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Abstract

The accurate prediction of transition is relevant for aerodynamic analysis and design
applications. Extending the laminar flow region over airframes is a potential way to
reduce the skin friction drag, which in turn reduces fuel burn and greenhouse gas emis-
sions. This paper introduces a numerical framework that includes the modeling of
transition effects for high Reynolds number flows in a high-fidelity, Reynolds—averaged
Navier—Stokes (RANS) aerodynamic design framework. The CFD solver uses a discon-
tinuous Galerkin (DG) finite element approach and includes goal-oriented adaptation.
The Spalart—Allmaras (SA) turbulence model is used for the closure of the governing
equations. In the flow stability analysis, the nonlocal, nonparallel effects that charac-
terize boundary layers are accounted for by using the parabolized stability equations
(PSE). Transition onset is obtained through an e” method based on the PSE compu-
tations, while a smooth intermittency function includes the transition region length.
Numerical results for the NLF(1)-0416 airfoil present good agreement with experimen-
tal data, improving the computations when compared to fully-turbulent ones.

1 Introduction

Transition to turbulence is an important topic in fluid mechanics because it impacts
the performance of engineered systems. Viscous drag has a major impact on fuel
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efficiency in modern commercial aircraft. Therefore, laminar flows are continuously
investigated in the aerospace industry as a tool for increasing overall airplane efficiency,
with potential benefits in direct operational costs. In addition, the correct estimation of
drag and lift coefficients depends on the accurate computations of the laminar regions
in the airframe.

In typical aerospace configurations, different mechanisms are responsible for trig-
gering transition to turbulence. The amplification of unstable Tollmien—Schlichting
(TS) waves usually causes transition on wings with low sweep. In the transonic flow
regime, wings with high sweep are commonly affected by transition caused by crossflow
(CF) vortices. Two types of CF instabilities exist: stationary CF vortices and travel-
ing CF waves. From the physical point of view, these two different families of modes
are generated by distinct receptivity mechanisms [1]. While stationary CF vortices
are excited by surface variations (surface polishing or suction), traveling CF waves are
triggered by an unsteady source, such as freestream turbulence [2]. Only for turbulence
levels Tu > 0.2% and smooth surfaces do the traveling instability waves dominate [3].
Laminar separation bubbles (LSB) may cause transition for separated flows. Reat-
tachment may take place since turbulent boundary layers are more resistant to adverse
pressure gradients than laminar ones. Leading-edge attachment line contamination oc-
curs when the fuselage turbulent boundary layer runs onto the leading edge of a swept
wing, resulting in the loss of laminar flow over the wing [4]. In addition, attachment
line transition takes place if disturbances are amplified in the leading edge region. This
happens depending on the flow and leading edge geometry.

In the last few decades, different tools have been proposed to consider transi-
tional flow effects in computational fluid dynamics (CFD). Simplified methods include
database methods and analytic criteria. The analytic criteria consider information de-
duced from experimental data, while simplified methods rely on the disturbance growth
computation based on tabulated values or based on analytic relations obtained from
exact stability computations that are, in general, performed over self-similar velocity
profiles [2]. These simplified methods were first proposed by Gaster and Jiang [5], van
Ingen [6], and Stock and Haase [7]. Other examples of database methods are the neural
network framework presented by Crouch et al. [8] and the three-parameter database
approach used by Drela [9] in a coupled inviscid-viscous flow solver.

Reynolds—-Averaged Navier-Stokes (RANS) turbulence models, which are com-
monly used in engineering applications, are the result of a Favre time-averaging of
the original Navier—Stokes equations. As a result, important spectral information is
missing [10]. The natural approach to address this shortcoming is to develop an ad-
ditional model for the transitional region and integrate it into the original turbulence
closure. Modeling of transition to turbulence is performed through the inclusion of ad-
ditional transport equations, generally by adopting an intermittency field. At present,
such modified RANS models account for different transition mechanisms, and the spec-
ification of boundary conditions for turbulent variables has strong effects on the correct
prediction of transitional flows over typical aerospace configurations [11]. A detailed
review of RANS-based transition analysis is provided by Pasquale et al. [12].

Large Eddy Simulations (LES) are also used as a tool to study transitional flows.
By solving for the large eddies and modeling the small ones, this technique can be used



to model low-Reynolds, transitional flows. At present, LES simulations of airfoils are
performed for Reynolds numbers up to 500,000 [13]. For instance, Uranga et al. [14]
performed the simulation of the transitional flow around an airfoil based on the Implicit
LES (ILES)approach, using a discontinuous Galerkin (DG) method. Fernandez et al.
[13] extended the use of the ILES technique for transitional flows to a hybridized DG
(HDG) method and considered flows over aeronautical and compressor cascade airfoils
with Reynolds numbers up to 460,000. As of now, the use of LES is limited to low
and moderate Reynolds numbers due its prohibitive computational cost.

Direct Numerical Simulation (DNS) is the highest-fidelity approach in the numer-
ical description of fluid flow. In fact, DNS methods are used to accurately simulate
laminar flow breakdown, the development of turbulent spots, and transition to fully-
developed turbulent flow [15]. Since eddies down to the Kolmogorov scale must be
directly resolved in DNS, stringent requirements are imposed on the mesh size. No
additional turbulence modeling or closure assumptions are necessary. As a result, DNS
is computationally expensive and, at present, they are not used for industry-relevant
aerodynamic configurations.

Stability analysis is a mathematical tool that identifies the growth and decay of
certain modes in fluid flows. Unstable amplification of modes leads to instability and
the eventual onset of a fully-turbulent state. Typically, the instability of flows to
small amplitude perturbations is analyzed using the modal approach [16], and both
temporal and spatial problems are considered. The oldest method to characterize
boundary layer instabilities is based on the linear Orr—Sommerfeld equation [2] (OSE)
and represents a local parallel analysis. This method is usually referred to as Linear
Stability Theory (LST), even though there are other linear stability analysis tools that
do not consider local and parallel base flows. LST has been widely used to study
transition to turbulence; a comprehensive review was performed by Saric [17]. Its
main shortcoming is the fact that the boundary layer growth is not considered. Also,
nonparallel effects are not included in the formulation.

Nonlocal, nonparallel stability analysis is used to take into account relevant bound-
ary layer flow phenomena. The nonparallel effects relate to the fact that the wall-
normal velocity component is nonzero in boundary layers. The inclusion of nonlocal
terms represents the convective, history effects in boundary layers. Mathematically,
nonlocal effects are related to the presence of streamwise flow derivatives.

