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This paper demonstrates an approach for creating a coupled partitioned solver for the
high-order simulation of static fluid-structure interaction. A high-order discontinuous Galerkin
formulation of the Navier-Stokes equations is used to model the fluid domain in addition to a
high-order finite element method used to model the elastic structural domain. An Arbitrary
Lagrangian-Eulerian formulation is used to facilitate mesh deformation in the fluid domain,
using radial basis function interpolation. Fluid-structure coupling is also discussed, where
spatial coupling is accomplished via a weighted least-squares extrapolation transfer technique
for loads and displacements. A nonlinear block Gauss-Seidel iteration process is used to
converge the coupled solution for static scenarios. The high-order coupled solution is verified
for a three-dimensional test case of a flexible half-aircraft configuration at a reference cruise
flight condition. A discussion of mesh refinement reviews the merits of both p- and h-refinement
strategies applied to the current test case.

I. Introduction
There has been a growing interest in using high-order discretization methods for complex and challenging problems

such as free-surface flows and fluid-structure interaction (FSI). Numerical simulation of FSI is an active area of
research that spans many different disciplines. The focus of this paper is on the aeronautical applications of FSI where
numerical simulations can be used to improve the understanding and prediction of coupled aeroelastic responses and
instabilities observed in aircraft [1]. The interaction between the fluids and structures is nonlinear and involves multiple
scales, thereby making the coupled system challenging to solve. Many approaches have been suggested for simulating
fluid-structure interaction [2]. Numerical approaches for solving the coupled fluid-structure system can be broadly
divided into two categories: monolithic and partitioned. The monolithic approach [3] is a fully-coupled approach where
the two systems are solved simultaneously. This approach combines both subsystems into one large system of equations,
which often leads to accurate results but requires significant implementation effort and uses less efficient solution
techniques. The second approach, generally referred to as the partitioned approach [4], uses multiple solvers, each
responsible for a single discipline in the problem, and couples the domains both spatially and temporally with a specified
communication protocol or algorithm. This method facilitates software modularity and mathematical modelling and is
what is used presently in this work.

One challenging aspect of the partitioned approach to FSI involves how to transfer necessary information between
different disciplines or domains. The fluid-structure interface for the partitioned approach is often incongruous between
each mesh, so oftentimes the nodes belonging to each domain on the interface are not shared between them, and the
information at the nodes cannot be directly applied to the coupled domains. Additionally, large gaps can also exist
between meshes at the interface, for example at the leading or trailing edge of a wing section outer-mold line and
the internal wingbox structure. Transferring a field quantity such as loads or displacements across a non-matching
interface can therefore require both interpolation and extrapolation of the field quantity, which can be difficult to
achieve in a robust and efficient manner. Typical approaches to this problem include projection-based methods such
as those provided by Brown [5] and Farhat et al. [6], as well as interpolation-based methods such as those based on
radial basis functions (RBFs) provided by Rendall and Allen [7]. Projection-based methods typically require access to
the underlying element shape functions and a connectivity between every interface node and nearest element, which
complicates implementation. Interpolation-based methods on the other hand generally avoid these requirements and
operate on sets of point clouds, however they tend to scale poorly with model size and require sub-sampling which can
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lead to fictitious load and stress distributions when applied to aeroelastic systems. The presently adopted approach
is the matching-based extrapolation of loads and displacements (MELD) method [8]. MELD is based on a weighted
least-squares solution and is able to achieve localized information transfer similar to projection-based methods, with the
modularity and non-intrusiveness typically associated with interpolation-based methods.

Another challenging aspect of the numerical simulation of FSI is how deformable domains are handled between
the different disciplines. A common way of simulating problems involving deformable domains in computational
fluid dynamics (CFD) is by using Arbitrary Lagrangian-Eulerian (ALE) methods [9]. In the ALE framework, the
fluid mesh moves, but at a velocity different from that of the flow, which is useful for modeling problems in which
boundaries of the mesh move or deform. The ALE method uses a map between the deforming physical domain and a
static reference domain and solves transformed equations on the reference domain [10]. Fluid simulations based on
the ALE formulation can use 𝑟−adaptation to obtain an optimized mesh close to solid boundaries [11] or use a mesh
deformation technique to conform the fluid mesh to the moving boundaries. Several mesh deformation methods exist in
the literature [12], and these can be classified into two main categories: 1) physical-analogy-based techniques and 2)
interpolation-based techniques. A physical analogy method [13] may consider each edge of the mesh to behave as a
spring, which has its own stiffness value. On the other hand, an interpolation-based method computes the movement
of grid nodes as a function of boundary nodes, without any particular physical meaning. RBF interpolation [14] and
inverse distance methods [15] are some examples of interpolation-based techniques. This paper considers primarily the
mesh deformation techniques based on RBFs.

In this paper, the MELD transfer technique and RBF mesh motion interpolation are combined along with high-order
formulations for both fluid and structural disciplines to create a high-order, parallel, computational FSI framework for
static conditions. This framework is developed and verified for a three-dimensional test case featuring a half-aircraft
model at a cruise flight condition. The outline of the remainder of the paper is as follows. Section II reviews the
governing equations of the fluid and structural subsystems. Section III reviews the spatial coupling algorithm and
solution process for the partitioned approach. Section IV outlines the test case details and the results generated using
these methods. Finally, section V summarizes the approach and results of the coupled FSI solver presented and discusses
future developments.

