useful for modeling problems in which objects

move or deform. The ALE method uses a map between the deforming physical domain

and a static reference domain and solves transformed equations on the reference do-

main [32]. This transformation is illustrated graphically in Figure 2, and Table 1 defines

key quantities.

The expressions for the transformations of the normals are obtained using dv =

gdV for infinitesimal volumes and d~l = Gd~L for infinitesimal vectors. In this work the
10



Reference domain: ~X,uX , ~HX

~NdA

∂uX

∂t

∣∣∣
~X
+∇X · ~HX(uX , ~qX) = 0

Mapping

⇒

~X, t ⇒ ~x( ~X, t)

G = ∂~x
∂ ~X

g = det(G)
uX = gu

~qX = gGT~q
~vG = ∂~x

∂t

~HX = gG−1 ~H− uXG−1~vG

~nda = gG−T ~NdA

~NdA = g−1GT~nda

⇒

Physical domain: ~x,u, ~H

~nda

∂u
∂t

∣∣∣
~x
+∇ · ~H(u, ~q) = 0

Figure 2: Summary of the mapping between reference and physical domains. The equations are
solved on the reference domain, which remains fixed for all time. When denoting reference-
domain quantities, we use a subscript X.

Table 1: Definitions of variables used in the ALE mapping. Bold indicates a state vector and an
arrow indicates a spatial vector.
~X = reference-domain coordinates
uX = state on reference domain
~qX = gradient variable on reference domain
~HX = flux vector on reference domain
dA = differential area on reference domain
~N = normal vector on reference domain
V = reference domain (static)
G = mapping Jacobian matrix
g = determinant of Jacobian matrix

~x = physical-domain coordinates
u = physical state
~q = physical gradient variable
~H = flux vector on physical domain
da = differential area on physical domain
~n = normal vector on physical domain
v(t) = physical domain (dynamic)
~vG = grid velocity, ∂~x/∂t
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mapping ~x(~X, t) is analytical, obtained by blending rigid body motion in the vicinity

of the moving object to zero far away from the object [32]. The resultant mapping

Jacobian determinant, g, may not be polynomial in ~X, so that a constant physical state

may not be representable with polynomial trial functions in reference space. This leads

to slight conservation errors that can be mitigated with a geometric conservation law [32,

31]. However, as these errors become smaller with higher-order approximation and

adaptation [31], in this work we forgo a GCL.

3.2. Transformed Equations

To obtain the transformed conservation laws in reference space, we integrate the

evolution PDE in (8) over a time-varying volume v(t),

∫
v(t)

∂u
∂t

dv +

∫
∂v(t)

~H · ~n da = 0. (20)

The two integrals in (20) transform as

∫
v(t)

∂u
∂t

=
d
dt

∫
v(t)

u dv −
∫
∂v(t)

(u~vG) · ~n da (21)

=

∫
V

∂(gu)
∂t

dV −
∫
∂V

(guG−1~vG) · ~N dA, (22)∫
∂v(t)

~H · ~n da =

∫
∂V

~H · (gG−T ~N) dA =

∫
∂V

(gG−1~H) · ~N dA. (23)

Substituting these expressions into (20) and applying the divergence theorem gives the

PDE on the reference domain,

∂uX

∂t

∣∣∣∣∣~X + ∇X · ~HX(uX ,∇XuX) = 0, (24)

where uX = gu, ~HX = gG−1~H − uXG
−1~vG, and ∇X denotes the gradient with respect to

the reference coordinates. The transformed flux, ~HX , separates into inviscid and viscous
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contributions,

~HX = ~FX + ~GX , ~FX = gG−1~F − uXG
−1~vG, ~GX = gG−1~G. (25)

(24) can now be discretized on the reference mesh. For DG, this discretization proceeds

in a standard fashion [32, 31]. For HDG, we also need to transform the equation for the

gradient, ~q, (7). To do this, we write ∇u in reference-space variables via the chain and

product rules,

∇u = ∇X(g−1uX)G−1 = g−1G−T (∇XuX − uXg−1∇Xg), (26)

Substituting into (7), we have

~q − g−1G−T (∇XuX − uXg−1∇Xg) = ~0, (27)

gGT~q︸︷︷︸
~qX

−∇XuX + uXg−1∇Xg = ~0, (28)

where we have defined the transformed reference-space gradient variable as ~qX = gGT~q.