Nonparallel effects can be included into the OSE approach, as proposed by Saric
and Nayfeh [18] and Crighton and Gaster [19]. The resulting method accounts for
nonparallel effects, but the boundary layer history included in the nonlocal terms is
not considered. Nonparallel stability methods are based on the Wentzel-Kramers—
Brillouin—Jeffreys (WKJB) approximation. This means that the dependent variables
can be divided into an amplitude function and an oscillating wave function [20], and
that the amplitude is assumed to slowly change in the streamwise direction. The
multiple scales (MS) method, described by El-Hady [21], provides a partial differential
equation similar to the Parabolized Navier—Stokes equations at some intermediate step,
except for additional terms containing frequency and wave numbers [22]. The detailed
formulation underlying the MS method can be found in the book by Schmid and
Henningson [23]



Another example of a nonlocal, nonparallel flow stability method are the parabo-
lized stability equations (PSE) [22, 24, 25]. These equations allow for the study of the
evolution of convectively unstable waves in boundary-layer flows. The PSE method is
similar to the MS one, and disturbance growth rates are shown to be very similar when
obtained by these two approaches [20]. We select the PSE approach for the present
investigation.

Both TS and CF instabilities are considered, and curvature effects can be included in
the formulation. The computational cost is of the same order as that of the traditional
LST approach [2]. When compared to results obtained by DNS simulations, the neutral
curves for incompressible flow over a flat plate produced by PSE computations present
close agreement with the higher-fidelity DNS tool results, but at a computational cost
that is two orders of magnitude smaller [16].

The possibility of including important physical aspects in the analysis at an afford-
able computational cost makes the PSE an ideal tool for transition prediction, and
some recent studies highlight the relevance of using PSE for transition analysis over
general aerospace configurations [26]. A complete review of the use of stability anal-
ysis tools for transition prediction is provided by Arnal [27]. For transition purposes,
the use of linear tools that consider infinitesimally small disturbance amplitudes is an
efficient approach.

By using the PSE method, growth rates are obtained for disturbances superimposed
on a given base flow. The growth rate integration leads to an N-factor that is then
used to predict the transition region onset, as first proposed by van Ingen [28]. A
smooth, continuous intermittency function is used to estimate the transition region
extent. The resulting information for the transition front and transition length is then
used to select regions of laminar and turbulent flow within a RANS framework.

In contrast to other efforts that used an ILES approach to handle transitional flows
with a DG method, our approach targets high Reynolds numbers, which is required
to model large aircraft. In addition, the computational cost of our approach is much
lower than ILES.

While the ILES approach in a DG framework [13, 14] benefits from the low numer-
ical dissipation that high-order discretization schemes present and that are relevant
for applications involving transition to turbulence, it is not compatible with realistic
aerodynamic problems because the Reynolds numbers are moderate at best. By using
the PSE technique along with a high-order RANS implementation, we include an accu-
rate prediction of the physics of transition, considering both nonlocal and nonparallel
effects that are representative of boundary layer flows, while retaining the benefits of a
high-order CFD approach. In our approach, the computational costs for high Reynolds
number, transitional flow simulations are of the same order of magnitude of those of a
fully turbulent RANS run and, therefore, are compatible with industry requirements.
The goal-oriented mesh adaptation can be based on a drag objective function, which
is a relevant aerodynamic metric for design purposes. The combination of these ele-
ments makes our approach well-adapted for studying realistic aerospace flows with the
inclusion of transition to turbulence. We present results for the NLF(1)-0416 airfoil,
for which a vast amount of experimental data is available [29], and show that including
transition to turbulence in the computations improves agreement with experimental
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data.

This paper is organized as follows. Section 2 presents the governing equations
and the fundamentals behind the discontinuous Galerkin finite-element method and
introduces the techniques used for mesh adaptation and error estimation. The modal
stability analysis approach is also introduced in this section, and an in-depth discus-
sion of the PSE approach is included. Section 3 focuses on the transition prediction
methods, including the e” methodology, the required modifications in the underlying
RANS model to account for transition, and the coupling between the transition mod-
ule and the CFD solver. Our compressible PSE approach is verified in Sec. 4 and the
numerical results from the coupled PSE-CFD approach are presented in Sec. 5. We
end with the conclusions in Sec. 6.

2 Governing Equations and Discretization

Our transition prediction framework is based on a PSE flow stability tool coupled to
a CFD solver. A boundary layer solver provides the base flow information required
for the stability computations, and our LST implementation, coupled to a database
method, indicates the wave modes that should be used in the PSE computation. The
results from this flow stability solve are then sent to the CFD solver, and the underlying
Spalart—Allmaras (SA) turbulence model is adapted to include transition to turbulence
effects. The details of the transition module are provided in Sec. 3. Section 2.1 in-
troduces the principles behind the discontinuous Galerkin approach, while Section 2.2
presents the error estimation and mesh estimations algorithms used in this paper. Sec-
tion 2.3 is an overview of the modal stability analysis approach that comprises both
LST and PSE techniques. We introduce the PSE formulation in Section 2.4.

2.1 Discontinuous Galerkin Finite-Element Method

The equations governing the fluid flow system in this work are written in conservative
form as
ou

o +V - F(u,Vu) + S(u, Vu) = 0, (1)
where u is the conservative state vector composed of the flow variables, F denotes
the total inviscid and viscous flux vectors, and S represents the source term required
when modeling turbulence. When running Reynolds—averaged turbulent cases, we use
the Spalart—Allmaras (SA) one-equation model, with a negative turbulent-viscosity
modification [30].

We discretize Eq. (1) with the discontinuous Galerkin (DG) finite-element method,
which is suitable for high-order accuracy and hp-refinement [31-33]. The computational
domain €2 is divided into a shape-regular mesh 7, consisting of N. non-overlapping
elements Q., T, = {2 : Uivzel Q. = Q,ﬂivzel Q. = 0}. In DG, the state components
are approximated by piece-wise polynomials in the approximation space Vi, with no
continuity constraints imposed on the approximations between adjacent elements. The
approximation space consists of element-wise polynomials and is defined as V! = {v;, €
L3(2) : vp|q, € PPe,VQ, € T}, where PPe denotes polynomials of order p. on element



., a distribution that is not necessary uniform throughout the mesh. The weak form
of Eq. (1) is obtained by multiplying the equation by test functions (taken from the
approximation space), integrating by parts, and coupling elements via unique inter-
element fluxes. We use the Roe approximate Riemann solver [34] for the inviscid flux,
and the second form of Bassi and Rebay (BR2) for the viscous flux [35]. Choosing a
basis for the test and trial spaces yields a system of nonlinear, algebraic equations,

where Ry is the discrete residual vector that is a nonlinear function of the discrete
state vector, Uy. For the steady-state problems considered in this work, Ry is the
discrete spatial residual vector. The subscript H refers to the discretization fidelity
of the approximation or test space with respect to the approximation order and mesh
refinement.

2.2 Error Estimation and Mesh Adaptation

The advantages of high-order DG methods can be best realized with hp-adaptation
using appropriate adaptation strategies [36]. In aerospace applications, we usually
care primarily about integrated forces such as lift or drag, instead of the accurate state
solution everywhere over the computational domain. Adjoint-based techniques, which
have been studied in depth and successfully demonstrated in aerospace engineering
problems [37-39], are able to estimate the output error and provide local indicators for
adaptation.

