
Improving High-Order Finite Element

Approximation Through Geometrical Warping

Devina P. Sanjaya1 and Krzysztof J. Fidkowski2

Department of Aerospace Engineering,

University of Michigan, Ann Arbor, MI 48109

Polynomial basis functions are the ubiquitous workhorse of high-order �nite element

methods, but their generality comes at a price of high computational cost and fragility

in the face of under-resolution. In this paper we present a method for constructing

a posteriori tailored, generally non-polynomial, basis functions for approximating a

solution and computing outputs of a system of equations. This method is similar

to solution-based adaptation, in which elements of the computational mesh are sized

and oriented based on characteristics of the solution. The method takes advantage of

existing infrastructure in high-order methods: the reference-to-global mapping used

in constructing curved elements. By optimizing this mapping, we warp elements to

make them ideally suited for representing a target solution or computing a scalar

output from the solution. Guidelines on generating a good initial guess and choosing a

generalized set of optimization parameters are provided to minimize tuning time and

to introduce automation into the process. For scalar advection-di�usion and Navier-

Stokes problems, we show that warped elements can o�er signi�cant accuracy bene�ts

without increasing degrees of freedom in the system.

1 Ph.D. Candidate, Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., 48109, Ann Arbor,
MI, USA, AIAA Member.

2 Associate Professor, Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., 48109, Ann
Arbor, MI, USA, AIAA Senior Member.

1

Nomenclature

α = angle of attack

c = chord

ce = constraint on element e

d = spatial dimension

δ = design variables

δJ = output error

εJe = least-squares output error estimate on element e

εLSe = least-squares error on element e

εe0 = initial error on element e

~F(u) = convective �ux

fadapt = target fraction of elements with largest error indicator

~G(u,∇u) = viscous �ux

~H = total �ux

ηV = prescribed non-dimensional minimum determinant of Jacobian as fraction of element volume

J = reference-to-global mapping Jacobian

J = scalar output of interest

K = viscous di�usivity tensor

M = Mach number

µb = non-dimensional barrier penalty factor

Ne = number of elements

Ng = Gauss points

Np = number of basis functions per element

Nq = total number of degrees of freedom in an element

ν = kinematic viscosity

~ξ = geometry node coordinates in reference space

p = solution approximation order

Pe = Peclet number

2

πe = unconstrained optimization problem on element e

Pp = polynomials of order p on an element

Pr = Prandtl number

q = geometry approximation order

R = residual vector

Re = Reynolds number

Rh = semilinear weak form

S = source term

s = state rank

Th = the set of elements in a non-overlapping tessellation of the domain Ω

u = state vector

Uen = coe�cients for the nth basis function on element e

uexact = exact solution

uh(~x)
∣∣∣
Ωe

= approximated state on element e

umanufactured = manufactured solution

vh = test function

Vh = solution approximation space

V0 = initial element volume

|~V | = velocity magnitude

wg = weights at Gauss points

~x = geometry node coordinates in global space

φ = Lagrange basis functions

Φ = Lagrange basis functions based on displaced reference-space coordinates

Ψ = discrete adjoint solution

I. Introduction

High-order �nite element methods, such as discontinuous Galerkin, o�er accuracy bene�ts for

many problems due to their reliance on high-order polynomial functions for representing the so-

3

lution. Polynomials have excellent approximation properties, at least for smooth functions, and

when accuracy is important, high-order approximation can beat low-order approximation in terms

of degrees of freedom and even computational cost [1].

However, polynomial approximation is not always the best choice. High accuracy requirements

may necessitate very high polynomial orders that make solutions computationally intractable. In

addition, certain features of the solution may be too under-resolved on a given mesh for robust

polynomial approximation. One remedy is adaptation, in particular of the hp variety, in which

mesh elements (h) are re�ned where high order is not advantageous [2�5]. Another option is test

space optimization, the goal of which is typically to improve accuracy in a certain error norm or

an output of interest [6�9]. Yet another possibility is to tailor �nite element basis functions to

the problem at hand. This idea has been recognized in numerous previous works, including the

partition of unity method [10], the extended �nite element method [11], isogeometric analysis [12],

and the discontinuous enrichment method [13]. Tailoring basis functions a priori is possible for some

problems but it is hard in general, especially for complex �ows in which the locations of features

such as shocks and shear layers is not known ahead of time. On the other hand, tailoring basis

functions a posteriori is a more robust alternative, one that we pursue in this work.

Our proposed approach uses basis functions parametrized by reference-to-global mappings used

in the de�nition of curved elements. Indeed, many high-order methods already do not employ

global-space high-order polynomials. Polynomials are used on a reference element, but the reference-

to-global mapping distorts the approximation. This distortion was recognized previously and an

approach was designed to correct it via a linear shadow map [14]. In this work we take an alternate

position and embrace the distortion produced by the mapping. That is, we attempt to tune the

reference-to-global coordinate maps in a mesh to produce elements that are customized for repre-

senting a particular solution. We refer to this process as element warping because we are changing

the (internal) shape of an element. The mapped basis functions will no longer constitute a complete

polynomial set in global space; instead for a given solution order p, the basis functions will contain

certain high-order modes that enable accurate approximation of the target solution. This is not

the only way to create parametrized basis functions, but it is one that uses machinery (i.e., curved

4

element mappings) already available in many high-order codes. This proposed method is similar to

r-re�nement methods [15�17], which redistribute mesh points to minimize certain error measures,

often dynamically in time [18�21]. However unlike r re�nement, our proposed method moves the

high-order geometry nodes within an element to an optimal location to warp the element while

keeping the mesh elements �xed; changing the element shape is left to a separate h-adaptation step.