In summary, for HDG, the system of equations to be solved in reference space is

~qX − ∇XuX + uXg−1∇Xg = ~0, (29)
∂uX

∂t
+ ∇X · ~HX(uX ,∇XuX) = 0. (30)

Note the addition of a source term into the equation for ~q.

3.3. Implementation

An ALE solver for problems with mesh motion must operate on the reference-space

equations in Eqns. 29–30. Equipping a DG or HDG code with such mesh motion capa-

bility does not require a wholesale rewrite. One can “retro-fit” an existing code to solve

the reference space equations through relatively minor changes, mostly via pre/post-
13



processing operations on fluxes based on the reference-to-global mapping and its deriva-

tives.

The weak form of Eqns. 29–30 is obtained by multiplying by reference-space test

functions and integrating by parts over the reference-domain elements. The discretiza-

tion would be straightforward were it not for the fact that fluxes and boundary conditions

are specified on the physical domain. To minimize intrusion into the code, we express

the reference-space fluxes and boundary conditions in terms of the physical fluxes and

boundary conditions.

The inviscid flux on the reference domain includes the standard Galilean transforma-

tion expected from changing reference frames and also a multiplication by gG−1, which

is done by post-processing the equation-set specific flux,

~FX = gG−1~F − uXG
−1~vG = gG−1

(
~F − u~vG

)
. (31)

To account for the Galilean transformation on element interfaces, the Riemann solver

needs to operate on ~F − u~vG instead of just ~F. The reference-domain viscous flux is

related to the physical viscous flux through

~GX = gG−1~G = −gG−1K~q = −G−1KG−T︸      ︷︷      ︸
KX

~qX . (32)

In practice, the reference-space viscous flux is just obtained by multiplying the physical

flux by gG−1, with the caveat that linearizations must be transformed from with respect

to the physical states/gradients to with respect to the reference state/gradients.

The definition of the reference-space diffusion matrix KX in (32) is useful in an-

alyzing the form of stabilization and dual-consistency terms, which arise in terms of

reference-space variables but are most conveniently implemented using physical-space

quantities to minimize code intrusion. For example, consider the first viscous stabiliza-
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tion in (14), which adds the following term to the reference space weak form,

∫
∂ΩX,e

wT
~N ·KX · ~N
`X,visc

(uX − ûX)dA =

∫
∂ΩX,e

wT G
−1KG−T ~N
`X,visc

(gu − gû)~NdA

=

∫
∂Ωe

wT G
−1KG−T ~N
`X,visc

(u − û)GT~nda

=

∫
∂Ωe

wT ~n ·K · ~n
`visc

(u − û)da (33)

where we have transformed the viscous length via the relation ~N/`X,visc = GT~n/`visc,

which follows from assuming that the viscous length transforms like the element volume

divided by the face area. Note that the expression in (33) is in terms of physical variables

and is exactly the same stabilization that would be added for a discretization in the

physical domain. The only change for mesh motion is then in the linearizations, which

needs to be with respect to the reference quantities, and which can be handled via a

chain-rule post-processing of the physical-variable linearizations.

Boundary conditions also require modifications when simulating problems on de-

formable domains. In particular, the physical boundary flux must be aware of motion on

the boundary, ~vG. For example, on a moving wall, the flow tangency boundary condition

states that the normal component of the fluid velocity is equal to the normal compo-

nent of the boundary motion velocity (which would be zero without mesh motion). This

physical consideration is separate from the subtraction of ub~vG from the flux – both must

be included.