Consider a scalar output of interest that is a functional of the flow states, J(u).
The error in the output due to finite dimensional discretization space can be defined
as & = Jg(Upy) — J(u). In practice, the difference between the outputs calculated
with the discrete state solution on the coarse space (subscript H) and a finer space
(subscript h), i.e., Jg(Upy) — Ju(Uy), serves as a surrogate to the “true” error. In
the present work, the fine space is achieved by an increment of one on the elements’
approximation order, i.e., p. + 1. Instead of solving the flow problem in the fine space,
we use the linear adjoint solution on the fine space ¥y,, defined as the output sensitivity

to the residual perturbation
R, \ " O \"
— v — | =0. 3
<8Uh) T <8Uh 3)

Then, the output error can be estimated using an adjoint-weighted residual,

& ~6J = Jy(Uy) — Ju(Uy),
aJ,
= Jh(U}IL{) — Jh(Uh> ~ a—[;(SU, (4>
= —¥},0R;, = —¥, R, (U}),

where U¥ is the state injected into the fine space from the coarse space, which generally
does not give a zero fine space residual, R(U¥) # R, (Uj) = 0. The error estimates



given by Eq. (4) can be localized to each element and serve as an indicator to drive
the mesh adaptation,

£ = —WIR,(UY) = Z‘I’ Rue(UY),  e=|-T R (U),  (5)

where £ represents the total output error estimate and €, denotes the localized error
indicator for element €2..

To capture the highly anisotropic physics in the boundary layer with moderate
degrees of freedom (DOF), we use unstructured mesh optimization through error sam-
pling and synthesis (MOESS) [40]. In MOESS, the optimal mesh, encoded with a
continuous metric field, is iteratively determined by equally distributing the marginal
error-to-cost ratio of local refinement. This process requires models indicating how the
error and cost change as the metric field changes. The cost of refinement measured
with DOF can be directly related to the local metric if a fixed approximation order is
used. On the other hand, the error model is obtained with a local sampling approach
to determine an empirical form of output convergence,

€e = €c0exp[tr(ReSe)l, (6)

where R, is a symmetric error convergence tensor containing the directional conver-
gence information, and S, is the proposed metric step matrix encoding both the shape
and the size changes of the element e. In the sampling, we prescribe several refinement
options indexed by ¢, with different step matrix S, ;.

Figure 1 shows four refinement options for a triangular element. For each refinement
option 4, the corresponding error estimate €.; is used to determine the rate tensor
R. using Eq. (6). The error estimates require the fine space adjoint solution for each
proposed refinement, which can be expensive to solve even for a local patch of elements.
Instead, we use an element-local projection method [41] to approximate the fine-space
adjoint in semi-refined spaces associated with each refinement option. With the cost
and error models, one can obtain the local marginal error-to-cost ratio. MOESS then
follows an iterative process to equidistribute the marginal error-to-cost ratio at a given

target cost level [40].

Original Option 1 Option 2 Option 3 Option 4

Figure 1: Four refinement options for a triangle. Each one is implicitly considered
during the error sampling, although the elements are never actually refined.

2.3 Modal Linear Stability Theory

In modal linear stability theory, the stability problem is solved by using a set of wave
modes, each of which is solved independently. Both PSE and LST are examples of
modal linear stability methods.



The overall principle is based on the decomposition of any flow property q into a
steady base state q and an unsteady perturbation component, q, as follows:

q<X7 t) = (_1<X) + E(le(X, t)a (7>

where x is the space coordinate vector, ¢ is the time, and q = (p, u, v, w,T) is the flow
state vector. As long as we consider the linear stability problem, the perturbations
have small amplitudes such that € < 1. When such an ansatz is applied to the Navier—
Stokes equations, a linearization is performed by neglecting terms of O(e?) and O(e?).
The equations for the steady flow, that also satisfy the Navier—-Stokes equations, are
subtracted, and we obtain the linearized Navier—Stokes equations (LNSE), which are
written as an initial value problem. If the base flow q is steady, time and space depen-
dencies are split in this equation. A Fourier decomposition in time can be introduced
using q = qexp(—iwt), where w is the angular frequency. The linearization introduced
in the Navier—Stokes equations leading to the LNSE is only valid when the disturbance
amplitude remains small such that the nonlinear terms are negligible. Indeed, the real
nonlinear system might present an unstable behavior if finite-amplitude disturbances
are considered, under conditions in which the linearized system remains stable.

In modal linear stability analysis, the perturbation term is written as the product
of an amplitude q and a phase function ©:

q=qe”. (8)

Different stability methods are based on distinct assumptions regarding the topology
of the base flow q and the fluctuation q. The overall differences between LST (Orr—
Sommerfeld) and PSE methodologies are detailed in Table 1, where o = 27/ L, is the
streamwise wave number, § = 27/L, is the spanwise wave number, with L, and L,
the wavelengths in the streamwise (x) and spanwise (z) directions, respectively. Also,
w is the angular frequency, and z* represents the base flow slow variation properties in
the streamwise direction. The wall-normal direction is denoted by y.

Table 1: Classification of stability analysis theory [16].

Method Assumption Base flow Amplitude function Phase function ©
PSE  2,<9,q;0.q=0 q(z*,y) qz*,y) Ja(@)dz' + (Bz — wt)
LST 0.9=0.q=0 q(y) a(y) azr + (6z — wt)

The first flow stability studies focused on flows in which inhomogenity is observed in
only one spatial direction. This is the case of a channel flow in which the base flow only
presents variations in the wall-normal direction. In this specific case, d,q = d.q = 0,
and q(x) = q(y). Such approximations are valid for parallel flows, such as Couette
and Pouiseuille flows [42]. The introduction of a Fourier decomposition along the
streamwise (z) and the spanwise (z) directions may be written to derive different
variations of the Orr—Sommerfeld equations [23].

Boundary-layer flows are characterized by two inhomogeneous spatial directions,
with the base flow depending both on streamwise and normal coordinates, with slow



variations in the streamwise direction, i.e., 9,q < 9,q. To solve such a type of flow, the
parabolized stability equations (PSE) method was first introduced by Bertolotti and
Herbert [24]. In contrast to the eigenvalue problem in the Orr-Sommerfeld equations,
the PSE technique solves the stability problem by integrating the LNSE via a marching
procedure along the streamwise direction. The initial values for the eigenfunctions
q and the streamwise wavenumber («) are obtained from a local stability analysis
performed in the first streamwise station. Bertolotti [43] and Herbert [22] published
comprehensive reviews on the PSE method.

