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1 Introduction

While CFD has achieved significant maturity during the past decades, com-
putational costs are extremely large for aerodynamic simulations of aerospace
vehicles. In this applied aerodynamics context, the discretization of the Euler
or Navier-Stokes equations is performed almost exclusively by finite volume
algorithms. The accuracy of many of these methods is at best second order;
i.e. the error decreases as O(h2) where h is a measure of the grid spacing.
Recent studies have shown that this rate may not be adequate for modern
engineering applications [4, 8]. The development of a practical higher-order
solution method could alleviate this problem by significantly decreasing the
computational time required to achieve an acceptable error level.

Numerous reasons exist for why current finite-volume algorithms are not
practical at higher-order. A root cause of many of these difficulties lies in the
extended stencils that these algorithms employ. These extended stencils lead
to high memory requirements due to matrix fill-in and difficulties in achieving
stable iterative algorithms [10].

By contrast, finite element formulations introduce higher-order effects
compactly within the element. For discontinuous Galerkin (DG) formula-
tions, the element-to-element coupling exists only through the fluxes at the
shared boundaries between elements. This limited coupling is an enabling
feature which permits the development of an efficient higher-order solver and
potentially significant improvements in the turn-around time for reliably ac-
curate aerodynamic simulations.

2 Discontinuous Galerkin Discretization

The two-dimensional, compressible Navier-Stokes equations in conservation
form are given by:

ut + ∇ · Fi(u) −∇ · Fv(u,∇u) = 0, (1)
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where u = (ρ, ρu, ρv, ρE)T is the conservative state vector, Fi = (F x
i ,F y

i ) is
the inviscid flux, and Fv = Av∇u = (F x

v ,F y
v) is the viscous flux.

2.1 Inviscid Discretization

Denote by Vp
h the space of discontinuous vector-valued polynomials of degree

p on a subdivision Th of the domain Ω into elements such that Ω =
⋃

κ∈Th
κ.

The DG discretization of the Euler equations is of the following form: find
uh ∈ Vp

h such that ∀vh ∈ Vp
h,

∑

κ∈Th

{

∫

κ

vT
h (uh)t dx−

∫

κ

∇vT
h · Fi(uh)dx+

∫

∂κ\∂Ω

v+

h

T
H(u+

h ,u−
h , n̂)ds

+

∫

∂κ∩∂Ω

v+

h

T
Hbd(u

+

h ,ub
h, n̂)ds

}

= 0, (2)

where H(u+

h ,u−
h , n̂) and Hbd(u+

h ,ub
h, n̂) are inviscid, numerical flux func-

tions for interior and boundary edges, respectively. Also, the ()+ and ()−

notation indicates the trace value taken from the interior and exterior of the
element, respectively, and n̂ is the outward-pointing normal of the element.
For the interior flux function, the Roe-averaged flux function is used [11].

2.2 Viscous Discretization

The viscous terms in Eqn. 1 are discretized using the second form of Bassi
and Rebay (BR2) [2]. To write the dicretization in compact form, jump, J·K,
and average, {·}, operators are defined. For scalar quantities, the operators
are given by

JsK = s+n̂+ + s−n̂− {s} =
1

2
(s+ + s−),

where (·)+ and (·)− refer to trace values taken from opposite sides of the
face. Thus, n̂+ = −n̂−. For vector quantities,

JϕK = ϕ+ · n̂+ +ϕ− · n̂− {ϕ} =
1

2
(ϕ+ +ϕ−).

The BR2 discretization is given by the following form: find uh ∈ Vp
h such

that ∀vh ∈ Vp
h,

E +
∑

κ∈Th

∫

κ

∇vT
h · (Av∇uh)dx−

∫

Γi

(

JuhKT · {AT
v ∇vh} + JvhKT · {Av∇uh}

)

ds

+

∫

Γi

JvhKT · {δf}ds +

∫

∂Ω

(ub − u+

h )T (AT
v ∇vh)+ · n̂ds

−

∫

∂Ω

v+

h

T
(Av∇uh)b · n̂ds +

∫

Γi

v+

h

T
δb

f · n̂ds = 0. (3)
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where Γi is the union of interior faces, E is the Euler discretization defined in
Section 2.1, and δf and δb

f are auxiliary variables. The auxiliary variables are

given by the following weak statement: find δf ∈ [Vp
h]2 such that ∀ψh ∈ [Vp

h]2,
∫

κ±

ψT
h · δ±f dx = −

1

2

∫

σf

[(AT
v ψh) · n̂]±

T
(u∓

h − u±
h )ds (4)

for interior faces, and
∫

κ+

ψT
h · δb

fdx = −

∫

σf

[(AT
v ψh) · n̂]+

T
(ub

h − u+

h )ds (5)

for boundary faces, where σf denotes the face indexed by f .
The boundary conditions on ∂Ω are imposed weakly by constructing an

exterior boundary state, ub
h, and a normal derivative of the state, (∇u · n̂)b,

on ∂Ω that are a functions of the interior quantities and boundary condition
data. These quantities are then used to construct the inviscid and viscous
fluxes at the domain boundaries.