We will see later that moving the high-order geometry nodes is equivalent to tailoring the basis

functions. Our eventual goal is to fully integrate this method with hp output-based adaptation to

create customized approximation spaces geared for predicting a desired output to high accuracy.

The outline for the remainder of this paper is as follows. Section II reviews the discontinuous

Galerkin (DG) �nite element discretization, with particular emphasis on solution approximation and

curved elements. Section III introduces the idea of intentionally curving the interior structure of an

element to improve approximation for a given solution order, and Section IV presents our approach

for optimizing the associated reference-to-global coordinate transformation. Section V shows results

obtained from this method, and Section VI presents conclusions and plans for further work.

II. A Discontinuous Finite Element Discretization

The idea of warping an element to improve its approximation properties can be applied to

any method that supports high-order curved elements. We focus on the discontinuous Galerkin

(DG) method because we have experience with it and because it is a relatively mature high-order

method suitable for convection-dominated �ows that are prevalent in aerospace engineering, our

target application. In this section, we present the discretization, with particular attention to the

curved-element treatment.

A. Conservation Law

Consider a conservation law given by the partial di�erential equation (PDE)

∂tu +∇ · ~H(u,∇u) = 0, (1)

where u ∈ Rs is the state vector, ~H ∈ Rd×s is the total �ux, s is the state rank, and d is the spatial

dimension. We decompose the �ux into convective and di�usive parts via ~H = ~F(u) + ~G(u,∇u),

5

where ~G(u,∇u) = −K(u)∇u is the viscous �ux and K ∈ Rd2×s2 is the viscous di�usivity tensor.

B. Discretization

DG [14, 22, 23], as a �nite element method, approximates the state u in functional form using

linear combinations of basis functions on each element. No continuity constraints are imposed on the

approximations on adjacent elements. Denoting by Th the set of Ne elements in a non-overlapping

tessellation of the domain Ω, the state on element e, Ωe, is approximated as

uh(~x)
∣∣∣
Ωe

=

Np∑
n=1

Uenφ
glob
en (~x). (2)

In this equation, Np is the number of basis functions per element, Uen is the vector of s coe�cients

for the nth basis function on element e: φgloben (~x). Formally, we write uh ∈ Vh = [Vh]s, where, if

the elements are not curved, Vh = {u ∈ L2(Ω) : u|Ωe
∈ Pp ∀Ωe ∈ Th} , and Pp denotes polynomials

of order p on the element. A caveat here is that for elements that are curved, the polynomial

approximation is usually performed on a master reference element, so that following the reference-

to-global mapping, the state approximation on curved elements is not strictly of order p. We

take advantage of this observation when we optimize the curved element shape to yield better

approximation properties compared to polynomials.

We obtain a weak form of Eqn. 1 by multiplying the PDE by test functions vh ∈ Vh and

integrating by parts to couple elements via interface �uxes. We use the Roe scheme [24] for convective

�uxes and the second form of Bassi and Rebay (BR2) [25] for viscous �uxes, yielding the �nal

semilinear weak form

Rh(uh,vh) =

Ne∑
e=1

Rh(uh,vh|Ωe
) = 0, ∀vh ∈ Vh, (3)

where Rh(uh,vh|Ωe
) is the weak form on element e. Details on the terms included in the weak form

can be found in the literature [14]. Using the trial basis functions as test functions yields the �nal

discrete system R(U) = 0, where U is the vector of unknown basis function coe�cients, and R is

the vector of residuals, i.e., the discrete equations.

6

C. Curved Elements

An element is geometrically linear if its shape is de�ned by the location of its primary vertices.

For example, in two dimensions, three points de�ne a triangle and four points de�ne a quadrilateral.

In between the vertices, the geometry is interpolated (bi/tri)-linearly. Such elements are simple to

work with but, when used on curved domain boundaries, they do not approximate the boundary

well enough for use with high-order solution approximation in DG [26�28]. A remedy is to curve

the elements by equipping each element with additional geometry information, typically in the form

of extra high-order geometry nodes.