2.4 PSE Theoretical Formulation

The PSE method represents base flows in which variations in the streamwise direction
are much smaller than those in the wall-normal direction. Mathematically, this is
expressed as

8,4 < 0,q; 0.q=0, (9)
q(x) = q(z",y), (10)

where z* is a scaled version of x used to represent the base flow slow variation in the
x direction. From the base flow assumptions, it follows that the PSE method is well-
adapted to the prediction of flows such as boundary layers, jets, wakes, and mixing
layers at high Reynolds numbers. The PSE methodology is valid for convectively
unstable flows.

The base flow velocity components u and v, aligned with the streamwise and span-
wise directions, respectively, exhibit small variations in the streamwise (z) direction
and are constant along the spanwise (z) direction. We introduce the local Reynolds
number, Re = U.d(x)/v where v is the kinematic viscosity and 6(z) is a characteristic
length scale proportional to the boundary layer thickness, d(x) = y/vz/U., where U,
is the unperturbed boundary layer edge velocity. The wall-normal component, w, is
nonzero and scales with 1/Re. Formally defining the slowly varying scale z* = =/ Re,
the scalings are:

3 1
v Re’
0 1
o Re’ (11)

a=a(z"),

The perturbation vector is expanded in terms of its truncated Fourier components
assuming time-periodicity,

M N

a(x,y,x,t) Z Z QA (7, ) exp [i (MBz — nwt)] (12)

—M n=—N



where q represents the fast varying wave function with a slowly-varying amplitude
a(z,y):

) = Atz i [ ()], (13)

and q(z,y) has a slow variation in x.
If a linear approach is considered, only one mode for each spanwise direction and
time is needed. Using the PSE approximation, the streamwise derivatives of the am-

plitude q are
o4

oq d
oz (—a2q+ 2@'043—2 +i£f1) exp {i/ma(x’) d:l,‘/} . (15)
To obtain the linear PSE equations, we replace Eqns. (13), (14), and (15) in the LNSE
and neglect terms of O(e?). We also consider the scaling from Eq. (11) and neglect

higher derivatives with respect to z in the viscous terms (noting that 2 -+ ~ ¢2). The

Oz Re
resulting linear PSE equations in compact form are
Aq+B——+C—<—-—+D——=0, (16)

where h, and h,, are curvature metrics. The entries for the compressible PSE operators
A, B, C, and D are detailed by Hanifi et al. [20]. The boundary conditions are:

A

T=0 at y=0, (17)
— 00 as Yy — 0. (18)

3

U=0=w=

In the PSE framework, changes in amplitude along the slow spatial direction are
contained both in the amplitude function q and in the phase function defined in
Eq. (13). To remove such ambiguity, a normalization condition is required. One
possibility for the normalization is imposing

> ;o0u
A -'- 1

where the superscript T represents the complex conjugate. By using this normalization
condition, we force the fast disturbance variations in the streamwise direction (x) to
be absorbed into the phase function. This also ensures that the scaling of (1/Re) in
0q/0x is valid.

The physical growth of an arbitrary disturbance ¢ is defined as

(o]

where the subscript ¢ indicates the imaginary part. The disturbance kinetic energy is
used to measure the disturbance growth,

E@%=AWUMQHﬂQHWﬂd% (21)
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and, hence, Eq. (20) becomes:

op = hi (—ai Ll [E(@]) | (22)

The linear PSE equations (16) are intended to be parabolic. Therefore, it is possible
to treat the streamwise direction as a pseudo-time and then to implement a marching
strategy in this spatial direction. Numerical instabilities appear when the streamwise
integration step is too small [16]. The reason for that, as explained by Herbert [22], is
that there are traces of ellipticity that inject ill-posed characteristics. One remedy for
this is the use of a first-order backward difference scheme with a lower integration step
limit Az > 1/|a,|. To relax this limit, Andersson et al. [44] propose a stabilization
procedure leading to Az > 1/|a,| — 2s, where s is a small number.

Due to the predominantly parabolic character of the linear PSE equations (16),
the disturbance evolution is influenced by both local and upstream flow conditions.
Therefore, the parabolized stability equations are recognized as a nonlocal method,
in contrast to, for instance, the Orr-Sommerfeld equation that is a local approach.
For three-dimensional flows, there are some possibilities for the marching direction.
Using an orthogonal coordinate system, the most common approach is to orient the
streamwise direction towards a normal to the leading edge, where the spanwise direction
is parallel to the leading edge. Another choice would be perform a marching that
follows the inviscid streamline. A complete discussion on suitable marching directions
is available in the literature [26, 45]. Another relevant aspect to be considered when
using PSE is the starting integration point. It is necessary to place this point some
flow stations upstream of the neutral point location. Langlois et al. [46] discusses this
issue in more depth.

3 Transition Prediction
3.1 N-factor and Transition Region Beginning

The beginning of the transition region is determined based on an e” method. The
amplification factor, or N-factor, is defined as

N=In (%) - / o (o) de, (23)

where Ay is the disturbance amplitude at the first neutral-stability point. The N-factor
envelope is obtained by running the PSE code using different frequencies and spanwise
wave numbers, and superimposing the resulting N-factor curves at each station during
the PSE solution.

The position in which the transition region starts, orpgpes, is allowed to be in
between two cells by using a simple linear interpolation that considers the two mesh
points in between which the N-factor envelope satisfies the threshold value for the
amplification factor, usually called critical amplification,or critical N-factor. This leads
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to the following expression for the transition location,

(Ng — Nepit) v, + (Nerit — Ni) xR
(NR - Ncrit) + (Ncrit - NL) ’

TTRbeg = (24)
where z; and xg are, respectively, the left and right neighbors of the position where
Nt is reached and Ny, and Ny are the corresponding N-factor values.

The critical value for the N-factor, N, is obtained from experimental data.
For some transition mechanisms, empirical correlations are available. For Tollmein—
Schlichting waves, Mack [47] suggested correlating the critical N-factor to the turbu-

lence level, Tu, using
Ncrit,TS = —8.43—24In (Tu) . (25)

This correlation is valid for 0.001 < Tu < 0.01, and sometimes is also used to indicate
critical values for crossflow (CF) vortices [26].

Since flow stability tools only provide the transition region starting point (transition
onset), additional correlations are used to estimate the length of the transition region.
Our framework also includes correlations that allow for the prediction of transition
triggered by flow separation through laminar separation bubbles (LSB) and leading
edge transition and contamination, as discussed by Shi et al. [48].

