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Abstract
The use of reduced-order models (ROMs) in physics-based modeling and sim-
ulation almost always involves the use of linear reduced basis (RB) methods
such as the proper orthogonal decomposition (POD). For some nonlinear prob-
lems, linear RB methods perform poorly, failing to provide an efficient subspace
for the solution space. The use of nonlinear manifolds for ROMs has gained
traction in recent years, showing increased performance for certain nonlin-
ear problems over linear methods. Deep learning has been popular to this end
through the use of autoencoders for providing a nonlinear trial manifold for the
solution space. In this work, we present a non-intrusive ROM framework for
steady-state parameterized partial differential equations that uses convolutional
autoencoders to provide a nonlinear solution manifold and is augmented by
Gaussian process regression (GPR) to approximate the expansion coefficients of
the reduced model. When applied to a numerical example involving the steady
incompressible Navier–Stokes equations solving a lid-driven cavity problem, it
is shown that the proposed ROM offers greater performance in prediction of
full-order states when compared to a popular method employing POD and GPR
over a number of ROM dimensions.
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1 INTRODUCTION

Physics-based modeling and simulation has become an essential tool in many engineering and science applications, allow-
ing for highly accurate representations of physical systems which may be otherwise difficult to evaluate. Physics-based
models consist of a set of governing equations, which are often found in the form of parametrized partial differential
equations (PDEs) discretized over a computational domain, where a set of design parameters 𝝁 controls properties such
as the boundary conditions, geometry of the computational domain, or physical properties. In industrial processes such
as design optimization, a large number of designs needs to be evaluated and the accuracy, or fidelity of these models must
be high. High-fidelity simulations of large scale models are very computationally intensive, requiring large amounts of
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memory and computational time. This large computational cost can render many-query processes such as design
optimization infeasible.

The use of reduced-order models (ROMs) is a common approach for drastically lowering this computational cost.
ROMs create a surrogate model using training data from a set of computed simulations of the high-fidelity full-order model
that allows for accurate, rapid, real-time evaluation of simulations at unseen design parameters. ROMs seek to reduce the
dimensionality of full-order models, which contain a large number of degrees of freedom. This involves a compression
phase in which a reduced basis (RB) of the solution space is obtained, from which accurate approximations of full-order
solutions can be obtained through a set of expansion coefficients. ROMs consist of two stages: a computationally intensive
offline stage where high-fidelity solutions are evaluated to obtain data snapshots and a low-dimensional surrogate model
is trained, and an online stage where the surrogate model can be rapidly evaluated to approximate solutions at unseen
design parameters.

A commonly used method for obtaining the reduced basis is the proper orthogonal decomposition (POD),1,2 which
utilizes the singular value decomposition (SVD) to obtain a low-rank trial subspace composed of a number of linearly
independent basis vectors, a linear combination of which is used to approximate unrealized solutions. Projection-based
RB methods3,4 project the physics of the governing equations onto the low-rank trial subspace and solve a low-dimensional
version of the full-order model. Although projection-based RB methods have been shown to offer robust performance,
their computational cost remains large for certain nonlinear problems that have a non-affine dependence on the inputs
for quantities such as residuals in computational fluid dynamics (CFD) models.5 Methods such as the discrete empirical
interpolation method (DEIM)6 allow for an affine representation of operators to avoid full-order evaluations, although
realizing this is often difficult and intractable for some nonlinear problems.

In non-intrusive ROMs, an alternative to projection-based ROMs, the governing physics are only used to generate
solution snapshots of the high-fidelity model in the offline stage and are not projected onto a lower dimension in the
online stage. A regression model is required to interpolate over the expansion coefficients of the training data to approx-
imate them for unseen design parameters. Some popular interpolation methods include Gaussian process regression
(GPR)7,8 and neural networks.9,10 Although RB methods using POD are widely used and generally offer good perfor-
mance, they often produce inaccurate results for certain nonlinear problems, such as those dominated by advection, and
require ROMs of large dimension to produce results with acceptable accuracy.11 For nonlinear problems characterized by
different physical regimes, localized POD subspaces12 are often employed to mitigate this issue.

Whereas POD produces a trial subspace that is linear, recent methods have attempted to compute low-dimensional
nonlinear trial manifolds that are more adept at handling nonlinear problems. Many recent advances have utilized
machine learning and artificial intelligence (AI) methods to this end, which have been at the forefront of massive recent
breakthroughs in numerous fields such as computer vision, natural language processing, and recommender systems.13-15

The use of machine learning methods has become ubiquitous in many domains, significantly improving and even beating
the performance of existing methods.

There are many machine learning methods for producing low-dimensional representations of high-dimensional data,
many of which do so non-linearly as opposed to POD. Deep learning16 approaches have been utilized to develop ROMs that
provide efficient nonlinear trial manifolds of physical systems. Convolutional autoencoders (CAEs), a type of neural net-
work, have been used in ROMs and have been shown to outperform POD-based methods.17,18 Convolutional autoencoders
are adept at learning data that are spatially distributed, including the solutions to PDEs discretized over a computa-
tional domain. Autoencoder neural networks consist of two parts: an encoder, which maps high-dimensional inputs to a
low-dimensional code, and a decoder, which maps the low-dimensional code to an approximation of the high-dimensional
input. In the context of ROMs, the code is analogous to the expansion coefficients that map back to the full-order solu-
tion space. When using autoencoders for ROMs, the entire network is trained in the offline stage, while only the decoder
is used in the online stage for rapid evaluation of unseen solutions. To the best of our knowledge, there have been two
attempts at using convolutional autoencoders for non-intrusive ROMs; one utilizing them for vehicle aerodynamic sim-
ulation19 and another for natural convection in porous media.20 The first found that using autoencoders only offers a
very slight improvement over POD-based methods. The second involves unsteady problems with a limited number of
design variables and does not elaborate on the projection errors provided by autoencoders and their relation to interpola-
tion accuracy, nor does it involve a cross-validation analysis of the results. In this work, we propose a non-intrusive ROM
framework consisting of a nonlinear trial manifold produced by a CAE that is augmented by GPR to handle the interpo-
lation of expansion coefficients in the design parameter space. This ROM framework is referred to as CAE-GPR and its
performance is compared to that of POD-GPR when applied to a problem which solves the incompressible Navier–Stokes
equations over a number of ROM dimensions.
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2 FULL- ORDER MODEL