A standard and relatively simple way to curve elements is to use a polynomial mapping from

the reference element to the global element, as illustrated in Figure 1. The formula for the mapping

J(~ξ) =
∂~x

∂~ξ
=

Nq∑
i=1

~xi
∂φLagi

∂~ξ
(~ξ)

~x(~ξ) =

Nq∑
i=1

~xiφ
Lag
i (~ξ)

x

y

Ωe

~x1
~x2 ~x3 ~x4

~x5 ~x6

~x8
~x9

~x10

~x7

~ξ7
~ξ6

~ξ8

~ξ10

~ξ1 ~ξ2 ~ξ3 ~ξ4

~ξ9

~ξ5

0
0

T

ξ

η

1

1

reference space: global space:

Fig. 1 Example of a mapping from a unit reference triangle to a curved-element in global

space. The mapping functions for the global coordinates x, y (rolled into ~x) are polynomials

of order q = 3 in this case, for a total of Nq = 10 geometry nodes.

function is given in the �gure, where q is the order of this polynomial, Nq = (q + 1)(q + 2)/2 is the

total number of degrees of freedom in the mapping, ~ξ = [ξ, η]T is the coordinate in reference space,

and ~x = [x, y]T is the coordinate in global space. Using Lagrange basis functions, φLagi (~ξ), in the

mapping allows for an intuitive speci�cation of the high-order element: the coordinates of the Nq

nodes ~xi fully de�ne the mapping function, and ~x(~ξi) = ~xi.

The coordinates ~xi should be chosen consistently with the corresponding reference-space nodes,

~ξi, which are equally spaced on the reference element. For example, in Figure 1, ~ξ6 is the centroid of

the reference triangle, so ~x6 should be located somewhere in the middle of the curved element. On

edges/faces that are on domain boundaries, these nodes are typically on the geometry. However,

7

these requirements do not pin down their locations, and heuristics or quality metrics such as maxi-

mizing the Jacobian determinant are often used in high-order node placement. In the next section

we discuss another choice: a �gure of merit based on accurate solution approximation.

III. Warping High-Order Curved Elements

Curved elements are primarily used on domain boundaries to accurately de�ne a geome-

try for use with high-order solution approximation [29]. For highly-anisotropic boundary-layer

meshes, curved elements are generally also needed inside the domain to prevent elements from self-

intersecting and creating negative volumes [30, 31]. Such curving is performed out of necessity in

creating a valid mesh, driven ultimately by geometry representation requirements on the domain

boundary. Curved elements do add computational expense, e.g. through element-speci�c mass ma-

trices, but this cost can be mitigated by using the determinant of the mapping Jacobian matrix to

scale basis functions [32].

Typically not much attention is paid to the precise location of the high-order nodes, with the

exception of those that have to lie on the boundary. Instead, heuristics often dictate locations

that in some sense maximize the validity of the element, i.e., smoothly-varying coordinates with

no clustering of nodes. In this section we present the idea of deliberately warping an element by

moving high-order nodes to possibly-clustered locations to optimize solution approximation.

Figure 2 illustrates the concept of element warping. Of interest are the locations of a curved

position changes

geometry nodes

sample mapped linear state

Fig. 2 Schematic of high-order element warping, which consists of intentional placement

of high-order interior nodes to improve an element's approximation power for a particular

solution.

8

element's geometry nodes, which dictate the mapping from reference space to global space. By

moving these nodes, we can change the behavior of an approximated function, i.e., the state, in

global space [33]. For example, consider a function that is a linear polynomial in the reference

space coordinates. This is what we typically refer to as a p = 1 solution approximation, since

basis functions are most easily de�ned in reference space. If an element is geometrically linear, so

that the reference-to-global mapping is a�ne, the p = 1 function remains linear in global space.

However, if the element is curved, the mapped function will not necessarily remain linear in the

global coordinates. Figure 2 illustrates this schematically for a q = 3 quadrilateral in which the

middle nodes are placed close to each other, so that a p = 1 function in reference space develops a

shear-layer type of structure in global space.

In general, for arbitrary curved elements, a function that is an order p polynomial in reference

space does not remain an order p polynomial, or even a polynomial at all, in the global space

coordinates. Speci�cally, a polynomial basis function in reference space, φref(~ξ), maps to a global

basis function according to

φglob(~x(~ξ)) = φref(~ξ),

where ~x(~ξ) is the geometry mapping given in Figure 1. Moving an element's high order geometry

nodes changes this mapping and gives us control over the appearance of the high-order basis func-

tions. Our goal is to optimize these global basis functions for the approximation of a particular

solution, and we describe this optimization in the next section. Prior to moving on, however, we

note that we are e�ectively working with a parametrized set of basis functions, where the parameters

are the high-order geometry nodes. For a large value of q, we have many parameters, and we expect

to be able to design custom basis functions that will allow us to accurately represent a solution

even with low order p. We expect increasing q to be computationally more desirable compared to

increasing p, since the size of the system of equations is independent of q. Here, it is important

to note that p and q are not interchangeable. A su�cient order p polynomial is still necessary for

convergence and for obtaining signi�cant bene�ts from increasing q.

9

IV. Warp Optimization

In the previous section, we introduced the idea that warping an element can change its approx-

imation capabilities. In this section, we describe our approach to optimize the warp of an element

by moving its high-order geometry nodes to optimal locations.

A. Design Variables

In order to keep computational costs low, we presently make the optimization problems local

to each element. To minimize the in�uence of one element's optimization on its neighbor elements,

we constrain the movement of the high-order geometry nodes so as not to a�ect the element shape

(much). Thus, we do not move an element's primary vertices (3 for a triangle) and we do not move

edge nodes perpendicular to the edge.