Calculation of the viscous contribution on a boundary requires not only the boundary

state, ub, but also the boundary flux. For pure Dirichlet boundary conditions, the state

gradient information is taken from the interior. In other cases, the physical viscous

flux is prescribed on the boundary (e.g. zero heat flux for an adiabatic wall), and in

these cases, the viscous flux contribution is added directly to the residual. Note that no
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transformation needs to be applied to any flux dotted with the normal, since

~H · ~nda =
(
g−1G~HX

)
·
(
gG−1 ~N

)
dA = ~HX · ~NdA. (34)

Finally, a notable difference between the physical and transformed system of equations

is the appearance of a source term in the reference-space gradient equation, (29). In the

weak form this source term is evaluated in a straightforward manner via an element-

interior integration.

3.4. Output Calculation

Output calculations on deforming domains often involve boundary integrals of a

linear combination of the fluxes. In physical space, the general form of such outputs,

which include forces, moment, and power, is

J =

∫
∂Ω

oT Ĥ · ~n da, (35)

where o ∈ Rs is the output “test function” containing the weights of each conservation-

law flux in the linear combination that forms the scalar output. For example, o could

contain cos(α) and sin(α) terms weighting the conservation of momentum equations to

produce a lift or drag force of an object at an angle of attack α. Moments could be

computed by including physical-space coordinates in these weights. A power output can

be obtained by including the grid velocity, ~vG, in the output test function o. For exam-

ple, for the Navier-Stokes equations, define o to pick of the conservation of momentum

equations with weights given by ~vG. The resulting instantaneous power output, which

can be time-integrated to yield work, is

J =

∫
object

~vG · ~fsurf da,
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where ~fsurf is the surface stress vector, i.e. the momentum flux components, and the

integral is taken over the surface of the object, e.g. an airfoil. We can see this is a power

by considering the special case of a grid velocity given by ~vG = ~v0 + ~ω × ~r, where ~r is a

position vector relative to some origin of rotation. J becomes

J =

∫
object

(~v0 + ~ω × ~r) · ~fsurf da =

∫
object

[~v0 · ~fsurf + ~ω · (~r × ~fsurf)] da = ~v0 · ~Fnet + ~ω · ~Tnet,

where ~Fnet is the net force and ~Tnet is the net torque exerted by the fluid on the ob-

ject. This is the expected form of power that takes into account both translational and

rotational contributions.

We note that the expression in (35) is written in physical-space variables, and this

is convenient since no transformations are required from the physical flux calculations.

When calculating boundary fluxes, stabilization terms from the discretization are re-

tained for adjoint-consistency reasons [37].

4. Results

4.1. Scalar Advection Diffusion

For the purpose of verification, we consider a simple one-dimensional advection-

diffusion problem. The governing equation and initial condition are

∂u
∂t

+ a
∂u
∂x
− ν

∂2u
∂x2 = 0, x ∈ [0, L]

u(x, t = 0) = u0(x) = exp
[
−(2x/L)2

]
.

In this work we use convenient, O(1), units: L = 4, a = 4, and ν = aL/Pe, where Pe

is the Peclet number. The domain is periodic, and the output of interest for all runs is a

weighted integral of the scalar u at the final time T = 1,

J =

∫ L

0
w(x)u(x,T ) dx, w(x) = exp

[
−(2(x − x0)/L)2

]
, (36)
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where x0 = L/40.

Although this problem does not require mesh motion, we impose movement anyway

to test the implementation of the ALE formulation and to compare errors and conver-

gence rates to the case of no motion. The mapping from the reference domain to the

physical domain is given by,

x(X, t) = X +
L
40

sin(2πX/L) sin(2πt/T ).

Figure 3(a) illustrates this mapping.