The full-order model (FOM) in this work is considered to be the solution x(𝝁) ∈ RN of a state variable in a system
governed by a set of steady-state parameterized PDEs discretized over a computational domain Ω ∈ Rd. We consider
design parameters 𝜇 ∈  that define both the computational domain and parameters of the governing equations. Here
 ⊆ Rp denotes the parameter space such that x:  → RN . The set of PDEs governing the FOM is solved numeri-
cally over Ω to generate a solution x(𝝁). The computational cost of numerically solving the system increases with its
dimension N, which is in proportion with the fineness of Ω. Accurate or useful solutions of systems often require large
values of N, resulting in large computational costs for a single solution. In processes such as design optimization, the
need to evaluate the solutions for many different designs in real-time becomes infeasible if numerous FOMs have to be
solved. This large computational cost motivates the use of reduced-order models, where a small number of FOMs are
solved and used to create a computationally inexpensive surrogate model that can deliver accurate approximations in
real time.

3 LINEAR REDUCED BASIS METHOD

This section gives an overview of the proper orthogonal decomposition (POD), a popular method for constructing a
linear reduced basis, which allows for the construction of full-order solutions as a linear combination of independent
basis vectors. The basis vectors are formed from a collection of training solutions over the parameter space. A snapshot
matrix is assembled from these training solutions, from which the underlying structure of the solution space can be
extracted.1 Reduced-order models essentially obtain low-dimensional representations of any solution lying on the solu-
tion manifold for which there exists a mapping back to the solution space. In classification, a popular choice for linear
dimensionality reduction is principal component analysis (PCA), to which the proper orthogonal decomposition is closely
related.

3.1 Proper orthogonal decomposition

Linear RB reduced-order models rely on training data obtained from a set of n solution snapshots calculated at chosen
design points in the parameter space. A snapshot matrix, S ∈ RN×n, is assembled

S ∈ R
N×n = [x1

, x2
, … , xn] = [x(𝝁1), x(𝝁2), … , x(𝝁n)]. (1)

Denote by a subspace of the column space of S. We assume that provides a good approximation of the solution
manifold for 𝝁 ∈  if there are a sufficient number of solution snapshots in S which correspond to a judiciously chosen
subset of design parameters in . is the span of k orthonormal basis vectors, [𝝍1

,𝝍
2
, … ,𝝍

k] ∈ RN , where k ≪ N.
The basis is chosen such that each solution snapshot xi in S can be well-approximated as a linear combination of the basis
vectors

xi ≈ ai
1𝝍

1 + ai
2𝝍

2 · · · + ai
k𝝍

k
, (2)

where ai is the set of basis coefficients, or expansion coefficients, for a given solution snapshot. The truncated singular
value decomposition of S, contains two orthonormal matrices U ∈ RN×n and V ∈ Rn×n, as well as a diagonal matrix 𝚺 ∈
Rn×n

S = U𝜮VT
. (3)

Here, U contains a set of n left singular vectors that form an orthonormal basis for the column space of S, V contains a
set of n right singular vectors that form an orthonormal basis for the row space of S, and diag(𝚺) ∈ Rn = [𝜎1, 𝜎2, … , 𝜎n]
contains the singular values corresponding to the singular vectors in descending order, 𝜎1 ≥ · · · ≥ 𝜎n ≥ 0. The first k left
singular vectors of U are chosen to be the basis vectors forming the POD basis,𝚿 ∈ RN×k = [𝝍1

,𝝍
2
, … ,𝝍

k]. Often, the
singular values associated with the basis vectors decay very quickly and only the first k singular vectors are chosen to form
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5372 HALDER et al.

F I G U R E 1 Schematic of the proper orthogonal decomposition (POD), where the snapshot matrix S is decomposed using the singular
value decomposition (SVD) and the POD basis𝚿 is obtained from U.

the POD basis to preserve only the most dominant basis vectors. To determine the value of k, the relative information
content of the subspace is evaluated

E(k) =

∑k
j=1𝜎

2
j

∑n
j=1𝜎

2
j

, (4)

and k is chosen such that E(k) ≥ 𝛾 , where 𝛾 ∈ [0,1) is chosen somewhat arbitrarily, usually to a value 𝛾 ≥ 0.95.21 Using
the POD basis, full-order solutions at unseen design parameters x(𝝁∗) can be approximated

x(𝝁∗) ≈ 𝚿a∗ = a∗1𝝍
1 + a∗2𝝍

2 · · · + a∗k𝝍
k
, (5)

where a∗ can be estimated through a computational model that takes 𝝁∗ as an input (Figure 1).

3.2 Projection error

A measure of quality of the POD basis is its ability to reconstruct solution snapshots xi in S with a high degree of accuracy.
We first calculate the projection of xi onto𝚿

x̂i = 𝚿𝚿Txi
. (6)

A measure of the relative error over all of the solution snapshots in S is measured through the quantity

𝜖POD =
n∑

i=1

‖
‖
‖

xi − x̂i‖‖
‖

2

‖
‖xi‖

‖
2 . (7)

The Schmidt–Eckart–Young theorem22 states that the POD basis consisting of the first k left singular vectors found from
the SVD of S minimizes this error amongst all orthonormal bases of rank k.