The final discrete form of the DG discretization is constructed by selecting
a basis for Vp

h. Specifically, a set of element-wise discontinuous functions {φj}
is introduced, such that each φj has local support on only one element. The
solution to the DG discretization has the following form,

uh(t, x) =
∑

j

uj(t)φj(x).

A simple backward Euler discretization in time is used so that the final dis-
crete equations are

M
1

∆t

(

un+1 − un
)

+R(un+1) = 0, (6)

where M is the mass matrix and R is the residual vector representing dis-
cretized viscous and inviscid fluxes. In the following discussion, the overbar
notation for the discrete solution vector is dropped.

3 Solution Method

To solve the nonlinear system, R(u) = 0, a p-multigrid scheme with a line
Jacobi smoother is used. A generic iterative scheme can be written as,

un+1 = un − P−1R (un) , (7)

where the preconditioner, P , is an approximation to ∂R

∂u
. Two precondition-

ers have been considered: an elemental block-Jacobi smoother, in which the
unknowns on each element are solved simultaneously, and an elemental line
block-Jacobi smoother, in which the unknowns on each line of elements are
solved simultaneously. This work focuses on the details of the line smoother
and the multigrid solver based on it.
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3.1 Line-Implicit Smoother

In strongly convective systems, the transport of information proceeds along
characteristic directions. Thus, by solving implicitly on lines of elements con-
nected along these directions, one can alleviate the stiffness associated with
strong convection.

Furthermore, for viscous flows, the line solver is an important ingredient
in removing the stiffness associated with regions of high grid anisotropy fre-
quently required in viscous layers[1, 9]. In such cases, the lines are formed
between elements which exhibit the strongest coupling. In this work, the
coupling is defined by the Jacobian of the p = 0 discretization of the scalar
transport equation,

ρu · ∇φ − µ∇2φ = 0

where ρu and µ are taken from the solution at the current iteration. More
specfically, the coupling between two elements j and k that share a face is
given by

Cj,k = max

(
∣

∣

∣

∣

∂Rj

∂φk

∣

∣

∣

∣

,

∣

∣

∣

∣

∂Rk

∂φj

∣

∣

∣

∣

)

(8)

Using this definition of coupling, lines of elements are formed using the line
creation algorithm of Fidkowski and Darmofal [5, 4].

The initial preconditioner for line smoothing consists of subsystems, M l,
formed from ∂R

∂u
, for each line l. M denotes the assembled M l matrices. To

make the system better conditioned, M is augmented by the addition of an
unsteady term, yielding the final preconditioner

P =M +
1

∆t
M, (9)

The addition of the time term corresponds to solving for a finite time step,
∆t, in the unsteady problem. As the solution begins to converge, ∆t → ∞.
Thus, the steady-state solution is obtained.

The inversion of P uses a block-tridiagonal algorithm in which the block
diagonal is LU decomposed. As the dominant cost of the line solver (especially
for higher-order schemes) is the LU decomposition of the diagonal, the com-
putational cost of the line smoother scales as that of the simpler elemental
block-Jacobi. However, the performance of the line smoother is significantly
better due to the increased implicitness along strongly coupled directions.

3.2 p-Multigrid

p-Multigrid is used in conjunction with the line smoother to improve the
performance of the solver. In standard multigrid techniques, solutions on
spatially coarser grids are used to correct solutions on the fine grid. In p-
multigrid, the idea is similar except that lower order interpolants serve as
the “coarse” grids[12, 6].
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To solve the nonlinear system in question, the Full Approximation Scheme
(FAS) was chosen as the multigrid method. Much of the description that
follows is adapted from Briggs[3].

Consider the discretized system of equations given by Rp(up) = fp, where
up is the discrete solution vector for pth order interpolation, Rp(up) is the
nonlinear system, and fp is a source term. Let vp be an approximation to
the solution vector and define the discrete residual by rp(vp) ≡ fp −Rp(vp).
In a basic two-level multigrid method, the exact solution on a coarse level is
used to correct the solution on a fine level. This correction scheme is given
as follows:

– Restrict the state and residual to the coarse level: vp−1

0 = Ĩp−1
p vp, rp−1 =

Ip−1
p rp.

– Solve the coarse level problem: Rp−1(vp−1) = Rp−1(vp−1

0 ) + rp−1.
– Prolongate the coarse level error and correct the fine level state: vp =

vp + Ip
p−1(v

p−1 − v
p−1

0 ).