II. Governing Equations

A. Compressible Flow
The fluid system is governed by the Navier-Stokes equations, given by

𝜕u 𝑓

𝜕𝑡

���
𝑥
+ ∇ · ®F(u 𝑓 ,∇u 𝑓 ) = 0, ®F = ®F

𝑖
(u 𝑓 ) − ®F

𝑣
(u 𝑓 ,∇u 𝑓 ), (1)

where u 𝑓 (®𝑥, 𝑡) ∈ R𝑛 𝑓 is the conservative state vector, ®𝑥 ∈ R𝑑 is the spatial coordinate, 𝑡 ∈ R is time, and ®F
𝑖

and ®F
𝑣

are the inviscid and viscous fluxes, respectively. Additionally, 𝑛 𝑓 is the number of governing equations and 𝑑 is the
number of spatial dimensions. In the case of a non-deformable domain, the fluid equations are solved numerically in the
Eulerian frame of reference, where the computational grid is fixed relative to the fluid. However, numerical simulation
of fluid dynamics involving a deforming domain, such as in the case of FSI, faces issues due to the lack of a precise
interface definition and under-resolved flow features when solved in the Eulerian frame of reference. Alternatively, the
Lagrangian approach, in which each node in the fluid mesh follows the material particle during motion faces problems
dealing with large distortions of the computational domain. To resolve these issues, an alternative method, the Arbitrary
Lagrangian-Eulerian approach, has been introduced and is applied in the present work.

B. Arbitrary Lagrangian-Eulerian Formulation
The Arbitrary Lagrangian-Eulerian (ALE) approach combines advantages of both the Eulerian and Lagrangian

approaches. In this method, the deformable physical domain is mapped to a fixed reference domain by a time-dependent
mapping. A simple and effective ALE method for the discontinuous Galerkin discretization was introduced by Persson
et al. [10] and a similar approach [16] is followed in this work.

Let the deforming physical space be defined by 𝑣(𝑡), the static reference space by 𝑉 , and let G( ®𝑋, 𝑡) represent the
one-to-one time-dependent mapping between the two spaces. Each point ®𝑋 in the static reference space is mapped to a
corresponding point ®𝑥( ®𝑋, 𝑡) in the physical space, based on the specified deformation of the mesh. The Jacobian of the
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mapping, represented by 𝐺, and the mapping velocity, ®𝑣𝑋, are given by

𝐺 = ∇𝑋G, ®𝑣𝑋 =
𝜕G
𝜕𝑡

���
𝑋
. (2)

Let 𝑔 = det(𝐺). The Navier-Stokes equations mapped to the reference frame can be written as [10]
𝜕u𝑋 𝑓

𝜕𝑡

���
𝑋
+ ∇𝑋 · ®F𝑋 (u𝑋 𝑓 ,∇𝑋u𝑋 𝑓 ) = 0, ®F𝑋 = ®F

𝑖

𝑋 (u𝑋 𝑓 ) − ®F
𝜈

𝑋 (u𝑋 𝑓 ,∇𝑋u𝑋 𝑓 ), (3)

where the transformed state, derivatives, and fluxes in the reference frame are given by

u𝑋 𝑓 = 𝑔u 𝑓 , (4)

∇𝑥u 𝑓 = ∇𝑋 (𝑔−1u𝑋 𝑓 )𝐺−𝑇 = (𝑔−1∇𝑋u𝑋 𝑓 − u𝑋 𝑓∇𝑋 (𝑔−1))𝐺−𝑇 , (5)

®F
𝑖

𝑋 = 𝑔𝐺−1®F
𝑖
− u𝑋 𝑓𝐺

−1®𝑣𝑋, ®F
𝜈

𝑋 = 𝑔𝐺−1®F
𝜈
. (6)

C. Fluid System Spatial Discretization
To discretize the state equations, given in Eqn. 3, a discontinuous Galerkin (DG) finite-element method [17–19] is

used in space. As a finite-element method, DG approximates the state u 𝑓 in functional form using linear combinations
of basis functions on each element, where no continuity constraints are imposed between adjacent elements. Given 𝑇ℎ, a
non-overlapping tessellation of the domain Ω into 𝑁𝑒 elements, the state on an element, Ω𝑒, is approximated as

u(®𝑥( ®𝜉))
���
Ω𝑒

=

𝑁𝑝∑︁
𝑛=1

U𝑒𝑛𝜙𝑒𝑛 (®𝑥( ®𝜉)). (7)

In this equation, 𝑁𝑝 is the number of basis functions per element, U𝑒𝑛 is the vector of 𝑠 coefficients for the 𝑛th basis
function on element 𝑒, 𝜙𝑒𝑛 (®𝑥( ®𝜉)), and 𝑛 𝑓 is the state rank. ®𝑋 denotes the global coordinates, and ®𝜉 denotes the
reference-space∗ coordinates in a master element. Formally, u ∈ Vℎ = [Vℎ]𝑛 𝑓 , where, if the elements are not curved,
Vℎ =