 10970207, 2022, 21, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7072 by U
niversity O

f M
ichigan L

ibrary, W
iley O

nline L
ibrary on [05/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HALDER et al. 5373

4 NONLINEAR MANIFOLD CONSTRUCTION USING CONVOLUTIONAL
AUTOENCODERS

This section describes the use of deep convolutional autoencoders in constructing a nonlinear trial manifold of simulation
data. Unlike a linear reduced basis, which constructs solutions as a linear combination of known and calculated basis
vectors, nonlinear manifolds use a mapping function g(a), which may not be known explicitly, to approximate a mapping
between the expansion coefficients and the full-order solution

g(a) ∶ R
k → R

N
. (8)

There are many popular methods for nonlinear dimensionality reduction such as Isomap23 that provide a
low-dimensional embedding of high-dimensional data. Nonlinear methods have been shown to offer better per-
formance in classification tasks when compared to linear methods such as PCA,24 highlighting the advantage of
using nonlinear methods to create low-dimensional representations of data. However, most nonlinear dimensional-
ity reduction methods do not provide a mapping back to the high-dimensional solution space which restricts their
use in ROMs. Deep convolutional autoencoders, which do provide an approximate mapping g(a), have been uti-
lized in projection-based ROMs where they have been shown to outperform POD-based methods.17 Non-intrusive
methods have also used deep CAEs to construct nonlinear manifolds that efficiently learn the dynamics of physical
systems.25

4.1 Artificial neural networks

An artificial neural network (ANN) is a computational model that is able to learn from a training data set  = {X,Y},
where X and Y refer to the inputs and outputs respectively. ANNs are inspired by biological neural networks existing
in animal brains.26 ANNs are widely used and versatile models for regression and classification problems. Feedforward
neural networks are a type of ANN in which information always propagates in only one direction, creating a direct map-
ping between inputs and outputs. Feedforward neural networks are composed of an input layer, a number of hidden
layers, and an output layer. Neurons comprising these layers are associated with weights and biases, trainable param-
eters which are optimized during the model training stages. Figure 2 shows the architecture of a simple feedforward
neural network with an input layer, two hidden layers, and an output layer. There are connections between each pos-
sible pair of neurons between layers, with each connection carrying a weight term and each neuron carrying a bias
term with the exception of those in the input layer. Such a network is referred to as fully connected, or a multilayer
perceptron (MLP). Hidden layers in MLPs are also referred to as fully connected layers. Each hidden layer state hj is
computed from the state in the previous layer, hj−1, along with its weights Wj and biases bj as well as an activation
function 𝜙(x)

hj = 𝜙

(
Wjhj−1 + bj

)
. (9)

The role of activation functions is to introduce nonlinearities into the model, allowing for complex functional relation-
ships to arise. In addition to being able to learn the training data well, neural networks should provide reasonable accuracy
for unknown data of the same class, a property referred to as generalization.26 A commonly used activation function is the
rectified linear unit (ReLU),27 which has been shown to offer better performance and ability to generalize when compared
to other common activation functions28,29

𝜙(x) = max(0, x) =

{
x, if x ≥ 0
0, if x < 0

. (10)

For inputs less than 0, the ReLU activation function returns a valuation and gradient of zero, effectively rendering cer-
tain neurons inactive. This can be problematic for network training if a large percentage of neurons exhibit this behavior
and is commonly referred to as the dying ReLU problem. The leaky ReLU30 activation function mitigates this issue, by
incorporating a small positive constant 𝛼 for negative inputs.
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5374 HALDER et al.

F I G U R E 2 Architecture of a multilayer perceptron with a 3-dimensional input, six neurons in two fully connected layers, and four
neurons in the output layer.

𝜙(x) =

{
x, if x ≥ 0
𝛼x, if x < 0

. (11)

4.2 Training neural networks

4.2.1 Backpropagation

Feedforward networks are trained using a differentiable loss function, 
(
 , (W,b)

)
, which calculates a measure of error

between the state found in the output layer and the correct output values from the training data. The loss function serves as
an objective function in an optimization problem, where its gradients with respect to the weights and biases are calculated
through backpropagation,31 an algorithm utilizing automatic differentiation. Common optimizers used in training neural
networks include stochastic gradient descent (SGD) and Adam.32 Optimizers perform a number of training epochs over
 in an attempt to minimize the loss function. The weights and biases update at the end of epoch n according to

(
Wn+1

,bn+1) =
(

Wn
,bn) − 𝜂

(
𝜕

(
 ,

(
Wn

,bn))

𝜕

(
Wn

,bn)

)

, (12)

where 𝜂 is the learning rate, a hyperparameter controlling the optimizer’s step size and  is a function of the loss function’s
gradient dependent upon the chosen optimizer. The gradient of the loss function can be calculated using a single training
sample as it is when using SGD, using the average gradient of the entire training set, or by using averages of a number of
randomly selected mini-batches from  . Using mini-batches when training neural networks has been shown to improve
the ability to generalize in addition to providing stable convergence.33 The mini-batch size b is chosen based on the size
of  to strike a balance between performance and computational cost.

The predictive performance of a neural network initially increases with the number of training epochs but starts to
stall and then decrease as the network parameters become overly tuned towards the training data and fail to generalize,
a problem referred to as overfitting. Regularization methods34 exist to prevent overfitting. One method is to use early
stopping, where the loss on a validation data set is monitored during training. If ( , (w,b)) fails to drop for a prescribed
number of epochs, training is stopped.

The initial set of weights and biases that are used can also effect the final performance of a neural network. A com-
monly used weight initialization scheme for layers using ReLU activation functions is the He normal35 initializer, which
samples weights from a normal distribution centered around 0. It is a common practice to initialize the biases in each
layer to 0. There is no standard and accepted approach to choosing the number of hidden layers and the number of nodes

 10970207, 2022, 21, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7072 by U
niversity O

f M
ichigan L

ibrary, W
iley O

nline L
ibrary on [05/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HALDER et al. 5375

in each layer when designing MLPs. An optimal choice depends upon a number of factors, including the number of train-
ing samples, the dimensionality of the inputs and outputs, the choice of activation functions, and the complexity of the
function which is being approximated. The number of hidden layers and nodes to use is often found through a trial and
error approach involving model validation techniques such as cross-validation. In general, the total number of trainable
parameters in a network is directly related to its capacity to learn functions. Neural networks become deeper as more
hidden layers are added. However, network configurations with a large number of trainable parameters tend to overfit to
the training data and fail to generalize unless regularization techniques are used. In addition, large networks are compu-
tationally expensive to train. In spite of these downfalls, deeper network architectures have become increasingly popular
for complex learning tasks in multiple domains as they offer better performance.16 Although more than two hidden lay-
ers are not required for many learning tasks, some functions are not adequately approximated by networks containing
two hidden layers and using deeper networks can drastically improve performance.36,37

4.2.2 Data normalization

Similar to many other machine learning algorithms, neural networks often require that the training data be normalized
in order to ensure adequate performance.38 Data normalization allows the optimizer to learn the optimal network param-
eters at a much faster rate. One way to normalize the training data is to apply min–max scaling to each feature in the data
matrix D containing either the inputs or outputs

d′ =
d −min(dj)

max(dj) −min(dj)
, (13)

where j is the feature index. Min–max scaling results in the data being transformed into the range [0,1].
After training, new input data are also normalized while an inverse transformation is applied to predicted
outputs.