Ip−1
p is the residual restriction operator, and Ip

p−1 is the state prolongation

operator. Ĩp−1
p is the state restriction operator and is not necessarily the same

as residual restriction. The definitions of these operators are found in [5, 4].
Alternatively, the FAS coarse level equation can be written as

Rp−1(vp−1) = Ip−1
p fp + τp−1

p ,

τp−1
p ≡ Rp−1(Ĩp−1

p vp) − Ip−1
p Rp(vp).

The first equation differs from the original coarse level equation by the pres-
ence of the term τp−1

p , which improves the correction property of the coarse
level. In particular, if the fine level residual is zero, the coarse level correction
is zero since vp−1 = v

p−1

0 .
To make multigrid practical, the basic two level correction scheme is ex-

tended to a V-cycle and to full multigrid (FMG). In a V-cycle, a sequence
of coarse levels (two or more) is used to correct the solution on the fine
level. In FMG, V-cycles on successively finer levels are used to approximate
the solution on the finest level. Improved performance and robustness result
from starting iterations on the coarsest level rather than the finest. For more
details on the multigrid implementation, see [5, 4].

4 Stability Analysis

To determine the stability of the line-implicit relaxation applied to the DG
discretization of the Navier-Stokes equations, Fourier analysis is performed
on the two-dimensional advection-diffusion problem with periodic boundary
conditions. The advection-diffusion problem is given by

aux + buy − ν(uxx + uyy) = f(x, y) on [−1, 1]× [−1, 1]. (10)
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Non-dimensionalizing, Eqn. 10 becomes

Re(ux̃+tanα AR uỹ)−(ux̃x̃+AR2uỹỹ) =
∆x2

ν
f on [−1, 1]×[−1, 1], (11)

where Re = a∆x/ν, tanα = b/a, AR = ∆x/∆y, x̃ = x/∆x, and ỹ = y/∆y,
and ∆x and ∆y are the grid spacing in the x and y directions, respectively,.

Triangulating the domain [−1, 1]×[−1, 1] into NxNy rectangular elements
and choosing the tensor product of the 1-D Lagrange basis to be the 2-D
basis, the discretized form of Eqn. 11 can be written as the system Au = f .
To determine the relaxation footprint, one must compute the eigenvalues of
−P−1A, where P is the line-implicit preconditioner defined in Section 3.1.
These eigenvalues are computed via Fourier stability analysis [4]. While the
footprints cannot be computed analytically, numerical results show that, over
the wide range of Re, α, AR, and p considered, the eigenvalues are stable.
Fig. 1 shows the footprints for p = 0, 1, 2, 3 for two cases.

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1
p = 0

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1
p = 1

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1
p = 2

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1
p = 3

(a) Re = 10, AR = 100, α = 1o

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1
p = 0

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1
p = 1

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1
p = 2

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1
p = 3

(b) Re = 105, AR = 1, α = 1o

Fig. 1. Line relaxation footprints

5 Results

This section presents results for flow over a NACA 0012 airfoil at α = 0o,
Re = 5000, M = 0.5, with a no slip adiabatic wall. Fig. 2(a) shows conver-
gence of the drag coefficient error with number of elements, and Fig. 2(b)
shows the drag coefficient error versus total degrees of freedom (DOF). In
both cases, the error is relative to a p = 3 solution on number elements
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Fig. 2. Drag results for NACA 0012, α = 0o, Re = 5000, M = 0.5

(number DOF). Fig. 2(a) shows that optimal order of accuracy is obtained,
meaning that the drag error decreases as O(hp+1). It also shows the dramatic
benefits of high-order solutions in terms of number of elements required to
attain a desired accuracy. The p = 2 results with only number elements are
significantly closer to the “exact” solution than the p = 1 result on th finest
grid. Furthermore, Fig. 2(b) shows the high-order solutions achieve lower er-
ror than p = 1 with fewer DOF. The p = 2 case requires number DOF and
p = 3 requires number DOF to achieve the fine grid p = 1 error level.

6 Conclusions

A p-multigrid solution method for a high-order DG discretization of the two-
dimensional, compressible Navier-Stokes equations has been presented. The
line-implicit smoother employed in the p-multigrid solver has been show to
be stable for a wide range of flow conditions and interpolation orders, and
optimal order of accuracy has been demonstrated for a typical, smooth test
case. Furthermore, higher-order solutions have been shown to provide signif-
icant gains over p = 1 solutions in terms of number of elements and number
of degrees of freedom required to achieve a desired error level.

Many oportunities for future work remain. Specifically, no problems with
shocks have been considered here. In cases with shocks. limiting is required
to stabilize the oscillatory behavior of high-order approximations near dis-
continuities. A limiter has yet to be implemented. Also, only laminar flows
have been considered. A turbulence model must be implemented to allow
consideration of a wider class of flows of engineering interest.
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