3.2 Intermittency Function and Interaction with the Spalart—Allmaras
Turbulence Model

Physically, the intermittency indicates the probability of a flow location to be turbulent.
We use a smooth intermittency function to generate the transition region in a RANS
computation framework, i.e.,

vy=1-— exp_0'41352, (26)

where

3.36 <s - sz?g>
o (sirt = i)

where s is the arc length measured from the stagnation point and the superscripts

beg and end refer to the beginning and end of the transition region, respectively. The

ending arc point, s, is determined based on the correlation [49],

(27)

st = 2.3, /e (5,)15 4 g (28)
Ve
where U, and v, are the velocity and kinematic viscosity at the boundary layer edge,
respectively, and 07 is the boundary layer displacement thickness. All these quantities
are evaluated at the flow position corresponding to s]ffg :
The intermittency function - is used as a factor of both production and destruction

terms in the SA turbulence model such that the eddy viscosity production is suppressed
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in laminar regions [50]. The governing equation for the SA model working variable, 7,
is then modified to [30]
Dv

1
B = AP — imD + T + o [V (v+ D) V) + (W)Q} , (29)

where P and D are, respectively, the production and destruction terms and [51]
Mim = min [max (v, 0.1), 1.0]. (30)

Allmaras and Johnson [30] describe the other variables in Eq. (29) in more detail.

3.3 Transition Module Coupling with CFD Solver

The interaction between the CFD and the transition module, which can perform both
LST and PSE analyses, is illustrated in Fig. 2. Our conical boundary layer code is
used to provide the laminar flow field given a pressure coefficient (C,) distribution.

The C, distribution can be obtained from the initial fully-turbulent RANS simula-
tion. Another possibility, adopted in this work, is to consider the C), distribution from
a lower-fidelity flow solver. We use Xfoil [52] to provide the initial C), distribution. As
Xfoil uses a panel approach that includes viscous corrections and transition estimation;
we can use its C, distribution as a direct boundary condition for the boundary layer
solver. Since an initial transition location in a lower fidelity environment is taken into
account and reflected in the C, distribution, no iteration is needed in the process. This
is especially valid for flows where no shock waves are present, such that the C), distri-
bution is not significantly affected by the transition location, as will be illustrated in
Sec. 5. For a three-dimensional extension of the approach we propose here, the pressure
coefficient extraction from the RANS field is performed through slices at selected span-
wise stations normal to the leading edge. This approach is the one used in a previous
work involving LST computations [48]. No further modifications in the PSE tool are
needed, as our formulation is quasi-3-D.

It is also possible to extract the base flow from the CFD solver itself. This second
approach, which is not used in this paper, is able to consider separated flow regions [53],
but involves placing more points inside the boundary layer region in the CFD compu-
tation, which increases its computational cost compared to a boundary layer solver.

A set of suitable waves is then provided by our LST code. These waves, along with
base flow information, are provided to the PSE, which computes the transition onset
point. The intermittency function (26) is then prescribed to all mesh elements such
that the turbulence model considers laminar, transitional, and turbulent regions. The
transition prediction framework is illustrated in Fig. 2.

With the pressure coefficient distribution, geometry, and simulation conditions,
we trigger the laminar boundary layer solution and output the required base flow
information. An e” method based on the PSE N-factor calculations is then used to
provide the transition location. We calculate the intermittency function and perform
the required modifications in the underlying RANS model as we detail in section 3.2.
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Figure 2: Transition prediction framework (adapted from [48]).

4 PSE Verification

Our compressible PSE tool is able to advance the PSE solution using both first and
second-order implicit schemes and considers 2-D and quasi 3-D base flows with uniform
or nonuniform meshes. The stabilization procedure suggested by Andersson et al. [44] is
also included in the implementation. A growing mesh that emulates the boundary layer
growth is included as an option. The normal to the wall direction is discretized using
a spectral method based on the Chebyshev collocation points with a suitable mapping
to the computational domain and point clustering close to the wall and boundary
layer edge for high-speed flows. The curvature metrics highlighted in Sec. 2.4 are also
included in the current implementation. Curvature effects are also introduced in the
base flow quantities inside the PSE operators. The first streamwise position is solved
using a local method based on the PSE operators without the nonparallel terms. The
resulting eigenfunctions are then used as starting values for the PSE marching.

4.1 Subsonic and Supersonic Flat Plate Test Cases

To verify the compressible PSE solver (StabFlow), two flat plate test cases are per-
formed corresponding to low and high Mach number flows. In both cases, we compared
results to those obtained with the NOLOT code, which is a linear compressible PSE
implementation [20].

For the low Mach number test case, we select a constant, dimensionless reduced
frequency F' = 1.4 x 10~*. The reduced frequency is related to the dimensional fre-
quency, f, according to F' = 27 f (v/U?). The Mach number is 0.01 and the marching
ranges from Res = 100 to Res = 650, where Res is the Reynolds number based on the
Blasius characteristic length variable. The freestream temperature is 299 K and the
Prandtl number is 0.71. For this test case, the waves are aligned with the streamwise
direction (8 = 0). For this simulation, 60 Chebyshev points are used in the wall-normal
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direction. The results for the energy-based growth rate, o, are shown in Fig. 3. The
agreement between the benchmark code (NOLOT') and our implementation (StabFlow)
is good for both growing and rectangular meshes, with a local error that within 5%
after the initial transient behavior vanishes.

-0.005 |

-0.002

o |
-0.004

002

o  NoLoT -0.008
StabFlow, rectangular mesh o NOLOT
= = = = StabFlow, growing mesh StabFlow, Ny=60
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Figure 3: Energy-based growth rates for subsonic (left) and supersonic (right) flow
over a flat plate.

A numerical simulation considering supersonic flow at M = 1.6 over a flat plate is
also considered at T' = 300 K and Pr = 0.71. For this specific test case, we choose
an oblique wave with 8/R = 1.52 x 10~ and a reduced frequency F = 5.0025 x 107°.
The marching extends from Res = 200 to Res = 1400 with a step of ARes = 30. The
simulation is converged for 60 Chebyshev points in the wall-normal direction. The
results for the energy-based growth rate, og, are shown in Fig. 3. Once again, the
results are in good agreement with the NOLOT data. Some transient effects appear in
the early marching stations, but vanish afterwards.

To inspect the eigenfunctions, we plot the wave amplitudes for the three velocity
components, temperature, and density at the marching mid-station in Fig. 4. The
wall-normal perturbation velocity decay is the one that requires a larger computational
domain, as shown in Fig. 4. For this reason, the computational domain should be as
large as 100 to 200 times the local reference length at each marching station if TS
waves are included. Crossflow instabilities decay faster in the freestream and a smaller
computational domain is considered.

4.2 NACA 0012 Airfoil

To further investigate our PSE implementation with transition prediction, we use a
NACA 0012 airfoil at a zero angle of attack, M = 0.1, and chord-based Reynolds
number of 1, 3, 5, 8 and 15 million. The base flows used here are obtained from our
conical boundary layer code. The C,, distribution from an initially fully turbulent run
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Figure 4: Normalized absolute values of eigenfunctions in the mid-station for flow at
M = 1.6 over a flat plate.

is used as the boundary condition for the boundary layer solver.

Since there are no experimental results for this specific case, we compare our results
to those obtained with our LST model, which was extensively validated against exper-
imental data by Shi et al. [48, 54]. This is an appropriate test case since TS waves are
not significantly affected by curvature, nonlocal, and nonparallel effects, which are not
accounted for in the LST formulation.