4.3 Autoencoders

Autoencoders are a type of feedforward neural network that aim to learn to reconstruct inputs in the output layer, g ∶
x → x̂ where x ≈ x̂. Autoencoders use an architecture composed of two individual feedforward neural networks. The
encoder genc ∶ RN → Rk where k ≪ N maps a high-dimensional input x into the low-dimensional code a. The decoder
gdec ∶ Rk → RN maps the code back to an approximation of the high-dimensional input x̂. The combination of the two
results in

g ∶ x̂ = gdec◦genc(x). (14)

Autoencoders have been shown to provide robust low-dimensional representations of high dimensional data.39 In general,
higher dimensional codes are able to produce more efficient representations of data, but continuously increasing the size
of the code will provide diminishing or even negative returns. Once an autoencoder is sufficiently trained and g(x) ≈ x
for all inputs over  , the corresponding low-dimensional codes can be passed to the decoder gdec(a) to obtain accurate
approximations x̂ for all data in  . States existing outside of the training set x∗ can also be well-approximated if a good
approximation of the low-dimensional code a∗ can be found. In the context of ROMs, the code is equivalent to the set
of expansion coefficients that map from a low-dimensional representation to the high-dimensional full-order solution.
Similarly, the projection of a full-order solution onto the nonlinear manifold provided by the autoencoder is given by x̂.
Training is conducted on the combination of the encoder and decoder, while after training the encoder is often no longer
useful and only the decoder is used. Figure 3 shows a sample architecture of a symmetric MLP autoencoder with two
hidden layers between the input/output layers and code. Since MLP autoencoders are fully connected, the total number
of trainable parameters in the network can grow very large when the dimension of the input, N, is high. As the number of
trainable parameters increases, the amount of training data required to sufficiently train the network to make reasonably
accurate predictions also grows large. This is contrary to the objective of model reduction, which aims to make predictions
using a limited amount of training data.
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5376 HALDER et al.

F I G U R E 3 Architecture of a symmetric MLP autoencoder with two fully connected layers between the input/output and code

4.3.1 Convolutional autoencoders

There exist neural network architectures that make use of parameter sharing, where rather than weight combinations
existing for each pair of neurons between layers, multiple neurons share a single weight. Convolutional autoencoders
effectively implement parameter sharing to limit the total number of trainable parameters in the network. This is done
through the use of convolutional layers, which provide feature maps of input data that are spatially arranged.40 Convo-
lutional layers use a number of filters to convolve over spatially distributed input data, with each filter having its own
set of weights. Pooling layers are also used in convolutional networks to summarize the features in input data through
operations including averaging and maximization. Convolutional layers are widely used in the field of computer vision,
dealing with spatially distributed data such as images.13,41 CAEs can also be a useful tool for states that arise from numer-
ically solving discretized PDEs as they tend to be spatially distributed. Data with multiple states, that is, components of
velocity or levels of red, green, and blue in images, can also be handled well by CAEs through the use of a number of
input channels. More details on convolutional layers can be found in a work by Dumoulin and Visin.42 A combination
of convolutional, pooling, and fully connected layers is used to construct CAEs, as shown in a schematic of an encoder
section of a CAE in Figure 4. Spatially distributed data arising from the solutions of discretized PDEs often vary smoothly
through the computational domain. CAEs are highly adept at handling data that are naturally spatially distributed by
learning spatially invariant features, allowing them to outperform other neural network architectures.43,44

The input and output layers of CAEs usually consist of 2-dimensional (2D) states in each channel. Training data must
be reshaped before being input into the network through the use of a reshape operator

R ∶ R
N×nc → R

ny×nx×nc , (15)

where ny refers to the number of data points in the vertical direction and nx the number of data points in the horizontal
direction. For solutions to physical problems, the number of points in each direction can be chosen based on the required
resolution of the full-order state. The reshape operator is applied to each separate state that occupies the nc input channels.
An inverse reshape operator is used to reshape state output data in each output channel into the original vector format

R−1 ∶ R
ny×nx×nc → R

N×nc . (16)
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HALDER et al. 5377

F I G U R E 4 Architecture of the encoder of a convolutional autoencoder (CAE) consisting of convolutional, pooling, and fully
connected layers.

5 EXPANSION COEFFICIENT PREDICTION USING GAUSSIAN PROCESS
REGRESSION

Non-intrusive ROMs require a regression model that can accurately predict the expansion coefficients a of unrealized
solutions given their design parameters 𝝁. The regression model is created in the offline stage utilizing the training
data. In particular, we use a regression model to approximate a mapping f (𝝁) that outputs the expansion coefficients.
A commonly used regression model in non-intrusive ROMs is GPR, a supervised learning method used for predictions
of continuous outputs. GPR is also referred to as Kriging, and had one of its first uses in the field of geostatistics.45 The
regression model is constructed using training data composed of inputs z = [z1

, z2 · · · zn] and outputs y = [y1
, y2 · · · yn],

where each input zi ∈  ⊂ Rp belonging to an input domain  corresponds to a single output yi ∈ R. GPR infers a prob-
ability distribution over functions conditioned on the training data which is used for predictions at new inputs. A brief
introduction to GPR is given in Section 5.1, and the work of Rasmussen et al.46 can be referred to for a more complete
overview.

In ROMs, an individual regression model is used for each coefficient in a, leading to k different regression
models,

fi(𝝁) ∶ R
p → R, i ∈ [1, 2, … k]. (17)

As a result, ROMs using GPR tend to allow the number of expansion coefficients to be large as long as it does not degrade
the quality of the trial manifold. GPR provides reasonable accuracy, is computationally inexpensive, does not require
many training samples, and is easy to implement, making it a popular choice in non-intrusive ROMs. While the use of
neural networks in non-intrusive ROMs has become more widespread,9,10 finding a sufficient neural network architecture
to use for regression is a non-trivial task. Even though using neural networks may offer better performance, in this work
our goal is to highlight the advantages of using a nonlinear trial manifold compared to a linear reduced basis. As GPR
offers more flexibility, we choose to use it as our regression model.