For optimization, we need to choose the design variables. The global coordinates ~xi of the

mapped nodes are an obvious choice, but they are not ideal because they allow for arbitrary de-

formation. We would still have to impose the constraints that, for example, edge nodes move only

along the edge, and this is hard to do in global space for curved elements. Instead, we turn to

the reference element: we hold the global nodes ~xi �xed, but we vary/optimize the reference space

coordinates, ~ξi, corresponding to these nodes. Normally, using an equally-spaced nodal Lagrange

basis for the reference-to-global mapping, the ~ξi are just evenly distributed on the reference element,

with horizontal/vertical spacing of 1/(q + 1). During optimization, we change the positions of the

~ξi in reference space, where imposing the edge motion constraint is trivial. As these ~ξi still map to

the �xed ~xi, the element must warp. Figure 3 illustrates the allowable motions of nodes in q = 3

triangles and quadrilaterals.

The design variables are the allowable displacements of each ~ξi in reference space. Call δ the

vector of allowable displacements. The size of this vector is q2 − 1 for triangles and 2(q2 − 1) for

quadrilaterals. By the end of optimization, and during it for convenience of code-reuse when calling

certain functions, we must express the shape of the element using the standard equally-spaced

Lagrange basis. We do this by solving the following linear system,

Φ xnew = xold,

10

ξ1

ξ2

0 1
0

1

(a) Triangle in reference space

x1

x2

(b) Triangle in global space

ξ1

ξ2

0 1
0

1

(c) Quadrilateral in reference space

x1

x2

(d) Quadrilateral in global space

Fig. 3 Example of triangular and quadrilateral elements in reference and global spaces with

geometry order q = 3. In order to keep the element shape mostly unchanged during optimiza-

tion of the mapping, vertex nodes are non-movable, edge nodes can move in one direction,

and element-interior nodes can move in two directions.

where Φ is an Nq × Nq matrix with entries Φij = φLagj (~ξ′i),
~ξ′i are the displaced reference-space

coordinates of all the nodes, xold is an Nq × d matrix of the original global-space node coordinates

(one node per row), and xnew is an Nq × d matrix of the desired new global-space coordinates.

For multiple elements, we perform the optimization on each element independently and then

average the (global-space) displacements of nodes that are shared between elements. In practical

cases, optimization is not applied to every element, but rather only to those elements with the

largest errors.

B. Objective Function

Our goal here is to create a metric for measuring an element's approximation power, for use in

optimization and as an error indicator telling us which elements in a mesh need to be warped. We

consider the following two objective functions.

11

1. Least-Squares Error

Suppose that the exact solution, uexact(~x), is known. This is the case when testing with man-

ufactured solutions, while for practical cases we could consider a solution or reconstruction in a

higher-order space (e.g. p+ 1). For a scalar problem (s = 1), the least-squares error, εe, on element

Ωe is de�ned via

(εLSe)2 = min
uh∈Vh

∫
Ωe

[
uh(~x)− uexact(~x)

]2
dA = min

uh∈Vh

∫
E

∣∣∣J(~ξ)
∣∣∣ [uh(~ξ)− uexact(~x(~ξ))

]2
dE, (4)

where J(~ξ) is the mapping Jacobian matrix, E is the reference-space element, and the minimization

is taken over all possible uh in the solution approximation space Vh. The integral in reference space

is evaluated using Gauss quadrature with Ng Gauss points, ~ξg, and weights, wg.

Note that integrating in reference space allows us to pre-compute and reuse evaluations of the

basis functions at the quadrature points. Furthermore, negative Jacobian determinants encountered

during integration indicate infeasible regions of the design space to the optimizer. Finally, for

systems of equations, the least-squares error can be computed for each state component separately,

and summed if a single number is desired, though this introduces dependence on arbitrary variable

scaling.

2. Computing Outputs of a System

In aerospace applications, we often deal with systems of equations (s > 1) and we generally

only care about one or several outputs instead of the solution everywhere. In this case, reducing

the state approximation error everywhere in the domain via the least-squares error metric can be

ine�cient since the state may not need to be accurate everywhere to predict accurate outputs. A

more e�cient approach, and one that naturally handles systems, is to use an output-based error

measurement, as described in this section.

Output-based methods rely on the solution of an output adjoint, which acts as a weight on the

residual to produce the error estimate and adaptive indicator [3]. The discrete adjoint solution, Ψ,

satis�es

[
∂R

∂U

]T
Ψ +

∂J
∂U

T

= 0, (5)

12

where J is the scalar output of interest. Solving this equation yields coe�cients of the adjoint

solution, which can then be used to approximate the continuous adjoint, ψ(~x).