Figure 5 shows the N-factor envelopes for all the considered Reynolds numbers,
together with the critical N-factor, Ngi; g = 8.14. This critical N-factor was ob-
tained by using Eq. (25) for a turbulence level of Tu = 0.1%. This figure also shows
the beginning and end chord locations for the transition region for all five flight con-
ditions. Since the NACA 0012 airfoil is symmetric and we use a zero angle of attack,
we only display results for the airfoil suction side. We observe that, with increasing
freestream Reynolds number, the transition front moves upstream and the transition
region becomes shorter than for smaller freestream Reynolds numbers, indicating that
the model is able to reproduce the fact that, for higher Reynolds numbers, the flow
structures evolution that lead to turbulent flow is faster than for lower Reynolds flows.

The results for the transition region starting location for the NACA 0012 test cases
are listed in Table 2. Agreement between both flow stability analysis implementations
is good, and the average error is of 0.73% across all the Reynolds numbers tested, with
a maximum error of 1.11% for Re = 8 x 10°.

4.3 NLF(1)-0416 Airfoil

The Natural Laminar Flow NLF(1)-0416 airfoil is a general aviation airfoil largely
tested at the NASA Langley Low-Turbulence Pressure Tunnel [29]. Turbulence inten-
sity measurements in this wind tunnel indicate that it is a quiet test apparatus [55].
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Figure 5: N-factor envelopes (left) and transition locations (right) for a NACA 0012
airfoil at multiple Reynolds numbers.

Table 2: NACA 0012 airfoil transition region starting locations for different Reynolds
numbers.

Re (million) PSE, (z/c), LST, (z/c), Difference (%)

1 0.498 0.493 0.87
3 0.333 0.349 0.74
5 0.297 0.296 0.39
8 0.249 0.246 1.11
15 0.192 0.191 0.56

However, Coder [50] mentions that the original turbulence intensities for this wind tun-
nel might not lead to good agreement with experimental data when used along with
transition modeling tools. Therefore, we choose Tu = 0.1% for this test case. As a
result, the critical N-factor is Neit s = 8.14 as suggested by Eq. (25).

We select two flight conditions, depicted in Table 3. According to Somers [29],
transition is triggered by amplification of T'S waves in the airfoil suction side for both
of these flight conditions.

Table 3: NLF(1)-0416 flight conditions.

Condition Re (million) M  Angle of attack (degrees)
1 4 0.1 0
2 2 0.1 4

For flight condition 1, our transition prediction framework considers a set of TS
waves with frequencies ranging from 1100 to 2400 Hz for the airfoil suction side, and
from 580 to 2000 Hz for the pressure side. For flight condition 2, the frequencies range
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from 1060 to 3000 Hz for the suction side, and from 700 to 520 Hz for the pressure side.
The frequency and wavenumber ranges are obtained by using a database method [56,
57]. The data is generated using both Falkner—-Skan—Cooke (FSC) similar profiles and
outputs from our LST code. For each wave, the modes obtained from the database
method are analyzed in our LST framework to determine the neutral point locations.
For flight condition 2, however, the transition on the lower airfoil side is found to be
caused by an LSB, differing from all the other situations in which the amplification of
TS waves triggers transition to turbulence. The base flows used here are obtained from
our conical boundary layer code. The C), distribution from an initially fully turbulent
run is used as the boundary condition for the boundary layer solver. Figure 6 shows
the N-envelopes for both flight conditions. For flight condition 2, the N-envelope is
not shown for the pressure side, since transition takes place by means of an LSB for
this case.

Suction side Suction side
Pressure side

I — — — — Nerit

F — — — — Ncrit

ool
0 0.05 0.1 0.15 0.2 0.25 0}3 0.35 0.4 045 0.5 0.55 0.6
x/c

(a) Flight condition 1 (b) Flight condition 2

Figure 6: N-factor envelopes for condition 1 (left) and condition 2 (right) for the
NLF(1)-0416 test case.

Table 4 lists the numerical and experimental transition locations for this test case.

Table 4: NLF(1)-0416 airfoil transition points.

Condition Side  PSE, (z/c¢);, Experiment, (z/c); [29] Difference (%)

1 Upper 0.375 0.385 2.56
1 Lower 0.497 0.525 5.34
2 Upper 0.291 0.310 6.03
2 Lower 0.570 0.640 10.85

The experimental transition locations reported by Somers [29] are obtained through
the use of acoustic devices that do not precisely detect transition. Instead, this method
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suggests bounds inside which transition takes place. Then, a curve is fitted, passing
inside the bounding regions, to indicate the likely transition location. The experimental
results shown in Table 4 are based on this curve. This approach certainly inputs some
additional uncertainty on the transition location placing. Despite the uncertainties
involved with the experimental transition location, the results provided by our PSE
implementation are in good agreement with experimental data.

The critical N-factor that leads to the computed transition location being the same
as in the experiments is Nt rs = 9.3, corresponding to a freestream turbulence value
of Tu = 0.106% according to Eq. (25). Once again, we consider the uncertainties
present in the experimental transition location determination and, therefore, advise
using N, ts = 8.14 for low-turbulence wind tunnels unless a precise value of turbu-
lence level is available.

For the airfoil pressure side in flight condition 2, the larger mismatch between
numerical and experimental result follows the trend typical of linear stability analysis
tools, which is to tend to predict transition caused by LSBs upstream of its experimental
location. Indeed, the way a separation bubble is accounted for in this type of framework
involves the boundary layer code divergence. Boundary layer computations involve
a numerical marching scheme, and hence they represent a parabolic problem whose
underlying hypotheses are similar to the ones considered for the PSE approach. When
the flow separates, the slow streamwise variation hypothesis does not hold, and the
marching procedure diverges. The correlations reported by Shi et al. [48] provide a
tool to estimate the transition region when separation is involved.

5 Transitional Flow Results in a Discontinuous Galerkin
RANS framework

We propose to use PSE as the transition location prediction tool in a DG RANS
framework. This framework is such that the advantages of a low-dissipation, adaptive
CFD method are used to simulate transitional flows at high Reynolds numbers, in
contrast to techniques such as ILES, which are restricted to low to moderate Reynolds
numbers. In the numerical simulations, we use DG with approximation order p = 2
on meshes adapted via adjoint-based output error estimates. An unstructured mesh
optimization algorithm through error sampling and error synthesis (MOESS) is adopted
to capture the highly anisotropic physics in the boundary layer with a moderate number
of degrees of freedom (DOF). In this paper, our meshes are adapted for the drag
output only, given that this is the aerodynamic coefficient most affected by including
the transition model. Since the transition changes the system of equations in the CFD
code, the error estimation and mesh adaptation also include the transition model.

5.1 NACA 0012

To first verify the concepts presented in Sec. 3, we use the NACA 0012 airfoil results
presented in Sec. 4 with Reynolds numbers of 5 and 15 million, for M = 0.1 and zero
angle of attack. The starting and final computational meshes are shown in Fig. 7,
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where 25 mesh optimization iterations were required to obtain the final computational
mesh.