5.1 Gaussian process regression

A Gaussian process (GP) is a set of random variables, of which any finite number follow a joint Gaussian distri-
bution. In GPR, it is assumed that data are generated according to a GP with mean function m and covariance
function 𝜅,

f (z) ∼ GP (m(z), 𝜅(z, z∗)) , (18)

with some added Gaussian noise 𝛿 ∼ (0, 𝜉2
y ),

y = f (z) + 𝛿. (19)

Using a finite amount of training data {z, y}, a prior joint Gaussian on the data and predictions at points z∗ are
given by
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5378 HALDER et al.

[
y

f (z∗)

]

∼

([
m(z)
m(z)

]

,

[
𝜅(z, z) + 𝜉

2
y I 𝜅(z, z∗)

𝜅(z∗, z) 𝜅(z∗, z∗)

])

. (20)

Using the properties of conditional Gaussian distributions, the conditional expectation of f (z∗) is given as

E(f (z∗)|y) = 𝜅(z∗, z)(𝜅(z, z) + 𝜉
2
y I)−1 (y −m(z)

)
, (21)

where I is the identity matrix. In practice, the mean function m is set to the mean of the training outputs,

m(z) =
∑n

i=1yi

n
, (22)

and the inputs are scaled before training to obtain their standard score 


i
j =

zi
j −m(zj)

sj
, (23)

where i and j refer to indices of the observation and input entry, respectively, and s is the sample standard deviation. There
are many kernels that can be chosen for the covariance function. A very common one is the radial basis function (RBF)
kernel

𝜅(z, z∗) = exp
(

−d(z, z∗)2

2l2

)

. (24)

Another choice of kernel, and the one that will be used in this work, is the Matern kernel,

𝜅(z, z∗) = 1
Γ(𝜈)2𝜈−1

(√
2𝜈
l

d(z, z′)

)𝜈

K𝜈 , (25)

where d is the Euclidean distance function, Γ is the gamma function, and K𝜈 is the modified Bessel function of the
second kind. The set of hyperparameters 𝜃 of the Matern kernel are l and 𝜈, which control the length scale and smooth-
ness respectively. The predictive performance of the regression model is sensitive to the values of the hyperparameters.
Gradient-based optimizers are often used to maximize the marginal log-likelihood of the training data to obtain an optimal
set of hyperparameters 𝜃opt

𝜃opt = argmax
𝜃

log p(y|z, 𝜃) = −1
2

yT(𝜅(z, z) + 𝜉
2
y I)−1 − 1

2
log |𝜅(z, z) + 𝜉

2
y I| − n

2
log 2𝜋. (26)

6 OFFLINE AND ONLINE STAGES

This section describes the offline training and online evaluation stages of both the POD and CAE based ROMs with
GPR as a regression model. The combined models consisting of both the offline and online stages are referred to respec-
tively as POD-GPR and CAE-GPR. The offline stage is run first and is computationally expensive, while the online stage
allows for rapid prediction of full-order models. Both models share a step of obtaining full-order snapshots of solutions
evaluated at a set of design parameters  train and assembling them into a snapshot matrix S. The offline stage of the
POD-GPR method involves calculating a truncated SVD of the snapshot matrix to find the POD basis𝚿. The set of expan-
sion coefficients Atrain is obtained for the training set using the POD basis and k GPR models  = [f1(𝝁), f2(𝝁), … fk(𝝁)]
trained on  = { train,Atrain}. After training, the GPR models are saved for use in the online stage, where unseen
parameters 𝝁∗ are evaluated to approximate the expansion coefficients ã∗. Matrix-vector multiplication of the POD-basis
and expansion coefficients is then used to obtain an approximate solution x̃. The POD-GPR method is outlined in
Algorithm 1.
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HALDER et al. 5379

ALGORITHM 1. Offline and online stages of POD-GPR method

1: function PODGPR_ OFFLINE( train)
2: Compute high-fidelity solutions for 𝝁 ∈ train by solving FOM and assemble into S
3: Calculate truncated SVD of snapshot matrix to obtain POD basis𝚿
4: Calculate expansion coefficients for training data Atrain =

(
𝚿TS

)T

5: Train k GPR models F = [f1(𝝁), f2(𝝁),… fk(𝝁)] for each expansion coefficient in { train,Atrain}
6: return (𝚿, )
7: end function
1: function PODGPR_ ONLINE(𝝁∗,𝚿,)
2: Evaluate expansion coefficients ã∗ =  (𝝁∗)
3: Predict full-order solution x̃∗ = 𝚿ã∗

4: return x̃∗

5: end function

ALGORITHM 2. Offline and online stages of CAE-GPR method

1: function CAEGPR_ OFFLINE( train, val,,R)
2: Compute high-fidelity solutions for 𝝁 ∈ train,val by solving FOM and assemble into Strain,Sval
3: Apply reshape operator R to Strain,Sval to obtain X train,Xval
4: Train convolutional autoencoder with architecture  on {X train,X train} while monitoring loss on {Xval,Xval}
5: Calculate expansion coefficients for training data Atrain = genc (X train)
6: Train k GPR models F = [f1(𝝁), f2(𝝁),… fk(𝝁)] for each expansion coefficient in { train,Atrain}
7: return (gdec, )
8: end function
1: function CAEGPR_ ONLINE(𝝁∗, gdec, ,R−1)
2: Evaluate expansion coefficients ã∗ =  (𝝁∗)
3: Predict full-order solution X̃∗ = gdec

(
ã∗
)

4: Apply inverse reshape operator R−1 to X̃∗ to obtain x̃∗

5: return x̃∗

6: end function

The CAE-GPR method also involves evaluating additional full-order solutions at a set of validation design parameters
 val which are used to monitor the validation loss during training so early stopping can be implemented as a regular-
ization method. A convolutional autoencoder architecture  is also required and the decoder gdec is saved for use in the
online stage. Approximate expansion coefficients ã are passed to the decoder to obtain approximate solutions X̃. The
reshape operator R is also required to make the training and validation data compatible with the architecture of the CAE
in the offline stage, while the inverse reshape operator R−1 is needed in the online stage to reshape approximated solu-
tions to their original format. The CAE-GPR method is outlined in Algorithm 2. Training the convolutional autoencoder
makes the offline stage of CAE-GPR more expensive than POD-GPR, while the online costs for both models are similar.