A simple approach for incorporating output-based adjoint information into the objective func-

tion is to modify the least-squares error estimate in Eqn. 4 to use a weighted combination of primal

and adjoint errors,

εJe =
1

2
‖R‖Te ‖ψ −ψ

�ne‖LS +
1

2
‖Rψ‖Te ‖u− u�ne‖LS , (6)

where ψ�ne and u�ne are approximate/reconstructed �ne-space (p + 1) solutions, ‖R‖e is the �ne-

space primal residual norm on element e, and ‖Rψ‖e is the �ne-space adjoint residual norm on

element e. The residuals are computed using primal and adjoint states prior to the optimization

(i.e., δ = 0). Norms are taken separately for each equation for systems, and the subscript LS

indicates the least-squares error � i.e., ‖ψ −ψ�ne‖LS is the error between the �truth� (�ne) adjoint

and its projection into the order p approximation space of the current warped element. Several

methods to compute �ne-space adjoint are discussed in previous work [34�37].

Eqn. 6 is motivated by the observation that low output error is achieved when both the primal

and adjoint solutions are approximated well in an element [34], and the primal/ adjoint residuals

indicate the relative importance of each and make the combination dimensionally consistent.

C. Constraint

As mentioned previously, we need all Jacobian determinants to be non-negative to ensure that

all elements in the mesh are valid and to obtain a physical solution [38]. We �nd it more robust

to go a step further and enforce a minimum Jacobian determinant over an element (measured at

integration points). Thus, we impose the following constraint on element e:

ce ≡
min(|J(~ξg)|)

V0
− ηV > 0, (7)

where V0 is the initial element volume and ηV is the prescribed non-dimensional minimum deter-

minant of Jacobian as a fraction of the element volume. A natural question is then whether this

constraint alone is enough to ensure that Jacobian determinants are non-negative over the entire

element. This constraint does not guarantee non-negative Jacobian determinants over the entire

13

element, but robustness improves with larger Nq and ηV .

D. Optimization Problem

Now, we can formulate our constrained optimization problem on an element as follows:

minimize
εe(δ)

εe0

w.r.t. δ

subject to ce,

(8)

where we explicitly indicate the dependence of the error on the design variables δ, and where

εe0 = εe(δ=0) is the initial error on the element. We solve this constrained optimization problem

via an interior penalty method, by using an inverse barrier function with µb as the non-dimensional

barrier penalty factor. This turns Eqn. 8 into the following unconstrained optimization problem on

element e:

minimize πe(~ξ(δ), µb) =
εe(δ)

εe0
+ µb

V0

min(|J(~ξg)|)− ηV V0

w.r.t. δ.

(9)

The solution to Eqn. 9 approaches that to Eqn. 8 as µb approaches zero. To keep computational

cost low, optimization is only performed on a fraction, fadapt, of elements with the largest error

indicator.

The optimization problem on each element is solved using a gradient-based method: the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) [39] algorithm with a backtracking line search. We

treat the optimization problem locally, in that the optimization is performed on each element in-

dependently. When there are multiple elements, the (global-space) displacements of nodes that are

shared between elements are averaged before moving all nodes to their new locations. Note that

treating the optimization problem as a global problem would make it much more computationally

expensive.

While treating the optimization problem in element-local terms is computationally advanta-

geous, it does require care when averaging to produce the global mesh. Due to the node averaging

process, the new node locations are no longer optimal, but our assumption is that they are better

than the original node locations, in the sense that these new locations improve the approximation

14

power of the �nite element method. However, to reduce the risk of obtaining an invalid mesh, we

must avoid over-optimizing locally. Local over-optimization increases the probability of large node

displacements, that, upon averaging, may cause self tangling (negative Jacobians), resulting in an

invalid mesh. We avoid local over-optimization by setting µb to a su�ciently-small constant to

ensure that the constraint is active for all BFGS iterations, and by performing only a few BFGS

iterations. Currently, all required gradients are calculated using a �nite-di�erence approximation.

V. Results

A. Boundary Layer Approximation for a Laminar Airfoil

Before presenting the results of the node movement optimization, we o�er a heuristic example

of the potential bene�t of moving high-order nodes. Consider a NACA 0012 airfoil in M = 0.5,

Re = 5000 �ow. In these conditions, a boundary layer (albeit not a very thin one) develops near the

airfoil wall. Within this boundary layer, several �ow properties change rapidly in the wall-normal

direction, and an accurate representation of this boundary layer �ow is important for predicting the

drag.

We investigate two types of q = 3 meshes for calculating drag at several di�erent values of p.

The �rst mesh (uniform) is one in which the high-order nodes are spaced uniformly in the elements.

The second mesh (repositioned) is one in which the high-order nodes are heuristically clustered

towards the airfoil, which improves the ability of basis functions to accurately capture the rapid

variation of �ow quantities near the airfoil.

Figure 4 shows a sample �ow�eld and the convergence of drag for uniform re�nements of the

two families of meshes considered. For approximation orders p = 1, 2, 3 we see a bene�t of using the

meshes with the repositioned nodes. Speci�cally, the drag coe�cient error drops by one or more

orders of magnitude compared to the meshes with the uniformly-distributed high-order geometry

nodes, for the same computational cost. These results are for uniform re�nements of a single guessed

repositioning: we expect further improvements from an optimization algorithm.