4.1.1. Inviscid: Pe→ ∞

We first consider the inviscid case, ν = 0, for which the initial condition advects

undisturbed, as shown in Figure 3(b). Without viscosity, the HDG discretization behaves

similarly to the DG discretization, since the state gradient is not approximated. We

run both discretizations using orders of approximation p = 1, 2, 3, 4, on a sequence of

uniformly refined meshes, starting with Nelem = 5 at the coarsest level. We also compute

a “truth” solution on the finest mesh using p = 6, and output errors are calculated relative

to the output from this truth solution. Fourth-order DIRK (DIRK4) is used as the time

marching scheme, and the number of time steps for each run is chosen large enough

such that the temporal error is small relative to the spatial error. We therefore expect the

convergence rates to reflect the spatial order of accuracy.

Figure 4(a) compares the convergence of DG and HDG, with and without mesh

motion, for all four spatial orders, p. We see that, asymptotically, convergence rates of

approximately 2p + 1 are attained. This is the expected rate under uniform refinement

for a scalar output computed in a problem that is free from singularities (both in the

primal and the adjoint solution). The HDG and DG results, distinguished by a different

color, are visually identical. In addition, the mesh motion results, shown as dashed

lines accompanying each solid curve, are also nearly on top of the no-motion results,
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(a) Mesh motion (b) Pe→ ∞ solution

Figure 3: Scalar advection diffusion: mesh motion and inviscid solution.

with the exception of the finest-mesh p = 4 case, where machine round-off and residual

tolerances pollute the results.
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(a) Least-squares projected initial condition
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(b) Interpolated initial condition

Figure 4: Scalar advection diffusion, Pe → ∞: convergence of the final-time weighted integral output for
DG and HDG, without mesh motion (solid lines) and with mesh motion (dashed lines). In (a), the initial
condition is obtained by least-squares projection, while in (b) it is obtained by interpolation at Lagrange
nodes.

Whether or not the optimal spatial convergence rate of 2p + 1 is obtained depends

on how the solution is initialized at t = 0. For the results in Figure 4(a), a least-squares

projection was employed. An alternate method is a simple interpolation of the initial

condition at equally-spaced nodes of order p Lagrange polynomials. With this interpo-
19



lated initial condition, we obtain the results in Figure 4(b). Note the larger errors and

lower rates – between p + 1 and p + 2 – compared to the least-squares initialization.

The sub-optimality of this interpolation can be explained by looking at the out-

put error introduced during initialization at t = 0. Consider the exact initial condi-

tion, u0
exact(x), projected or interpolated to the space of order p polynomials to yield

u0
h(x) = uexact(x) + δu0

h(x). Polynomial interpolation theory tells us that for an order p

representation on elements of size ∆x, we have δu0
h(x) = O(∆xp+1), where ∆x is the

element size. We now evaluate the output J via (36) using u0
h(x),

Jh =

∫ L

0
w(x)u0

h(x)dx =

∫ L

0
w(x)

[
uexact(x) + δu0

h(x)
]

dx = Jexact +

∫ L

0
w(x)δu0

h(x) dx

Based on the estimate δu0
h(x) = O(∆xp+1), and if we don’t expect any cancellation in the

weighted integral, the error in the output (for just the initial condition) will be

δJh =

∫ L

0
w(x)δu0

h(x) dx = O(∆xp+1).

Indeed, this is the lower bound (observed for odd orders), on the rate attained for initial

condition interpolation at Lagrange nodes, in Figure 4(b). However, for least-squares

projection, the integral of δuh(x) multiplied by any polynomial of order p should be

zero. So our initial-condition output error in this case should converge like

δJh =

∫ L

0
w(x)δu0

h(x) dx =

∫ L

0
(w(x) − wh(x))δu0

h(x) dx

=

∫ L

0
δwh(x)δu0

h(x) dx = O(∆x2p+2),

where wh(x) is the least-squares projection of w(x) onto order p polynomials on each

element and δwh(x) = O(∆xp+1) is the resulting difference. This rate can be easily

verified by measuring the output at t = 0, and indeed it is attained. The additional errors

incurred in propagating the solution from t = 0 to t = T bring the final observed rate to
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2p + 1.