7 NUMERICAL RESULTS

This section compares the performance of the POD-GPR and CAE-GPR methods on a geometrically and physically
parameterized lid-driven cavity problem which simulates laminar flow using the steady incompressible Navier–Stokes
equations with OpenFOAM,47 an open-source toolbox for multiphysics simulation. The FOM quantities of interest are u
and v, the components of the velocity in the horizontal and vertical directions respectively. The autoencoder is constructed
using TensorFlow,48 and scikit-learn49 is used to implement GPR. 500 design parameters are generated using Latin hyper-
cube sampling,50 a statistical method that aims to maximize the distance and minimize the correlation amongst produced
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5380 HALDER et al.

samples. The metric of performance used to compare the ROMs is the relative l2 error 𝜖ROM between the FOM state x and
the ROM approximated state x̃

𝜖ROM =
‖
‖
‖

xi − x̃i‖‖
‖

2

‖
‖xi‖

‖
2 . (27)

Similarly, the relative projection error 𝜖Proj for both methods is also reported between the FOM state and the projected
state x̂ to assess how accurately the expansion coefficients are interpolated as well as to provide a lower bound for the
ROM prediction errors.

𝜖Proj =
‖
‖
‖

xi − x̂i‖‖
‖

2

‖
‖xi‖

‖
2 . (28)

A five-fold cross-validation approach is used to assess the performance of the ROM over the entire dataset, creating
five folds of the dataset containing 400 training samples and 100 testing/validation samples. These 100 samples are split
evenly into 50 testing and 50 validation samples, which are used to monitor the autoencoder loss during training. While
every sample in the dataset is used for training, only half are used for prediction. An average cross-validation error is
reported for both the ROM prediction and projection errors over all of the prediction points. The validation samples are
not used for the POD-GPR ROM, which uses an individual ROM for both u and v.

The CAE that is used has two input channels, one for each of the velocity components. The expansion coefficients
are used to approximate both u and v. The encoder consists of a combination of convolutional, pooling, and fully con-
nected layers. The decoder consists of fully connected and transpose-convolutional layers. The full details of the network
architecture can be found in Appendix. Min–max scaling is used independently on u and v before training and the CAE
outputs are then scaled back to their original range after prediction. A maximum number of 7500 training epochs are
used, and early stopping is enforced if the validation loss fails to decrease over 500 epochs. A mini-batch size of b = 8 is
used for training and the mean squared error loss function is used. The Adam optimizer is used with an initial learning
rate of 𝜂 = 3 × 10−4. Each layer has its weights initialized with the He normal initializer. All of the layers with the excep-
tion of the output use a leaky ReLU activation function with 𝛼 = 0.25. A performance comparison with other activation
functions is given in Appendix. The output layer uses the sigmoid activation function, which scales into the range [0,1],
ensuring that the outputs can be scaled back to their original range for prediction

𝜙(x) = 1
1 + e−x . (29)

As the FOM is inexpensive to solve, offline computational costs related to simulation and POD-GPR are not reported
as well as all online costs. Training and validation losses against the number of epochs at selected folds of the data for
different values of k are presented in Appendix in addition to computational costs.

7.1 Steady incompressible Navier–Stokes equations

Steady incompressible laminar flow is simulated using simpleFoam, a standard OpenFOAM solver, by solving the
Navier–Stokes equations,

∫S

−→U ⋅ d
−→
S = 0, (30)

∫S

−→U−→U ⋅ d
−→
S +
∫V
∇pdV − 𝜈

∫S
(∇−→U + ∇−→U

T
) ⋅ d

−→
S = 0, (31)

where −→U = [u, v] is the velocity vector and u and v are the velocity components in the x and y directions respectively,
−→
S is

the face-area vector, V is the volume; 𝜈 is the kinematic viscosity, and p is the pressure. The continuity and momentum
equations are discretized over the computational domain by using the finite-volume method (FVM). Both equations are
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HALDER et al. 5381

coupled through the semi-implicit method for pressure-linked equations (SIMPLE) algorithm51 along with Rhie–Chow
interpolation.52 The SIMPLE algorithm is iteratively repeated until a residual tolerance of 1 × 10−6 is reached for both −→U
and p.

7.2 Lid-driven cavity problem

The numerical example used in this work is a physically and geometrically parameterized lid-driven cavity flow, a popular
benchmark problem for CFD solvers. Three parameters control the computational domainΩ and one parameter controls
the kinematic viscosity through the Reynolds number. A version of this problem has previously appeared in a work by
Hesthaven and Ubbiali.9 Figure 5 shows the boundary conditions on each edge Γi, i ∈ [1, 2, 3, 4] of the domain; u, v = 0
on all of the edges except Γ1, where u = 1, v = 0. The pressure gradient, ∇p, is set to 0 on all of the edges. The reference
pressure is set to 0 on the bottom left corner of the domain. The parameterization of the geometry is also shown, involving
three parameters which change the length of the horizontal (𝜇1) and slanting edges (𝜇2) as well as the slanting angle (𝜇3).
The Reynolds number, Re (𝜇4), is the fourth parameter, and is related to the kinematic viscosity 𝜈 as

Re = max(𝜇1, 𝜇2)
𝜈(𝝁)

. (32)

The design parameter combinations are generated using Latin hypercube sampling with the following bounds for each
parameter

𝜇1 ∈ [1, 2],
𝜇2 ∈ [1, 2],

𝜇3 ∈
[
−𝜋

4
,
𝜋

4

]
,

𝜇4 ∈ [100,600].