{
𝑢 ∈ 𝐿2 (Ω) : 𝑢 |Ω𝑒

∈ P 𝑝 ∀ Ω𝑒 ∈ 𝑇ℎ
}
, and P 𝑝 denotes polynomials of order 𝑝 on the element. With the spatial

discretization described above, the governing equations can written in abbreviated form as

R 𝑓 (u 𝑓 , ®u𝑠) = 0, (8)

where R 𝑓 is the discrete spatial residual vector. Each aeroelastic iteration requires the minimization of R 𝑓 below a
specified tolerance, 𝜖 𝑓 , after which the fluid pressure and shear forces can be post-processed on the surface boundaries
that are marked as part of the fluid-structure interface. The forces are proportional to the fluid stresses determined at
each element quadrature point on the boundary, where the pressure, ®𝑝𝑞 , and shear, ®𝑠𝑞 , stresses for each quadrature point
𝑞 can be expressed as the following

®𝑝𝑞 = ImomF𝑖
𝑞 ,

®𝑠𝑞 = ImomF𝜈
𝑞 ,

(9)

where F𝑖
𝑞 and F𝜈

𝑞 are respectively the normal inviscid and viscous fluxes evaluated at the quadrature points, and
Imom ∈ R𝑑×𝑛 𝑓 is a matrix that isolates the 𝑑 momentum components from the 𝑛 𝑓 entries in the conservative flux. The
total fluid stress defined at a single quadrature point, ®𝑓𝑞 , is then just the sum of the pressure and shear stresses. The total
fluid force vector can be obtained by integrating the quadrature point stresses with the appropriate quadrature weights
𝑤𝑞 such as

®𝐹 𝑓 =

𝑛𝑞∑︁
𝑞=1

®𝐹 𝑓 𝑞 , ®𝐹 𝑓 𝑞 = 𝑤𝑞
®𝑓𝑞 = 𝑤𝑞 ( ®𝑝𝑞 + ®𝑠𝑞), (10)

where ®𝐹 𝑓 ∈ R𝑑 is the total fluid force on the boundary, and 𝑛𝑞 is the number of quadrature points on the boundary.
The quadrature-point contributions to the total fluid force vector, ®𝐹 𝑓 𝑞 , are assembled into a global array, ®F 𝑓 ∈ R𝑛𝑞×𝑑 ,
and passed to the structural subsystem for aeroelastic analysis. The fluid physics and DG finite-element method are
implemented in the CFD code used presently called xflow.

∗Reference-space here pertains to the master element, not the ALE reference domain.
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D. Linear Elasticity
For the case of linear elasticity, the structural residual can be written as the following, where the subscript 𝑠 denotes

terms related to the structural subsystem

R𝑠 = K®u𝑠 − ®F𝑠 = 0,
R𝑠 (®u𝑠 , u 𝑓 ) = 0,

(11)

where K is the structural stiffness matrix of the undeformed structure, ®u𝑠 is the vector of structural states, and ®F𝑠 is the
structural load vector. Note that a spatial coupling mechanism is necessary to transfer ®F 𝑓 to ®F𝑠 in a manner that is both
consistent and conservative. These equations are implemented in the Toolkit for the Analysis of Composite Structures
(TACS) [20, 21]. TACS is an open source, adjoint-enabled, parallel finite-element analysis framework typically used for
gradient-based multidisciplinary design optimization. TACS has previously been coupled with various fluid solvers for
aerostructural optimization applications [22–24]. Once the structural displacements are solved for, the spatial coupling
mechanism is used to transfer ®u𝑠 to the set of fluid boundary surface displacements, ®w 𝑓 .

E. Structural System Spatial Discretization
The structural domain is discretized in space with a finite element method. The kinetic and potential energies

are integrated over each element in the structural domain based on the type of element used and its corresponding
shape functions. TACS most commonly employs a general-purpose high-order shell element based on the Mixed
Interpolation of Tensorial Components (MITC) [25] formulation, although other element types are supported as well.
These shell elements are well-suited for thin-walled structures typically associated with the structures of aircraft. Note
that while nodal rotations are included in the structural states for MITC shell elements, they are not included when
passing structural information to the fluid interface. Only the structural displacements are transferred.

III. Fluid-Structure Coupling

A. Spatial Coupling
The spatial coupling between the fluid and structural subsystem involves information transfer across the fluid-structure

interface. In general, the fluid-structure interface is non-matching between the two domains, so the transfer of loads
from the fluid mesh to the structural mesh and the displacement and velocity of the structural mesh to the fluid mesh is
not directly one-to-one. Various methods for the information transfer across non-matching sets exist [26–28], one such
method being the Matching-based Extrapolation of Loads and Displacements (MELD) [8]. MELD has previously been
implemented within the open-source toolkit for aeroelastic analysis and optimization called FUNtoFEM [24], which is
used presently.