4.1.2. Advection-dominated: Pe = 320

We next run the same problem but with a small amount of viscosity, such that

Pe = 320. The HDG discretization now differs from DG fundamentally in that HDG ap-

proximates the state gradient. For DG, we use the BR2 viscous discretization, whereas

for HDG we consider viscous stabilization using (1) a BR2-like term and (2) a constant

viscous length scale term, as presented in (14). In this simple verification test case, no

robustness problems were encountered with either viscous discretization.

The same suite of test cases described in the previous section was run: orders

p = 1, 2, 3, 4, mesh motion on/off, and three discretizations. Figure 5 presents the con-

vergence of the output error under uniform mesh refinement. We first observe that runs
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Figure 5: Scalar advection diffusion, Pe = 320: convergence of the final-time weighted integral output for
DG and HDG, without mesh motion (solid lines) and with mesh motion (dashed lines). HDG was run with
two viscous dicretizations, BR2 and “lvisc”, which indicates a constant viscous length scale, `visc = ν.

with mesh motion on (dashed lines) show nearly identical errors to corresponding runs

with mesh motion off (solid lines). Therefore, the presence of mesh motion does not

pollute the output to a noticeable degree. In addition, we see that for each order p, the
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results from the different discretizations are all close, with spreads occurring at the finest

meshes. DG and HDG-BR2 exhibit asymptotic convergence rates of approximately 2p,

which is optimal for a discretization of an equation with second derivatives. However, as

HDG discretizes a first-order system, we would expect its optimal rate to still be 2p + 1.

As discussed in [36], this optimal rate is attainable for an appropriate choice of viscous

stabilization: for example, a constant viscous length scale. Indeed, we see that HDG

with the constant viscous length stabilization does begin to exhibit a faster convergence

rate at the fine meshes. However, the difference is not very large for this problem, as the

Peclet number is high.

4.1.3. Diffusion-dominated: Pe = 16

Finally, we consider the same problem as in the previous section but with more vis-

cosity, such that Pe = 16. We again run a convergence study of the output error for a

final-time weighted integral of the scalar unknown. Figure 6 shows the resulting conver-

gence rates. We see that in this diffusion-dominated regime, the output error converges

at a rate of approximately 2p for DG and HDG-BR2. Again, this is expected for a diffu-

sion discretization with DG. More clear in this case is the benefit of the constant viscous

length stabilization for HDG: we see markedly lower errors in these runs compared to

DG and HDG-BR2, and convergence rates of approximately 2p + 1. However, as this

example shows, the advantage is most relevant for diffusion-dominated problems. In the

case of the compressible Navier-Stokes equations, we consider high Reynolds number

flows, and in these cases we have observed solver robustness improvements for HDG-

BR2, without noticeable effects on accuracy. Finally, mesh motion does not significantly

change the results, except in the pre-asymptotic regime and at low error levels.

4.2. Euler Vortex

As another verification test, this time for a system of equations, we consider an

analytical vortex solution to the Euler equations [32]. The state vector at point (x, y) and

time t is obtained via
22
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Figure 6: Scalar advection diffusion, Pe = 16: convergence of the final-time weighted integral output for
DG and HDG, without mesh motion (solid lines) and with mesh motion (dashed lines). HDG was run with
two viscous dicretizations, BR2 and “lvisc”, which indicates a constant viscous length scale, `visc = ν.

f0 = 1 − |~x − ~x0 − ~V∞t|2/r2
c

M∞ = |~V∞|
√
ρ∞/(γp∞)

f1 = 1 − ε2(γ − 1)M2
∞ exp( f0)/(8π2)

ρ = ρ∞ f 1/(γ−1)
1

p = p∞ f γ/(γ−1)
1

f2 = |~V∞|ε exp( f0/2)/(2πrc)

u = U∞ − f2(y − y0 − V∞t)

v = V∞ + f2(x − x0 − U∞t)

u =

[
ρ, ρu, ρv,

p
γ − 1

+
1
2
ρ(u2 + v2)

]

where we use the following constants (convenient units): ~x0 = (5, 5), ~V∞ = (U∞,V∞) =

(2, 1)/
√

5, ρ∞ = 1, p∞ = 20/7, γ = 1.4, ε = 0.3, rc = 1.5. We solve this problem on a

rectangular domain, [0, 20]×[0, 15]. Though no mesh motion is required, for verification

we impose the following domain deformation from ~X = (X,Y) to ~x(t) = (x(t), y(t)):

x(t) = X + 2 sin(2πX/20) sin(2πY/15) sin(2πt),

y(t) = Y + 1.5 sin(2πX/20) sin(2πY/15) sin(4πt).