The computational mesh consists of 64 × 64 cells uniformly distributed in the x and y directions and one cell spanning
the z direction, resulting in N = 4096 and a reshape operator R with ny,nx = 64 and nc = 2. The full-order states of
u and v are used to compare the performance of the POD-GPR and CAE-GPR methods, contours of which are shown
in Figure 6 at three different sets of design parameters. A sharp gradient in u exists at the top of the domain, and
a vortex moves throughout the cavity as the design parameters change. This vortex is also shown moving through-
out the cavity shown in the contours of v, varying in shape and size with the design parameters. The relationship
between both u and v and 𝝁 is shown to be highly nonlinear, making this a difficult prediction problem in the context
of ROMs.

(A) (B)

F I G U R E 5 Schematics describing the lid-driven cavity problem
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5382 HALDER et al.

(A) (B) (C)

(D) (E) (F)

F I G U R E 6 Contours of u (top) and v (bottom) for the lid-driven cavity problem at three different sets of design parameters.

F I G U R E 7 Plots of the cross-validation prediction and projection errors in u and v for both ROMs at different values of k.

The POD-GPR ROM is evaluated for both projection and prediction errors at ROM dimensions k ∈ [1, 2, … 35]while
the CAE-GPR ROM is similarly evaluated at k ∈ [2, 3, 5, 10, … 35]. Figure 7 shows the cross-validation relative errors
for u and v; for evaluated ROM dimensions k > 2, the CAE-GPR ROM exhibits higher predictive performance over the
data set. The projection error provided by the CAE is high at k = 2 and comparable to that of POD, and it decays rapidly
until k = 5, after which it does not vary much. Similar results are presented in a work by Lee and Carlberg.17 Very low
values of k decrease the capacity of the network to learn meaningful low-dimensional representations of the training
data. As k increases, the relative difference in the projection and prediction errors grows. This is an expected result since
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HALDER et al. 5383

F I G U R E 8 Plots of the prediction and projection errors in u and v for both ROMs at 𝝁 = (1.167, 1.997,−0.4665,555.5) at different
values of k.

(A) (B) (C)

(D) (E) (F)

F I G U R E 9 ROM comparison of u and v at 𝝁 = (1.167, 1.997,−0.4665,555.5), with k = 5 for CAE-GPR and k = 35 for POD-GPR.
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5384 HALDER et al.

F I G U R E 10 Plots of the prediction and projection errors in u and v for both ROMs at 𝝁 = (1.963, 1.789, 0.5890,308.5) at different values
of k.

(A)

(D) (E) (F)

(B) (C)

F I G U R E 11 ROM comparison of u and v at 𝝁 = (1.963, 1.789, 0.5890, 308.5), with k = 5 for CAE-GPR and k = 35 for POD-GPR.

prediction errors in the individual expansion coefficients will have a cascading effect. The cross-validation projection
error from POD continues to decay after k = 35, while the POD-GPR prediction error flattens out at around k = 20. The
cross-validation projection error produced by the CAE for both u and v is lower than that of POD until around k = 25;
even with a higher projection error, the predictive performance offered by CAE-GPR exceeds that of POD-GPR for k ≥ 25.
The CAE offers a set of expansion coefficients that are more easily interpolated when using GPR compared to POD,
which sees its predictive performance stall after k reaches a certain value, a commonly found result for POD-GPR based
ROMs.21 In addition to giving better performance in terms of both projection and prediction for low values of k, the use
of a nonlinear trial manifold for ROM construction offers a more robust relationship between the design parameters and
expansion coefficients. The difference in projection and prediction errors from POD-GPR is almost 0 at low values of k,
but rapidly increases as k grows, suggesting that the individual expansion coefficients become harder to interpolate as the
corresponding singular values decay.

Figure 8 shows the relative error plot for both ROMs at k ∈ [5, 10, … 35] for a single design parameter 𝝁1 =
(1.167, 1.997,−0.4665, 555.5), while Figure 9 shows the contour plots of the FOM as well as the absolute error
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HALDER et al. 5385

plots for CAE-GPR at k = 5 and POD-GPR at k = 35. Results at another design parameter instance at 𝝁2 =
(1.963, 1.789, 0.5890, 308.5) are shown in Figures 10 and 11. The generalized results from the cross-validation also
hold here; for a greater projection error, CAE-GPR provides a lower prediction error. It is also shown at these design
parameters that the prediction error curve of POD-GPR flattens out. There is more volatility in both the projection and
prediction errors for CAE-GPR, although POD-GPR still never outperforms it in predicting u and v. For k = 10 at both
design parameters, the difference in the projection and prediction errors is very small, and almost 0 for u at 𝝁1 and v at 𝝁2.
This is similar to the behavior exhibited by POD-GPR for low values of k, showing that CAE-GPR is also capable of produc-
ing highly accurate estimates of the expansion coefficients. The error contours at these design parameters highlight the
increased predictive performance given by CAE-GPR over POD-GPR. While the error contours given by POD-GPR exhibit
distinct bands of high error, the contours produced by CAE-GPR are generally more uniform and dispersed throughout the
domain. At the chosen design parameters, there is a significant decrease in relative error; at𝝁1, the percent decreases in rel-
ative error of u and v from POD-GPR to CAE-GPR are 42.4% and 49.8% respectively, while at 𝝁2 they are 48.3% and 75.6%
respectively.

8 CONCLUSION

This work presents a non-intrusive reduced-order model framework utilizing nonlinear trial manifolds through the
use of convolutional autoencoders. A deep learning approach, CAEs learn efficient low-dimensional representations
of data through an encoder and decoder connected by a code. CAEs provide a set of expansion coefficients through
the low-dimensional code, similar to the basis coefficients provided by POD-based methods. A nonlinear relationship
exists between the expansion coefficients and full-order states when using autoencoders, in contrast with the lin-
ear relationship when using POD. Given steady-state solutions of PDEs parameterized by a set of design parameters,
GPR can be used to approximate the expansion coefficients at unseen points in the design space for both approaches
(referred to as CAE-GPR and POD-GPR). CAE-GPR involves a more expensive offline stage due to the high com-
putational cost associated with training deep neural networks and requires that solutions have appropriate spatial
arrangement.