MELD works by first initializing the surface boundaries in both the fluid and structural meshes, associating each
fluid surface mesh node, ®x 𝑓 , to a specified number of nearest structural surface nodes, ®x𝑠. The vector of fluid surface
mesh displacements, ®w 𝑓 , is solved for in a weighted least-squares sense preserving rigid-body translation and rotation,
where the transfer operation can be written in a residual form and is dependent on the surface node locations and
structural displacements

D(®x𝑠 , ®x 𝑓 , ®u𝑠 , ®w 𝑓 ) = 0. (12)

The fluid loads, which are evaluated at the quadrature points of the fluid surface boundaries, are extrapolated to
the structural mesh via a method derived from the principle of virtual work. This procedure is both consistent and
conservative and can be written in the following residual form, which is dependent on the surface node locations,
structural displacements, and fluid loads

L(®x𝑠 , ®x 𝑓 , ®u𝑠 , ®F𝑠 , ®F 𝑓 ) = 0. (13)

An advantage of MELD over other methods is that it operates entirely with sets of point clouds, not requiring any
underlying connectivity information for the structural and fluid surface meshes as well as not requiring any element
integration of shape functions. Additionally, when compared to an interpolation-based RBF transfer scheme where
sub-sampling is necessary to reduce computational time, the load distribution from MELD avoids fictitious load
concentrations and leads to more accurate and realistic load and resulting stress distributions in the structure. MELD
offers a few parameters that determine the quality of the information transfer and that can be freely adjusted. The decay
parameter, 𝛽, controls the amount of influence a node has on the transferred quantity based on spatial proximity. The
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number of structural nodes, 𝑁 , used to link to each fluid node affects how well loads are conserved and displacements
are localized in the resulting transfer. Note that in the current implementation, two different sets of point clouds are used
for each direction of information transfer across the fluid-structure interface. The structural surface nodes are used in
both sets. However, the fluid surface mesh nodes are used to receive displacements and velocities, whereas the fluid
surface quadrature points are used to send fluid loads.

B. Mesh Motion
For deforming domains, the ALE formulation of the Navier-Stokes equations requires a mapping between the

reference and deformed physical mesh. In this work, RBFs provide that mapping and are used for deforming the interior
fluid mesh to conform to the flexible structure that define the fluid-structure interface on the boundaries of the fluid
mesh. To determine a specific fluid volume node displacement or velocity, it is interpolated based on the interpolation
function taking the form

®𝑞( ®𝑋) =
𝑛𝑐∑︁
𝑖=1
®𝛾𝑖𝜙(∥ ®𝑋 − ®𝑋𝑐𝑖 ∥) + ®𝑝( ®𝑋), (14)

where ®𝑞( ®𝑋) is the interpolation function, 𝑛𝑐 is the number of RBF centers (nodes where a field quantity is known, i.e. the
number of fluid surface nodes), ®𝛾 is a set of interpolation coefficients (one for each spatial dimension), 𝜙 is a given basis
function with respect to the Euclidean distance ∥ · ∥, and ®𝑝( ®𝑋) is a linear polynomial. Considering the application of
mesh motion, the inclusion of the linear polynomial term dictates whether the resulting interpolation function preserves
rigid body translations and rotations in the mesh. The preservation of rigid body translations and rotations is not desired
since the motion of the boundary should be diffused and smoothed throughout the interior of the domain. Therefore, the
linear polynomial terms are neglected. For a given deformed fluid surface boundary, a requirement is placed on the
interpolation function to return the known states at the RBF centers, i.e. the fluid surface boundary nodes, which leads
to the following linear system that can be solved to determine the unique set of interpolation coefficients

®𝑞( ®𝑋𝑐) = ®w 𝑓 , (15)
𝚽®𝜸 = ®w 𝑓 , (16)

where 𝚽 ∈ R𝑛𝑐×𝑛𝑐 is a symmetric matrix containing the evaluation of the RBF between each center point, and ®𝜸 ∈ R𝑛𝑐×𝑑
is a matrix of interpolation coefficients for each point corresponding to each spatial dimension. The same process can
be followed for the fluid surface velocity, ¤®w 𝑓 , to determine its own unique set of interpolation coefficients. For steady
FSI, however, the mesh velocity is defined to be zero and can be neglected in the solution. The residual form of the
mesh motion linear system can be written as

H( ®w 𝑓 , ®𝜸) = 0. (17)

The interpolation coefficients are used to determine the new mapping, G( ®𝑋, 𝑡), which is unique for each quadrature
point involved in an evaluation of the fluid residual. The computational cost of RBF interpolation methods scales poorly
as the number of center points increases. However, for the application of mesh motion, only the general shape and
geometry of the deforming boundaries needs to be represented for the mesh displacement and velocity to be interpolated
well and mesh quality to be preserved. Therefore, sub-sampling of the fluid surface mesh is typically satisfactory in
preserving mesh quality while keeping the computational cost low. Wendland’s 𝐶2 basis function,

𝜙(𝑅) =
{

0, if 𝑅 > 1
(4𝑅 + 1) (1 − 𝑅)4, if 𝑅 ≤ 1

(18)

where 𝑅 = ∥ ®𝑋 − ®𝑋𝑐 ∥/𝑟, and 𝑟 is the support radius, is used to achieve improved efficiency [29]. Compact supports
restrict the motion in the mesh to the local vicinity of the moving boundary specified by the support radius. Points
outside of the support radius have no influence and do not participate in the interpolation of motion in the mesh, thereby
reducing the computational cost when applying the mapping between the physical and reference domains. Wendland’s
family of RBFs come in varying levels of smoothness as well (𝐶0, 𝐶2, 𝐶4, 𝐶6, etc.), which can be advantageous to use
for fluid meshes with curved elements and high-order solutions.