23



Figure 7 shows the final-time (t = 10) solution and a deformed mesh at t = 2.5. We

(a) Pressure at t = 10 (b) Mesh at t = 2.5

Figure 7: Euler vortex verification: pressure contours at final time and one mesh from the refinement study,
shown deformed at an intermediate time of t = 2.5. The exact solution is known in this case and L2 errors
of the state can be computed.

simulate this case using both DG and HDG, for various state approximation orders p

and DIRK4 time stepping, and we compute the L2 norm of the state error at the final

time, t = 10. Figure 8 shows the convergence of this error with uniform spatial mesh

refinement. The time steps were chosen small enough so as to keep the temporal errors

relatively small. The HDG results lie virtually on top of the DG results in this case, and

both schemes attain the expected p + 1 L2 error convergence rates.

4.3. NACA 0012 Airfoil in Pitch and Plunge Motion

In this case we solve the compressible Navier-Stokes equations (γ = 1.4, Pr = 0.72,

constant viscosity) to simulate flow over a modified NACA 0012 airfoil undergoing pitch

and plunge motion. The geometry of the NACA 0012 airfoil is modified to close the

trailing edge via the following equation,

y(x) = ±0.6(0.2969
√

x − 0.1260x − 0.3516x2 + 0.2843x3 − 0.1036x4), x ∈ [0, 1].

The initial condition is a steady state solve at a free-stream Mach number of M∞ = 0.2,

and a Reynolds number Re = 5000. We use convenient units in which the airfoil chord is
24
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Figure 8: Euler vortex verification: convergence of the L2 norm of the state error with uniform spatial
refinement for DG and HDG (curves visually overlap). The solid lines correspond to static meshes (no
motion), and the dashed lines correspond to deforming meshes.

c = 1 and the free-stream density and speed are unity, so that the free-stream conservative

state vector is

[
ρ, ρu, ρv, ρE

]
=

[
1, 1, 0, 0.5+1/[M2

∞γ(γ − 1)]
]
.

Full-state boundary conditions are imposed on the farfield boundary, which is 2000

chord-lengths away. The meshes consist of unstructured triangles, curved to quartic

geometry representation on the boundary.

Following a steady-state solve for the initialization, the unsteady simulation begins

with a combined pitch/plunge motion. The vertical displacement, h(t), and the pitch

angle, θ(t), are given by

h(t) = A
1 − cos πt

2
, θ(t) = tan−1 (B sin πt) ,

where A = 0.2 and B = π/16. Finally, the output of interest is the total energy integrated
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over the domain at the final time t = T = 1:

J =

∫
Ω

ρE(~x,T ) dA. (37)

Note that this output measures the work done on the flow by the airfoil – this work

appears as the energy deposited in the flow.

Figure 9 shows contours of entropy in the flow at various times during the unsteady

simulation. The combined pitch-up and upward-plunge motion of the airfoil disturbs

both the wake and the boundary layer near the trailing edge of the airfoil.

(a) t = 0 (b) t = 1/3

(c) t = 2/3 (d) t = 1

Figure 9: Compressible Navier-Stokes flow over a pitching and plunging NACA 0012 airfoil: contours of
entropy at various times in the course of the simulation.