When applied to a geometrically and physically parameterized lid-driven cavity problem solved using the steady
incompressible Navier–Stokes equations, it is shown that CAE-GPR offers higher performance in predicting the com-
ponents of the velocity field when compared to POD-GPR over a range of ROM dimension. The low-dimensional code
provided by CAEs is shown to be more easily interpolated than the basis coefficients obtained from POD. For a greater
manifold projection error, CAE-GPR provides lower error in predictions of full-order states. It is also shown that CAE-GPR
has the ability to provide highly accurate estimates of the expansion coefficients, providing prediction errors that are
very close to projection errors. Although other works17,53,54 have shown that CAEs outperform POD for some ROMs, the
analyses presented compare performance at only a small number of unseen parameter instances or only show improve-
ment for low-dimensional ROMs. In this work, we have provided a comprehensive cross-validation analysis over a large
number of ROM dimensions which shows that using CAEs can offer significantly better performance than POD for
non-intrusive ROMs. A similar work19 using CAEs for non-intrusive ROMs applied to external vehicle aerodynamics has
shown only a very small improvement in performance compared to POD; problems that are not highly non-linear like
the one presented in this work may not benefit from using deep learning for ROMs. Future work will extend this ROM
framework to larger problems where unstructured meshes are required and investigate constructing nonlinear trial man-
ifolds using variational autoencoders (VAEs), which have been shown to provide a more interpretable low-dimensional
code.
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APPENDIX A. CONVOLUTIONAL AUTOENCODER ARCHITECTURE

The CAE architecture used for the lid-driven cavity problem ROM is listed in Table A1. Zero padding is used for all
convolutional and max-pooling layers. All leaky ReLU activation functions use a value of 𝛼 = 0.25. There are a relatively
small number of convolutional and pooling layers in the network; we found that adding more of them did not improve
the network performance, although their absence (using an MLP) causes a large decrease in performance. Compared to
images which can be very noisy, the physical states in the presented problem vary smoothly, and fewer convolutional layers
are required to learn features. We also found that having a fully connected layer on either side of the code was important
for network performance, although this does drastically increase the number of network parameters. This makes the use
of early stopping as a regularization method important to ensure that the network does not overfit. The learning task at
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T A B L E A1 Detailed convolutional autoencoder (CAE) architecture used for the lid-driven cavity problem ROM.

Layer Number of filters Kernel size Stride value Activation function Size of output

Input 64 × 64 × 2

Convolutional 64 3 × 3 1 × 1 Leaky ReLU 64 × 64 × 64

Max-pooling 2 × 2 2 × 2 32 × 32 × 64

Convolutional 32 3 × 3 1 × 1 Leaky ReLU 32 × 32 × 32

Max-pooling 2 × 2 2 × 2 16 × 16 × 32

Reshape 8192

Fully connected Leaky ReLU 128

Code Leaky ReLU k

Fully connected Leaky ReLU 128

Fully connected Leaky ReLU 8192

Reshape 16 × 16 × 32

Convolutional transpose 32 3 × 3 2 × 2 Leaky ReLU 32 × 32 × 32

Convolutional transpose 64 3 × 3 2 × 2 Leaky ReLU 64 × 64 × 64

Convolutional transpose 2 3 × 3 1 × 1 Sigmoid 64 × 64 × 2

hand requires that reconstructions of data be highly accurate, and networks with more parameters allow for more robust
functional relationships to arise.

APPENDIX B. CONVOLUTIONAL AUTOENCODER TRAINING

Figure B1 shows the training and validation losses against the number of epochs for selected folds of the training and
validation data for k = 5, 10, 25, 30. Early stopping is used as a regularization method, and the validation loss fails to
drop for 500 epochs well before the maximum number of 7500 epochs at k = 5, 10, 25. At k = 30, training stops after
7491 epochs. While the training loss continues to decline slowly in all of the plots, the validation loss shows asymp-
totic behavior. By monitoring the validation loss and using early stopping, the network is prevented from overfitting the
training data. Training is performed on an NVIDIA TITAN RTX GPU. The average wall time and number of epochs
for training the CAE over all of the data folds is shown in Table B1; in general, increasing k leads to higher computa-
tional costs. Both the number of trainable parameters and capacity of the network to learn are affected by the size of the
code.

T A B L E B1 Average computational costs over all data folds for training the CAE

ROM dimension, k Average wall time (s) Average number of epochs

5 884 3533

10 883 3564

15 867 3441

20 1123 4465

25 971 3865

30 1283 4675

35 1301 4519
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F I G U R E B1 Plots of the training and validation losses at different ROM dimensions k for a selected fold of the training and validation
data.

APPENDIX C. ACTIVATION FUNCTION PERFORMANCE

In addition to the leaky ReLU activation function, we also present the projection errors obtained when using the
ReLU activation function as well as the tanh activation function, another popular choice for neural networks which is
given as

𝜙(x) = ex − e−x

ex + e−x . (C1)

This is done by replacing all of the leaky ReLU activation functions (𝛼 = 0.25) in the network in Table A1 with either
ReLU or tanh and following the same network training procedure. Figure C1 shows the cross-validation projection errors
obtained using networks with the three different activation functions for ROM dimensions k ∈ [5, 10, … 35] and POD.
It is shown that the network using the ReLU activation function is outperformed by POD for the chosen values of k,
and that leaky ReLU offers slightly improved performance over tanh in reconstructing u and v. Using the leaky ReLU
activation function overcomes the dying ReLU problem, which is shown to lead to networks with very poor predictive
performance. The initial randomization of the network weights and biases may lead to poor performance when using the
ReLU activation function; for k = 15, the maximum value of 𝜖Proj for u at a single test fold is 4.228 × 10−1, while the second
highest value is 2.372 × 10−2, which is similar to the errors provided by using leaky ReLU or tanh. The poor performance
given by using ReLU is not restricted to single folds of the data either; for a specific fold over the selected k, 𝜖Proj for u has a
maximum of 4.233 × 10−1 at k = 5 and minimum of 2.1028 × 10−2 at k = 25. This implies that using the ReLU activation
function leads to network performance being sensitive to the initialization of the weights and biases, in contrast to using
tanh or leaky ReLU which offer more consistent performance.
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F I G U R E C1 Plots of the cross-validation projection errors in u and v for POD using different activation functions.
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