With the interpolation coefficients known, the ALE mapping then becomes the following, which is unique for each
quadrature point located at position ®𝑋 at time 𝑡 in the mesh

®𝑥 = G( ®𝑋, 𝑡) = ®𝑋 +
𝑛𝑐∑︁
𝑖=1
®𝛾𝑖𝜙(𝑅𝑖). (19)
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The Jacobian of the mapping for each point, 𝐺 ∈ R𝑑×𝑑 , is determined through the chain rule of differentiation

𝐺
𝑗𝑘

= 𝐼 𝑗𝑘 +
𝑛𝑐∑︁
𝑖=1

𝛾𝑖 𝑗
𝜕𝜙

𝜕𝑅𝑖

𝜕𝑅𝑖

𝜕𝑋𝑘

where, 𝑗 , 𝑘 = 1...𝑑. (20)

C. Static FSI Solution Process
The nonlinear block Gauss-Seidel process for aeroelastic iterations is used to converge the coupled solver for a static

condition. Each coupled iteration begins with a fluid evaluation to determine fluid loads. To aid in the stability of the
coupled solution, a relaxation factor, 𝜔, can be applied to either the fluid loads or the structural update prior to being
transferred across the fluid-structure interface. In the case where geometrically-nonlinear effects are included in the
structural solution, the relaxation is traditionally applied to the fluid loads rather than the structural displacements.
However, for a linear structural analysis, both choices are equivalent. In the current implementation, the relaxation,
which is determined at each iteration with the Aitken acceleration update formula, is applied to the fluid loads. After the
fluid loads are relaxed, they are transferred from the fluid surface quadrature points to the structural surface nodes via the
MELD transfer scheme. Following this, the structural solution is obtained. The coupled convergence is then evaluated
and compared to a convergence criterion. If convergence has not yet been reached, the structural displacements are then
transferred to the fluid surface mesh via MELD. The RBF mesh motion interpolation coefficients are then solved prior to
the next fluid evaluation, where the mesh motion mapping occurs within the ALE formulation. The cycle repeats until
the convergence criterion is met or a maximum number of coupled iterations is reached. The process assumes that each
solver independently solves its own set of governing equations for a particular deformed configuration within a specified
tolerance, 𝜖 𝑓 and 𝜖𝑠 for the fluid and structural solvers, respectively. The 𝐿2 norm of the structural update is compared
with 𝜖FSI to determine the convergence of the coupled system. Algorithm 1 describes the iterative solution process.

Algorithm 1 Nonlinear Block Gauss-Seidel solution process.
Require: ®x𝑠 , ®x 𝑓 , 𝑘max, 𝜔, 𝜔min

®u(0)𝑠 ← 0, ®F
(0)
𝑓 ← 0,Δ®F

(0)
𝑓 ← 0 ⊲ Initialize transfer and update quantities to 0

for 𝑘 = 1 to 𝑘max do
®F
(𝑘)
𝑓 ← R 𝑓 (u(𝑘)𝑓 , ®u(𝑘−1)

𝑠 ) ≤ 𝜖 𝑓 ⊲ Solve the fluids and determine surface boundary loads

Δ®F
(𝑘)
𝑓 = ®F

(𝑘)
𝑓 − ®F

(𝑘−1)
𝑓 ⊲ Evaluate the fluid update

𝜔 = 𝜔

(
1 −

(
Δ®F
(𝑘)
𝑓 −Δ®F

(𝑘−1)
𝑓

)
·Δ®F

(𝑘)
𝑓


Δ®F(𝑘)𝑓 −Δ®F

(𝑘−1)
𝑓




2

)
⊲ Apply Aitken acceleration update formula

𝜔 = max(min(𝜔, 1), 𝜔min) ⊲ Bound the relaxation factor
®F
(𝑘)
𝑓 = ®F

(𝑘−1)
𝑓 + 𝜔Δ®F

(𝑘)
𝑓 ⊲ Increment and under-relax the fluid surface loads

®F
(𝑘)
𝑠 ← L(®x𝑠 , ®x 𝑓 , ®u(𝑘−1)

𝑠 , ®F
(𝑘)
𝑠 , ®F

(𝑘)
𝑓 ) = 0 ⊲ Transfer the fluid surface loads to the structural surface

®u(𝑘)𝑠 ← R𝑠 (®u(𝑘)𝑠 , u(𝑘)
𝑓
) ≤ 𝜖𝑠 ⊲ Solve for the structural displacements

Δ®u(𝑘)𝑠 = ®u(𝑘)𝑠 − ®u
(𝑘−1)
𝑠 ⊲ Evaluate the structural update

if ∥Δ®u(𝑘)𝑠 ∥ ≤ 𝜖FSI then
break ⊲ Check for coupled convergence

end if
®w(𝑘)
𝑓
← D(®x𝑠 , ®x 𝑓 , ®u(𝑘)𝑠 , ®w(𝑘)