To asses the convergence of the output with mesh refinement, both DG and HDG

(BR2 viscous discretization) were run on a sequence of quasi-uniformly refined meshes,

shown in Figure 10. The starting mesh for this sequence was a mesh adapted anis-

toropically to predict steady-state drag. Subsequent meshes were obtained by global

re-meshing using a grid-implied metric scaled by a constant factor to create an approxi-

mate doubling of degrees of freedom on each finer mesh.
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(a) 678 elements (b) 1584 elements

(c) 3169 elements (d) 5866 elements

Figure 10: Compressible Navier-Stokes flow over a pitching and plunging NACA 0012 airfoil: first four
meshes in sequence for uniform refinement convergence studies. Elements adjacent to the airfoil surface
are curved to provide fourth-order geometry approximation.

DIRK4 was the time-marching method for all runs, with the number of time steps

sufficiently high so that the temporal error was small relative to the spatial error. A truth

solution was computed on a fine mesh consisting of one more uniform refinement and

spatial approximation order p = 4. Figure 11 shows the convergence of the error in

the final flow energy output using the mesh sequence in Figure 10. We see that HDG

and DG produce nearly identical results for all of the runs, with the largest deviations

on the coarsest meshes. In addition, as expected, the errors decrease with increasing

approximation order and with mesh refinement. This result demonstrates that the HDG

ALE formulation is very similar to the DG ALE formulation for this problem, which

is characterized by a relatively high Reynolds number. As we observed in the one-

dimensional verification study, for diffusion-dominated flows, HDG can attain higher

accuracy over DG. In addition, for increasing orders p, the growth of the system scales

only linearly for HDG, whereas it scales quadratically for DG.

The results in Figure 11 show a drop in the error that is not always monotonic (e.g.
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Figure 11: Compressible Navier-Stokes flow over a pitching and plunging NACA 0012 airfoil: conver-
gence of the final-time flow energy integral output relative to a truth solution on a fine mesh. The sequence
of meshes is obtained by quasi-uniform refinement of an initial mesh.

for p = 2), and one may reasonably ask whether uniform refinement is the most efficient

choice for this case. Note that while the unsteady simulation is relatively short, mesh

resolution is required further away from the airfoil during the steady-state initialization,

and hence the task of generating an optimal mesh is not trivial. In the present study we

address this question by a simple experiment: we generate a sequence of adapted spatial

meshes using steady-state mesh optimization [38, 39] on the drag output. These are

constructed specific to each order by prescribing a fixed number of degrees of freedom

(dof). Figure 12 shows the first four meshes of the sequences for each order. Note the

decrease in the number of elements with increasing p for a fixed dof.

We now run the unsteady simulations with DG and HDG, at orders p = 1, 2, 3, us-

ing the mesh sequence specific to each order p. Figure 13 shows the convergence of

the final-time total energy output. Compared to uniform refinement of a single mesh,

we see much larger values of the output error at comparable mesh sizes, and large os-

cillations in the error that do not appear to diminish with mesh refinement. This result

demonstrates that, even though a steady-solve initialization is used for the unsteady runs,

meshes optimized for this steady solve can be severely sub-optimal for the unsteady sim-

28



(a) p=1,Ne =704, dof=2112 (b) p=2,Ne =366, dof=2196 (c) p=3,Ne =221, dof=2210

(d) p=1,Ne =1354, dof=4062 (e) p=2,Ne =678, dof=4068 (f) p=3,Ne =427, dof=4270

(g) p=1,Ne =2643, dof=7929 (h) p=2,Ne =1336, dof=8016 (i) p=3,Ne =834, dof=8340

(j) p=1,Ne =5274, dof=15822 (k) p=2,Ne =2650, dof=15900 (l) p=3,Ne =1650, dof=16500

Figure 12: Compressible Navier-Stokes flow over a pitching and plunging NACA 0012 airfoil: first four
meshes in order-specific adapted meshes, generated by steady-state mesh optimization for drag prediction.
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Figure 13: Compressible Navier-Stokes flow over a pitching and plunging NACA 0012 airfoil: conver-
gence of the final-time flow energy integral output relative to a truth solution on a fine mesh. The sequence
of meshes is obtained by steady-state output-based adaptive mesh refinement on drag.

ulations. The steady-state optimized meshes are indeed tailored for the prediction of the

single output, steady-state drag. While the near-field integration of the drag force resem-

bles the integration required for a power calculation, in the unsteady simulation, mesh

resolution further away from the airfoil, in areas dictated by the mesh motion, affects

the unsteady output as well. Uniform refinement blindly adds such resolution, whereas

the steady-state optimization may leave certain areas with consistently-low resolution.