15

uniform

repositioned NACA 0012, Re = 5000
Mach number contours

(a) Two types of curved elements

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

1/(nDOF)
1/2

|d
ra

g
 c

o
e

ff
ic

ie
n

t
e

rr
o

r|

dashed = repositioned nodesdashed = repositioned nodes

p = 0

p = 1
p = 2

p = 3

(b) Drag convergence for two mesh types

Fig. 4 Motivating result of the e�ect of interior node placement in high-order curved elements,

using a DG discretization of compressible Navier-Stokes �ow over an airfoil. Repositioning

high-order nodes within each element towards the airfoil yields better approximation of the

boundary layer and signi�cantly improved drag estimates.

B. Single Element Optimization with a Manufactured Solution

We consider a two-dimensional di�usion equation with source on a [0, 1]2 domain,

∇2u+ S(~x) = 0,

where S(~x) is a source term that makes the following function a manufactured solution:

umanufactured(x, y) = exp[a1 sin(a2x+ a3y) + a4 cos(a5x+ a6y)],

with [a1, a2, a3, a4, a5, a6] = [1, 3,−4, .5,−2, 3.5]. We consider a single element with q = [3, 4] and

p = [3, 4] solution approximation. We use least-squares error optimization with parameters ηV = 0.1

and µb = 0.1. Table 1 shows that without optimization, increasing p reduces the least-squares error

by a factor of 2, and optimization reduces the error further. For a given q, increasing p reduces the

error by a factor of 2, while for a given p, increasing q reduces the error by an order of magnitude.

However, this does not imply that increasing p and q are interchangeable. Notice that there is a

coupling between p and q to obtain signi�cant bene�t from increasing q: with p = 4, we obtain more

bene�t from the warp optimization.

Figure 5 begins with the exact (manufactured solution) and the baseline p = 4 solution on the

unoptimized, equal node-spacing element. The �gure then shows the optimized-element solution,

16

Table 1 Least-squares error for solution approximation on a single element with a manufac-

tured solution.

q p unoptimized εLS optimized εLS

3 3 0.1747 0.0240

4 0.0988 0.0110

4 3 0.1756 0.0136

4 0.0985 0.0062

which is visually closer to the exact solution and which has a much lower least-squares error. The

triangular mesh plots in Figure 5 show the initial and optimized shape of the single element obtained

by subdividing the reference element into many, 2× (15× 15), equally-spaced triangles and plotting

the mapped positions of these triangles in global space. We see that the optimized element shape

shows marked stretching and twisting in the reference-to-global mapping; it is this distortion that is

responsible for the improved approximation ability of the element even when using the same p = 4

space on the reference element.

C. Multiple Element Optimization for the Scalar Advection-Di�usion Equation

We now consider a steady, scalar advection-di�usion problem on a unit-chord (c = 1) NACA

0012 airfoil,

∇ · (~V u)− ν∇2u = 0, (10)

where ~V = (1, 0) , and Pe ≡ |~V |c/ν = 10. Dirichlet boundary conditions are applied: u = 1 on

the airfoil surface and u = 0 on the far-�eld. In this problem we use the output-based optimization

metric, where the output of interest (J) is the integrated �ux of u through the airfoil surface. Figure

6 shows the �ne-space primal and adjoint solutions for this output on a quadrilateral mesh.

We run our high-order node optimization algorithm for the quadrilateral mesh shown in Figure 6,

using p = 2, q = 4, fadapt = 0.2, ηV = 0.15, and µb = 0.2. Note that only 20% of the elements are

optimized � the remaining 80% with low error are skipped. Following optimization of the targeted

elements, we solve the problem again on the optimized mesh and compute the new output. Denote

17

(a) Exact solution (b) Initial solution (εLS = .0985) (c) Initial shape

(d) Optimized solution

(εLS = .0064)

(e) Optimized shape

Fig. 5 Single element manufactured solution (p = 4 and q = 4): initial and optimized element

shapes and least-squares approximated solutions. The least-squares error decreases from

εLS = .0985 on the initial element to εLS = .0064 on the optimized element.

(a) Fine-space primal (b) Fine-space adjoint

Fig. 6 Scalar advection-di�usion, Pe = 10: �ne-space primal and adjoint solutions (contours

of the single scalar) for an integrated �ux output.

18

by δJ the error in the output relative to a truth (p = 4) solution. We �nd that this output error

reduces from |δJ | = 9.0×10−4 on the initial mesh to |δJ | = 1.3×10−5 on the mesh with optimized

element shapes.

Figure 7 shows the error indicator, i.e., εJe for each element in the baseline mesh. We see that

the area near the trailing edge of the airfoil has the largest error, and thus, elements near the trailing

edge will be targeted for warping. In addition, elements near the leading edge and away from the

airfoil above and below it will be targeted.

Fig. 7 Scalar advection-di�usion, Pe = 10: adaptive indicator on a quadrilateral mesh. This

shows that the elements around the trailing edge of the airfoil have large error and will be

warped.

Figure 8 shows the initial and optimized quadrilateral element shapes in the leading edge and

trailing edge regions of the airfoil. We see pronounced distortion of the trailing-edge elements and

some distortion of the leading-edge ones.