(a) Initial mesh. DOF = 3198 (b) Adapted mesh. DOF = 41190

Figure 7: Examples of initial and adapted meshes for a NACA 0012 simulation.

Figure 8 shows contours of &, which is the SA model working variable and is directly
related to the kinetic eddy viscosity. Both fully turbulent and transition computations
are shown for the 5 million Reynolds number are shown. It is evident that our imple-
mentation is able to turn off the turbulence effects upstream of the transition region.
After this position, predicted by PSE, the intermittency function from Eq. (26) is used
to turn on the turbulence production and destruction terms.

(a) Fully turbulent

(b) Transition included

Figure 8: SA model working variable 7 contours for the NACA 0012 airfoil at Re =
5 million for a fully-turbulent simulation (top) and including transitional modeling
(bottom). The contour range is from 0 to 0.02.

The effects of transition on the pressure coefficient distribution are shown in Fig. 9.
The overall C), distribution looks similar for both turbulent and transitional test cases,
which seems to be physical since no shock waves are present in this case. By looking at
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the €, curve around the transition region in detail, however, we see that the transitional
flow case presents small differences compared to the turbulent case.
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Figure 9: Pressure coefficient distributions. General view (left) and zoomed-in image
around the transition region (right) for the NACA 0012 case with Re=5 million.

To better analyze the transition location for the NACA 0012 upper surface at
Re = 5 million, we look at the skin friction coefficient, C'y, plots for both fully-turbulent
and transitional simulations. The results are shown on the left of Fig. 10. The inclusion
of a laminar region, followed by a transitional length in the simulation leads to a
smaller skin friction coefficient, as expected. In addition, the fact that C rises around
(x/c) = 0.3 is another indication that the transition predicted to start at (x/c) = 0.33
by our PSE approach, is being correctly reproduced within the RANS framework.
Inspection of the skin friction plot shows that some points seem to be off the curve.
This is likely due to the discontinuous approximation in the DG approach.

In Fig. 10 we also show the streamwise velocity component, U, at three different
chord-wise positions for the transitional flow case. First, the velocity profile in the
laminar region is representative of laminar flow. As long as turbulence starts being
generated in the boundary layer, the enlarged momentum transfer causes the bound-
ary layer velocity profile to become flatter, as we show in Fig. 10. The relevance of
these analyses is that we assure that the interaction between the transition predic-
tion framework and the CFD capability is such that the physical aspects of laminar,
transitional, and turbulent flows are retained in the simulation.

The values for lift, drag, and moment coefficient (about ¢/4) are listed in Table 5
for both flight conditions (Reynolds numbers of 5 and 15 million).

By including transition effects, the drag is lower by 30% for the 5 million Reynolds
case and by 20% in the 15 million Reynolds case. As for the lift coefficient, the larger
variation is observed for the lower Reynolds number case. Since the NACA 0012
airfoil is symmetric and we use a zero angle of attack condition, both lift and moment
coefficients are small numbers, and thus, it is harder to draw meaningful conclusions
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Figure 10: NACA 0012 skin friction coefficient for both turbulent and transitional
simulations (left) and streamwise velocity in the laminar, transitional, and turbulent
regions for the transitional simulation (right) for Re = 5 million.

Table 5: NACA 0012 aerodynamic coefficients

Re (million) BL type a Cq Cm
5 Turbulent —0.000922 0.00864 0.000189

5 Transitional —0.000438 0.00602 0.000129

15 Turbulent —0.000851 0.00749 0.000154

15 Transitional 0.000847 0.00603 0.000165

about the effect of transition on these variables.

5.2 NLF(1)-0416

Since a considerable amount of experimental data is available for the NLF(1)-0416
airfoil, we use flight condition 1 (Re = 4 million, M = 0.1, and zero angle of attack)
and condition 2 (Re = 2 million, M = 0.1, and 4° angle of attack) from Sec. 4 to assess
both the fully-turbulent and transitional flows for this specific geometry. The starting
and final computational meshes are visualized in Fig. 11. We start with a coarse mesh
and, as the drag error estimates are performed, our mesh adaptation algorithm refines
regions in a way that the numerical error in the drag calculation is minimized.

Figure 12 shows contours of 7 for condition 1 for both fully turbulent and including
transition to turbulence simulations. Here, for a non-symmetric, thicker than the
NACA 0012 airfoil, it is even easier to observe the intermittency function effects over
the SA model turbulent variables.

The pressure coefficient distributions for the turbulent simulation, the transitional
simulation, and the experimental data are shown in Fig. 13. Both fully-turbulent
and transitional flow simulations show a good agreement with the experimental C),
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Figure 11: Examples of initial and adapted meshes for a NLF(1)-0416 run.

(b) Transition included

Figure 12: SA model working variable  contours for the NLF(1)-0416 case at Re = 4
million for a fully turbulent simulation (top) and including transitional effects (bottom).
The contour range is from 0 to 0.03.

distribution. However, we observe some disagreement close to the transition region
if a turbulent run is performed. The more significant mismatches in the pressure
coefficient curve are observed inside the transition region for the airfoil suction side.
At (z/c) = 0.4, that is inside the transition region, the error in the pressure coefficient
for the fully-turbulent run is of 9%. When transition to turbulence effects are included,
the error drops to 3.7%. On the airfoil pressure side, the fully-turbulent simulation
leads to better agreement with experimental data, the transitional flow run leading to
better agreement in the suction side. Once again, the upper surface transition region
inspection, predicted to take place between (x/c) = 0.375 and (z/c) = 0.446, introduces
features that are representative of the experimental pressure coefficient distribution,
namely a small step increase in the C), values around the transition region.

Figure 14 shows the skin friction coefficient, C'¢, for both turbulent and transitional
simulations. Besides the larger C'y values for the turbulent case, as expected, the C;
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Figure 13: Pressure coefficient distributions. Overall view (left) and detailed view
around the suction side transition region (right) for flight condition 1, NLF(1)-0416.

computations vary between turbulent and transitional analyses, even in the turbulent
region. This is a result from the boundary layer convection, which introduces history
effects in this type of flow, and is correctly captured by the simulations. As a result,
the turbulent boundary layer, which was laminar in the early chord positions, has a
development that is distinct from the one observed in the fully-turbulent case.

Figure 14 also shows the streamwise velocity plots for the upper surface, in condition
1, for the laminar, transitional, and turbulent regions. As for the NACA 0012 case, we
observe that our implementation computes boundary layer velocity profiles that are in
agreement with the expectation of an increased momentum transfer leading to flatter
velocity profiles in the turbulent flow regime.