𝑓
) = 0 ⊲ Transfer structural displacements to fluid surface boundary

®𝜸 (𝑘) ← H( ®w(𝑘)
𝑓
, ®𝜸 (𝑘) ) = 0 ⊲ Solve for mesh motion interpolation coefficients

end for

Both the TACS and FUNtoFEM libraries are written in C++, but also include a Python interface that simplifies
their setup and usage. A similar Python interface was developed for xflow, which is written in C. A common Python
interface allows for parallel coupled FSI solutions to be done using these three components and facilitates the data
passing between them. Each solver is initialized via its respective input files and performs its solution on its own MPI
communicator, consisting of its own allotment of processors. Data are transferred via the MELD transfer scheme
implemented in FUNtoFEM, which handles the data across the different communicators and domains modeled in the
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problem. All of the present results were generated using an allotment of 24 Intel® Xeon CPU E7-4850 v4 running at
2.10 GHz.

IV. Numerical Results

A. uCRM-9 Test Case
The undeflected Common Research Model (uCRM) is the result of an effort to provide publicly available benchmarks

for transonic aeroelastic wing analysis and design optimization [30]. The uCRM, a variant of the original NASA
Common Research Model (CRM), is sized to be representative of a long-range, twin-aisle transport aircraft and is
available in two different configurations: a traditional layout with an aspect ratio of 9, and a variant with an aspect
ratio of 13.5 that is more flexible. In the interest of avoiding geometric nonlinearities in the structural response in this
preliminary work, the aspect ratio 9 configuration is used. Table 1 presents a subset of the general vehicle characteristics.
The reference condition used for verification is a cruise flight condition, the details of which can be found in Table 2.
This reference condition includes data for both fluid and structural outputs for varying levels of mesh fidelity. In the
interest of computational time, the coarsest of structural and fluid meshes is used for this verification. Note that the
Reynolds number for this reference condition uses the uCRM-9 mean aerodynamic chord (MAC) for the characteristic
length. Fig. 1 shows both the structural and fluid models for the uCRM-9.

Table 1 uCRM-9 vehicle characteristics.

Parameter Value Units
Aspect Ratio 9 -
Span 58.76 m
MAC 7.01 m
Reference Area 383.74 m2

1/4 Chord Sweep 35 deg
Taper Ratio 0.275 -

Table 2 uCRM-9 reference cruise data.

Quantity Value Units
Altitude 11,277.6 m
Mach 0.85 -
Re 43,130,072 -
𝛼 2.014 deg
𝐶𝐿 0.5 -
max(𝛿𝑧) 2.594 m

The structural model used for this study is identical to the publicly available coarse model. Note that only the wingbox
of the half-aircraft is considered flexible, whereas the fuselage and horizontal tail members are considered rigid and
are not modeled structurally. As such, they do not directly contribute to the loads applied to the flexible wingbox.
Even though the coarse structural mesh is used presently, the discretization of this mesh is relatively fine and features
are well resolved. When compared to the finest discretization available, a structural solution featuring a gravitational
load showed a difference of only 0.05% between the maximum displacement in the coarse and fine meshes, giving
confidence that the coarse structural mesh is well within the asymptotic range of convergence for a linear problem. The
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(a) Farfield fluid volume mesh (b) Surface fluid mesh (c) Wingbox structural mesh

Fig. 1 Fluid and structural discretizations for the uCRM-9.

multi-block fluid mesh provided for the coarse fluid discretization featured nearly 300 cell blocks with 1.23 million
cells in total. This mesh is not directly compatible with the mesh format required for the fluid solution with xflow.
Therefore, the mesh was processed to adhere to a usable format, which removed duplicate nodes and merged cell
blocks into a single element group. This mesh preprocessing also included a step to agglomerate linear elements into
second-order, curved hexahedral elements on the vehicle boundaries. The final mesh used for the fluid solution is
relatively coarse, particularly in the normal direction of the vehicle surface boundaries. Therefore, the final mesh is not
well suited for the inclusion of viscous effects with a Reynolds-Averaged Navier-Stokes (RANS) solution given the
lack of resolution in the boundary-layer discretization. Instead, an inviscid Euler solution is carried out, which leads to
expected differences in the results when compared to the reference RANS solution and is discussed further below. Table
3 presents discretization details of both the coarse structural and coarse fluid meshes used in this study.

Table 3 uCRM-9 coarse mesh discretization information.

Mesh Type No. Nodes No. Elements
Fluid 161,726 72,532

Structural 23,886 25,129

B. Coupled Response
The static coupling procedure in Algorithm 1 has been applied to the uCRM-9 at the reference cruise flight condition.