D. Multiple Element Optimization for the Two-dimensional Navier-Stokes Equations

Now, we consider a system of equations: steady, compressible Navier-Stokes,

∇ · ~F(u) +∇ · ~G(u,∇u) = 0, (11)

where ~F and ~G are respectively the inviscid and viscous �uxes. The geometry is a NACA 0012

airfoil with a closed trailing edge, and the �ow conditions are M = 0.5 and Re = |~V |c/ν = 1000. A

Prandtl number of Pr = 0.71 is used, and the boundary conditions are adiabatic walls on the airfoil

and free-stream conditions in the far-�eld. The output of interest is the drag.

19

(a) Initial leading edge (b) Initial trailing edge

(c) Optimal leading edge (d) Optimal trailing edge

Fig. 8 Scalar advection-di�usion, Pe = 10: initial and optimized quadrilateral element shapes

around the leading edge and trailing edge of the NACA 0012 airfoil.

Figure 9 shows the primal Mach contours and the x-momentum component of the drag adjoint

computed with high-order (p = 4) approximation on the baseline quadrilateral mesh. We see

boundary-layer structures in both the primal and adjoint.

(a) Fine-space Mach contours (0 to 0.6) (b) Fine-space x-momentum adjoint

Fig. 9 Compressible Navier-Stokes: �ne-space primal and adjoint solutions.

20

Following the baseline solution, we run an optimization using p = 2 solution approximation,

fadapt = 0.5, ηV = 0.1, and µb = 0.2. Figure 10 shows the error indicator: regions targeted for

adaptation include above and below the airfoil, whereas the trailing edge has relatively low error in

this case, possibly due to the already small elements there. Note that in this case we optimize half

of the element shapes.

Fig. 10 Compressible Navier-Stokes: adaptive indicator.

Figure 11 shows the initial and optimized element shapes around the leading edge and trailing

edge of the airfoil. We see discernible and non-intuitive node movement, mostly near the leading

edge. After solving again on the optimized mesh, we �nd that the error in the drag reduces from

|δJ | = 1.1× 10−3 on the baseline mesh to |δJ | = 4.8× 10−4 on the mesh with optimized element

shapes. The reduction in output error is not as large in this case as in the previous scalar cases. A

possible reason for this is that this example is a system of equations, and di�erent components of

the system may impose di�erent demands on the optimal element shape. In addition, we are not

allowing cancellation of errors between system components in our error indicator, since we compute

the least-squares errors in Eqn. 6 component-wise. Relaxing this conservative calculation may lead

to larger error drops.

E. Multiple Element Optimization for the Euler Equations

So far, we have seen the bene�ts of curved elements on coarse meshes for solution approximation

and output computation. Now we are in the position to address some questions pertaining to the

nature of optimization algorithm, such as how to provide a good initial guess and how to automate

21

(a) Initial leading edge (b) Initial trailing edge

(c) Optimal leading edge (d) Optimal trailing edge

Fig. 11 Compressible Navier-Stokes: initial and optimized mesh around the leading edge and

trailing edge.

the optimization process.

As expected, the optimization algorithm tends to perform better given a good initial guess.

One good initial guess for the background mesh is an h-adapted mesh generated for a given p.

To further improve the quality of initial mesh, three sequences of optimization are performed, in

which the solution of each optimization provides the initial guess for the next optimization. For

the �rst two optimizations, only one BFGS iteration is performed since the only purpose for these

two optimizations is to provide good initial guess for the third (last) optimization. For the last

optimization, a larger number of BFGS iterations is performed to �nd the optimum mesh for the

problem of interest. However, the iteration number is still kept relatively small to prevent local

over-optimization.

In general, tuning of optimization parameters helps improve performance of optimization al-

gorithm for a given problem. However, automation is necessary for robustness in an hp-adaptive

setting. One aspect of the optimization algorithm that we have found to be most �tunable� has been

the backtracking factor in the line search algorithm. To improve automation, we therefore provide

22

several options of backtracking factors from which an element can choose the best-performing one.

In addition, we found from experience that it is advantageous to increase µb and lower ηV as p

increases. We found that having each element to automatically pick a suitable backtracking factor

gives us a good compromise between automation capability and optimization performance reduction

due to generalization. Furthermore, to ensure non-negative Jacobian determinants in the optimized

mesh, we need to adjust how aggressive the optimizer can be. As p increases, the optimizer gener-

ally has access to a fairly accurate solution representation, which means that we can lower ηV as p

increases since the chance of having negative Jacobian determinants is less. However, at the same

time, we need to make sure that the optimizer is not so aggressive that it will over-optimize locally,

and thus, higher µb is needed for higher p. Based on these simple heuristics, we found a general

set of optimization parameters that gives reasonable error reduction for a particular problem type

and a given p. Table 2 shows the general setting of optimization parameters for Euler problems

with q = 3. Note that we have decided to separate settings by physics of the problem, due to the

di�erent solution features observed with the di�erent model equations.