Table 6 lists the aerodynamic coefficients for transitional and turbulent simulations
and compares them to the experimental data. By including transition to turbulence
effects, the error in the drag coefficient prediction drops by one order of magnitude
when compared to the fully-turbulent test case. The lift coefficient is overpredicted by
the transitional simulations. This trend was also observed by Coder [50]. For the L/D
ratio, the transitional simulations reproduce the experimental value more closely, even
though the error is still considerable due to the overprediction of the lift coefficient
when transitional effects are included. The moment coefficient around the quarter
chord exhibits similar errors for both turbulent and transitional analyses.

Table 6: NLF(1)-0416 aerodynamic coefficients for condition 1.

Case a Ay, % ca ANy, % L/D App,% m A, %
Turbulent 0.450 0.75 0.0099 68.65 45.26 40.26  —0.0995 4.36
Transitional 0.486 8.86 0.0055 6.18 87.91 16.03 —0.1080 3.75
Experiment 0.447 - 0.0059 - 75.76 - —0.1040 -
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Figure 14: NLF(1)-0416 skin friction coefficient for both turbulent and transitional
simulations (left) and streamwise velocity in the laminar, transitional, and turbulent
regions for the transitional simulation (right) for the suction side at Re = 4 million,
M = 0.1, and zero angle of attack (condition 1).

Figure 15 shows © contours for condition 2 (Re = 2 million, M = 0.1, and 4°
angle of attack) for both fully turbulent and transition simulations. The intermittency
function effects over the turbulence variables are once again present. At a higher angle
of attack, condition 2 is the best condition (among the ones addressed in this paper)
to visualize the differences in the 7 contours between both transitional and turbulent
cases.

(b) Transition included

Figure 15: SA model working variable  contours for the NLF(1)-0416 case at Re = 2
million for a fully turbulent simulation (top) and including transitional effects (bottom).
The contour range is from 0 to 0.03.
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The C, distributions for both turbulent and transitional simulations are shown
in Fig. 16. In contrast to flight condition 1, there is no experimental data available
for the C), distribution corresponding to flight condition 2. For flight condition 2,
the differences in the C), curves as obtained by turbulent and transitional simulations
are more clearly noticeable than for flight condition 1, especially close to the suction
peak. On the pressure side with transition, a separation region is partially detected
by the simulation close to (z/c) = 0.6. This is represented by the fast C, drop in the
aforementioned chord position. This separation is not captured by the fully turbulent
simulation. This is consistent with the fact that turbulent boundary layers are more
resistant to separation than laminar ones.
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Figure 16: C, distributions. Overall view (left) and detailed view around the suction
side transition region (right) for flight condition 2, NLF(1)-0416.

Figure 17 shows the skin friction coefficient, C, for both turbulent and transitional
simulations. The C value that is close to zero around (z/c) = 0.6 correlates well with
the laminar separation bubble that triggers transition in the experimental framework,
which is consistent with Fig. 16. Once again, the velocity profiles shown in Fig. 17
clearly distinguish between laminar, transitional, and turbulent flow regions on the
airfoil suction side.

Table 7 lists the aerodynamic coefficients for the transitional and turbulent simula-
tions and compares them to the experimental data. For flight condition 2, the inclusion
of transition to turbulence effects improves the drag coefficient prediction, as well as
the L/D computation, leading to results that are close to experimental data. The
inclusion of transition to turbulence effects reduces the error in L/D from 37% for the
fully-turbulent case to 8% in the transitional one. The lift coefficient, however, is once
more overpredicted by the inclusion of transition to turbulence modeling.

The NLF(1)-0416 experimental results might suffer from wall effects in the wind
tunnel facility and our numerical results do not account for this. Also, there is no
experimental information regarding the transition front in different spanwise locations.
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Figure 17: NLF(1)-0416 skin friction coefficient for both turbulent and transitional
simulations (left) and streamwise velocity in the laminar, transitional, and turbulent
regions for the transitional simulation (right) for the suction side at 4 million, M = 0.1,
and 4° angle of attack (condition 2).

Table 7: NLF(1)-0416 aerodynamic coefficients for condition 2.

Case a Ay, % ca AN, % L/D App,% Cm A, %
Turbulent 0.889 1.07 0.0126 61.09 70.79 37.26 —0.0999 0.11
Transitional 0.937 6.53 0.0077 1.56 122.09 821 —0.1090 9.19
Experiment 0.880 - 0.0078 - 112.82 - —0.1000 -

Checking this point is relevant to ensure that the experimental results are not subject
to three-dimensional effects.

6 Conclusions

We successfully demonstrate that the inclusion of transition to turbulence modeling
in a RANS framework improves the agreement with experimental data. Our approach
is unique in that it introduces laminar and transitional flow areas in a CFD code
that uses a DG discretization and goal-adapted mesh refinement. The fact that both
nonlocal and nonparallel effects are included in the transition module results in accurate
prediction of transition in boundary layer flows. The framework is targeted at solving
high-Reynolds number transitional aerodynamic flows.

The main advantage of the PSE method with respect to local stability analysis
tools is that it accounts for the boundary layer growth. In the PSE method, base flow
gradients in the wall normal direction are stronger than in the streamwise direction.
Our PSE implementation is verified by comparing to another code, NOLOT [20], which
is considered a mature PSE implementation. The kinetic energy-based growth rates

27



are compared to those obtained with NOLOT. This is done for both subsonic and su-
personic flows over flat plates, considering oblique and aligned TS waves. Two airfoil
test cases are also considered. Transition results for a NACA 0012 case at different
Reynolds numbers, as well as for the NLF(1)-0416 airfoil, demonstrate that our PSE
framework correctly predicts transition triggered by amplification of TS waves. Exper-
imental results are also used for validation purposes. We compare numerical results for
aerodynamic coefficients from fully-turbulent and transitional simulations with those
from experimental data for the NLF(1)-0416 airfoil. For the 4 million Reynolds number
flight condition, we observe that including transition effects in the numerical simula-
tions leads to a drag coefficient error of 6.2%, against 68.7% when a fully-turbulent
simulation is performed. For the 2 million Reynolds number flight condition, the tran-
sitional simulation gives a drag coefficient error of 1.6%, compared to 61.1% for the
fully-turbulent case.

We are able to turn off production and destruction turbulence terms in the SA
turbulence model by using a continuous, smooth intermittency function. By doing so,
transition to turbulence effects are accounted for in a RANS framework. We demon-
strate that, by including transition to turbulence in our RANS, high order framework,
the drag coefficient becomes more accurate compared to the fully-turbulent model.
The lift coefficient tends to be overpredicted when the transition model is included,
but L/D becomes better correlated to experimental data.

The main motivation for including laminar-turbulent transition effects in current
CFD simulations is the quest for designing lower drag airframes. In addition, transition
affects other aerodynamic forces and characteristics, which impacts not only aerody-
namics, but overall performance, and flight mechanics as well. In that sense, using
an adaptive high-order RANS framework along with a PSE-based transition capability
paves the way for higher-fidelity multidisciplinary design and optimization.
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