Given the coarse discretization of the fluid domain, a spatial refinement study was conducted to achieve a true converged
result with which a comparison to the reference data could be made. A uniform refinement study on the order of
elemental polynomial basis functions, 𝑝, was conducted. This is one of the advantages of the DG finite-element
formulation implemented in xflow, which easily allows for spatial refinement without the need for re-meshing. The order
of approximation in all fluid elements was incremented from 𝑝 = 0 to 𝑝 = 3. Note that when constant element basis
functions are used, i.e. 𝑝 = 0, in a DG FEM, the solution degenerates to a first-order finite-volume method solution. The
structural mesh was kept unchanged throughout each of the cases given its relatively fine discretization and agreement
with the reference data when checked with a reference load case not shown here. Among each of the cases, the coupling
parameters used to define the MELD transfer schemes were held constant along with the mesh motion parameters. This
is due to the fact that both the fluid and structural mesh nodal information were not changing between cases. Table 4
summarizes the coupling, mesh motion parameters, and tolerances used for the coupled solutions. Note, however, that
the metric used to check convergence of the fluid residual is an absolute tolerance. This absolute tolerance should be
sized appropriately based on the size/scaling of the mesh geometry as well as the spatial order of approximation used in
the solution. Therefore, while 𝜖 𝑓 = 1 · 10−5 was suitable for the low-order solutions on the given mesh/geometry, the
convergence tolerance was increased for the high-order solutions.
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(a) Vehicle (b) Wingtip

Fig. 2 TACS-xflow displacement magnitude convergence history for 𝑝 = 0, 1, 2, 3.

(a) Vehicle (b) Wingtip

Fig. 3 TACS-xflow 𝐶𝑝 convergence history for 𝑝 = 0, 1, 2, 3.
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Table 4 Coupling parameters used for uCRM-9 TACS-xflow solutions.

Parameter Description Value
𝛽s2f Decay parameter for the MELD transfer from structural to fluid domain 0.5
𝑁s2f Number of nearest structural nodes to link to each fluid surface node for the MELD

transfer from structural to fluid domain
250

𝛽f2s Decay parameter for the MELD transfer from fluid to structural domain 0.5
𝑁f2s Number of nearest structural nodes to link to each fluid surface quadrature point for

the MELD transfer from fluid to structural domain
250

- Compact RBF to use for the mesh motion interpolation 𝐶2

𝑟 Support radius (m) of the selected compact RBF 36
𝑛𝑐 Number of fluid surface nodes (RBF centers) that define the mesh motion ∼1000
𝜖𝑠 Relative tolerance used for the solution of structural states 1 · 10−12

𝜖 𝑓 Absolute tolerance used for the solution of fluid states 1 · 10−5

𝜖FSI Absolute tolerance used for the coupled convergence criterion 1 · 10−3

In all four of the coupled solutions produced with the TACS-xflow framework, each coupled solution converged in
10 or fewer coupled static iterations for the specified tolerances. The time required for each coupled static iteration
was dominated by the fluid solution, which scaled with the order of approximation used. Sample results of the final
converged configurations can be seen in Fig. 2 and 3. The total coefficient of lift, 𝐶𝐿 , and the maximum wingtip
vertical deflection, max(𝛿𝑍 ), were the outputs selected to make comparisons against the reference uCRM-9 data. The
TACS-xflow convergence study for these outputs is shown in Fig. 4, where they are compared to the reference data. In
both the structural and fluid outputs shown, there is an over-prediction in the final converged values, corresponding
to 13.6% error in max(𝛿𝑍 ), and 17.7% error in 𝐶𝐿 . This discrepancy is expected given the difference in the physics
modeled in xflow versus the reference solution. The lack of viscosity in the Euler solution of xflow leads to a fluid
solution that lacks a boundary layer and related boundary layer effects. This difference is made clear by comparing the
coefficient of pressure, 𝐶𝑝, from the TACS-xflow Euler solution to the RANS reference at four span-wise locations
along the wing, as shown in Fig. 5. The sectional views indicate that the Euler solution predicts the shock further
towards the trailing edge of the upper surface of the wing compared to the RANS solution, leading to an increased
suction on the upper surface of the wing and an overall higher lift condition. The inclusion of viscous effects produces
a boundary layer, which can act as an effective thickness added to the wing profile along the chord direction of the
section. This additional thickness is likely to move the shock closer to the leading edge of the wing, which would lead
to an increase in total drag and a decrease in total lift. The decrease in lift would then lead to a decrease in the wing
displacement and both outputs being compared would show a reduction in error with the reference. Therefore, the error
in the current comparisons is most likely attributed to the discrepancy in the physics being modelled and is unlikely a
result of the coupling procedure implemented in the TACS-xflow framework. Given the expected differences in physics
being modelled, the overall agreement between the reference and TACS-xflow is acceptable.

C. Mesh Refinement
For the selected test case, it has been demonstrated here that the overall accuracy of the coupled outputs is highly

sensitive to the accuracy of the fluid-domain solution. The current linear structural solution is computationally
inexpensive and even a finely-discretized structural domain can be solved for in a fraction of the time required for
the fluid-domain solution. Likewise, the transfer of data across the fluid-structure interface is on the same order of
expense as the structural solution. Therefore, in practice, a convergence study for the coupled problem should prioritize
the refinement of the fluid-domain solution when complex and nonlinear flow features like shocks are present like in
the test case used presently. Given the computational expense of the present fluid-domain solution, the refinement
should be done in a way to achieve the greatest improvement in the output of interest for the least amount of additional
computational effort. For a finite-element solution, spatial refinement is accomplished either through increasing the
spatial order of the element basis functions, p-refinement (shown above), or through a reduction in element size,
h-refinement. An advantage of the DG formulation is that p-refinement can be applied on a per-element basis given that
state continuity between adjacent elements is not strictly enforced. This feature makes DG finite elements capable of
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Fig. 4 TACS-xflow p-refined coupled static convergence for max(𝛿𝑍 ) (left) and 𝐶𝐿 (right) shows slight
overpredictions due to lack of viscous effects.