This example motivates the use of unsteady output-based adaptive techniques, which we

have already investigated for DG [29, 31], and which are the subject of ongoing work

for HDG.

5. Conclusions

In this paper we present a hybrid discontinuous Galerkin (HDG) discretization for

unsteady simulations on deformable domains. We present details of the ALE formu-

lation for HDG, including the transformation of the gradient equation. Compared to

traditional DG, HDG offers computational advantages at high-order approximation due

to static condensation of element-interior degrees of freedom. Such computational sav-
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ings extend to implicit unsteady simulations, as the sizes of the systems to be solved at

each time step are reduced. In addition, through a separate approximation of the gra-

dient, HDG can yield improved (optimal) convergence of outputs computed from the

gradient of the state.

Results from a one-dimensional advection-diffusion verification study on a non-

deforming periodic domain show that solutions on moving meshes are very close to

those on non-moving meshes. Specifically, the differences in scalar output errors be-

tween the two are often negligible relative to the size of the discretization error. For

the Euler verification example, the differences are larger, most likely due to the larger

magnitude deformation in this case. However, the differences decrease with increasing

mesh resolution, giving credence to the implementation of the ALE formulation.

The one-dimensional verification tests also highlight the importance of the initial

condition on output convergence rates. Optimal rates are not observed for all initial con-

dition interpolations, the pointwise errors of which are all O(hp+1). To attain optimal

output error rates, the initial conditions must come from a projection that does not intro-

duce output errors higher than the expected optimal rate, e.g. 2p + 1 for advection flows.

A least-squares projection, with initial condition errors in integral outputs of O(h2p+2) is

sufficient in this regard.

Two viscous stabilization methods were tested for the HDG discretization: one based

on a constant viscous length scale, and one based on the second form of Bassi and Rebay

(BR2), which yields a viscous length scale that scales inversely with the mesh size,

1/h. The constant viscous length scale stabilization yields optimal convergence rates for

diffusion-dominated problems, but the BR2 form (with its higher jump penalization for

smaller grid sizes) was observed to be more robust for the compressible Navier-Stokes

simulations. For advection-dominated flows, the differences in the accuracy between

these two methods is not large.

A test with the full compressible Navier-Stokes equations at moderate Reynolds

number on a pitching and plunging airfoil revealed that both discretizations, DG and
31



HDG, produce nearly the same output on a given mesh. Under uniform refinement, out-

put accuracy improved, and high order spatial approximation yielded higher accuracy

for a given mesh, as expected. To test whether the convergence of the output could

be improved, an adaptive sequence of meshes was generated, one sequence for each

approximation order, using steady-state drag-based mesh optimization. However, the

unsteady, deforming simulations with these meshes resulted in high errors in the final

flow energy output and did not exhibit convergence with increasing degrees of freedom.

This behavior motivates the need for unsteady output-based mesh adaptation, which is

the subject of ongoing work. This will include not only spatial refinement, but also tem-

poral refinement, so that both errors can be kept appropriately in check. We note that no

geometric conservation law was implemented in this study, and while geometric conser-

vation errors are present in the ALE runs, their effect on output accuracy is comparable

to that of discretization error and diminishes with high order and especially adaptive

mesh refinement.

Finally, another topic of future work is a computational time comparison of HDG

and DG for cases similar to those considered here. Presently, neither solver is optimized

for simulations with mesh motion, and while wall clock time advantages were observed

for HDG starting at p = 3, detailed and reliable timings are not yet available. Further-

more, such timings will likely have to incorporate parallel efficiency considerations on

distributed memory architectures, for large-scale simulations.
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