applying output-based adaptation techniques to their full effect.
The availability of two refinement methods raises the question as to which method is more effective at improving

accuracy in the coupled solution. To demonstrate the difference between the two, we consider the fluid-only Euler
solution to the uCRM-9 cruise condition about its undeformed configuration. Given that the fluid solution about the
undeformed vehicle is simply the first iteration to the coupled problem, assessing the convergence behavior of the
fluid solution about this undeformed configuration informs the convergence behavior of the entire coupled problem
as well. Starting with the initial coarse fluid mesh used above, uniform p- and h- refinement will be applied to the
mesh and the 𝐶𝐿 output will be compared between all cases. Uniform p-refinement is applied to the uCRM-9 as done
previously, where the mesh size is held constant for each case. Hanging-node h-refinement is applied to uniformly
decrease the element size in the mesh. Given the hexahedral element shape used presently, this process isotropically
splits all elements in the mesh into eight smaller elements. Table 5 summarizes the resulting fluid discretizations being
compared, where the p-level is the order of polynomial used for element integration, and the h-level is the number of
times hanging-node refinement has been applied to the original coarse mesh described in Table 3.

Table 5 uCRM-9 fluid mesh refinement information.

Mesh Discretization No. Nodes No. Elements No. DOF
p0, h0 161,726 72,532 72,532
p1, h0 161,726 72,532 290,128
p2, h0 161,726 72,532 725,320
p3, h0 161,726 72,532 1,450,640
p0, h1 1,085,726 580,256 580,256
p1, h1 1,085,726 580,256 2,321,024

Fig. 6a shows the convergence history for the 𝐶𝐿 output for each of the fluid solutions. For the original coarse mesh
and a given level of accuracy in the 𝐶𝐿 output, uniform p-refinement requires fewer degrees of freedom compared to
uniform h-refinement. However, the number of degrees of freedom in the problem is not the only factor that influences
computational expense. Fig. 6b shows the wall time comparison between the two approaches, normalized by the time
of the p0, h0 solution. With high-order approximations, numerical conditioning and stability can cause difficulties in
the nonlinear solution process and necessitate the use of additional numerical techniques to aid in producing a valid
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(a) 18% span (b) 37% span

(c) 59% span (d) 89% span

Fig. 5 𝐶𝑝 comparisons between the reference (dashed blue) and the TACS-xflow 𝑝 = 2 coupled solution (red)
show a clear difference in shock location on the upper surface of the wing between viscous and inviscid solutions.

solution. This process is implementation-dependent and can greatly impact computation time. As indicated in Fig.
6b, the number of nonlinear iterations required by the fluid solver increased with each increment in 𝑝, leading to the
increase in computational time. Therefore, the p3 ,h0 solution took more time to complete compared to the p1, h1
solution, even though the high-order solution involved fewer total degrees of freedom. However, further improvements
in the algorithmic approach taken for the numerical solution to this problem could potentially alleviate this issue.

For a finite element solution, uniform refinement is guaranteed to converge to the truth solution in the limit of small
element size or high approximation order. However, in practice, the solution error is generally sensitive to a small
number of elements that approximate specific local features of the solution in the domain. Refining in these areas alone
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Fig. 6 p-refinement on a coarse mesh achieves a greater accuracy in the output for fewer degrees of freedom
when compared to uniform h-refinement, but at a cost of longer compute time.

greatly improves the accuracy of the approximate solution with only a small increase in computational expense. However,
it is difficult to know a priori how and where to refine within the domain, especially for coupled multidisciplinary
systems with various sources of error, whether it’s discretization error, mesh motion error, etc. Output-based mesh
adaptation automates this process, producing the optimal mesh refinement that minimizes discretization error subject to
a constraint on the increase of computational expense for a given output. In the future, coupled output-based mesh
adaptation will be pursued within the current FSI computational framework.

V. Concluding Remarks
In this paper, a partitioned computational FSI framework was described and implemented. A DG FEM discretization

was applied to an ALE formulation of the Navier-Stokes equations and was coupled with a FEM discretization of the
linear elastic structural equations. The MELD method was employed to efficiently and robustly transfer the loads and
displacements between each discipline, and the mesh motion within the fluid domain interior was handled by RBF
interpolation. The block Gauss-Seidel static coupling iterative procedure is described and was applied to a large-scale
three-dimensional test case featuring the uCRM-9 aircraft at a cruise condition, which is verified against reference data.
Finally, a mesh refinement study was carried out which demonstrates the trade off between accuracy and computation
time between p- and h-refinement strategies. In future work, we seek to improve the coupled framework by expanding it
to unsteady aeroelastic problems, as well as implementing coupled adjoint capabilities. Ultimately we seek to implement
both steady and unsteady output-based mesh adaptation to automate the mesh refinement process and leverage the
advantages of high-order numerical methods in the high-fidelity analysis of large and complex aeroelastic systems.
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