Table 2 Optimization parameters used for Euler cases (q = 3).

p = 1 p = 2 p = 3

Line search backtracking factor options [0.004, 0.02, 0.1] [0.005, 0.02, 0.1] [0.006, 0.05, 0.8]

µb 0.04 0.4 4

fadapt 1.0 1.0 1.0

ηV 0.2 0.15 0.1

BFGS iterations for SEQ 1 and 2 1 1 1

BFGS iterations for SEQ 3 3 3 3

Here, we consider steady, inviscid �ow over a NACA 0012 airfoil,

∇ · ~F(u) = 0, (12)

where ~F are the inviscid �uxes. The boundary conditions are inviscid wall on the airfoil and free-

stream conditions in the far-�eld. The output of interest is the drag.

To test robustness of using the generalized optimization parameters, we analyze the �ow at two

23

di�erent angles of attack: α = 1◦ and α = 2◦ while keeping other settings the same. A relatively

small change in angle of attack is chosen to ensure that the same initial mesh can be used as a good

initial guess for both cases. The initial guess to the optimizer is an h-adapted mesh for α = 2◦.

Figure 12 shows that the initial errors are slightly higher for the case with α = 1◦, as expected.

One region of the �ow with high error is the leading edge. Figure 13 shows the primal x-momentum

solution and the x-momentum component of the drag adjoint around the leading edge computed

with high order (p = 4). This con�rms that the small change in angle of attack only changes the

�ow slightly, and thus, the same initial mesh can be used as a good initial guess to the optimizer

for both cases.

(a) Error indicator (α = 1◦) (b) Error indicator (α = 2◦)

Fig. 12 Euler equations (p = 1): initial error indicators. Blue corresponds to low error and

red corresponds to high error.

Figure 14 shows the initial mesh and a zoomed-in view of an optimized element shape around

the leading edge and trailing edge of the airfoil when exact �ne-space solution is used to drive

the optimizer. Since the small di�erence in angle of attack only changes the �ow slightly, most

optimized elements have very similar shapes in both meshes. Hence, we provide a zoomed-in view

of an optimized element here.

As in previous cases, we see discernible and non-intuitive node movement. In addition to using

the exact �ne-space solution, we also ran the same cases using a �ne-space surrogate to drive the

optimizer, and the resulting optimized mesh was similar. The �nal error reduction factors for both

24

(a) �ne-space primal solution (α = 1◦) (b) �ne-space adjoint solution (α = 1◦)

(c) �ne-space primal solution (α = 2◦) (d) �ne-space adjoint solution (α = 2◦)

Fig. 13 Euler equations: �ne-space primal and adjoint x-momentum solutions around leading

edge.

sets of runs are shown in Table 3. For the case with α = 2◦, 8 iterations of element-block Jacobi

are used. For the case with α = 1◦, we increase the number of iterations to 50 since the starting

mesh is not optimized for this case. Note that we obtain the most bene�t of the optimization at the

coarsest approximation order, p = 1, as in this case the solution is the least accurate and stands to

gain the most from optimization.

F. Multiple Element Optimization for the Viscous Navier-Stokes Equations

Next, we consider steady, viscous �ow over a unit-chord (c = 1) NACA 0012 airfoil,

∇ · ~F(u) +∇ · ~G(u,∇u) = 0, (13)

where ~F and ~G are respectively the inviscid and viscous �uxes. The �ow conditions are M = 0.5

and Re = |~V |c/ν = 5000. The boundary conditions are adiabatic walls on the airfoil and free-stream

conditions in the far-�eld. The output of interest is the drag.

Similar to the inviscid Navier-Stokes problem, we consider two di�erent angles of attack: α = 2◦

and α = 4◦. The initial guess to the optimizer is an h-adapted mesh for α = 2◦. Figure 15 shows

25

(a) Initial leading edge

x-position #10-3
-6 -5 -4 -3 -2 -1 0 1

y-
po

si
tio

n

#10-3

-4

-3

-2

-1

0

1

2

3
initial
optimized (, = 1°)
optimized (, = 2°)

(b) Nodes in one element

(c) Initial trailing edge

x-position
0.997 0.998 0.999 1 1.001 1.002 1.003

y-
po

si
tio

n

#10-3

-3

-2.5

-2

-1.5

-1

-0.5

0

initial
optimized (, = 1°)
optimized (, = 2°)

(d) Nodes in one element

Fig. 14 Euler equations (p = 1 and q = 3): initial mesh and zoomed-in view of an optimized

element (shown as red element in the initial mesh) around the leading edge and trailing edge

of the airfoil. The optimizer is driven by exact �ne-space solution.

the primal x-momentum solution and the x-momentum component of the drag adjoint around the

leading edge computed with high order (p = 4). We see boundary layer and wake structures in both

the primal and adjoint. Furthermore, this �gure shows that the small change in angle of attack

results in relatively small change in the �ow, and thus, the same initial mesh can be used as a good

initial guess for both cases. Table 4 shows the optimization parameters used for our analysis. Note

that we only made small changes in the parameter settings compared to ones used for the inviscid

problem; only the line search backtracking factor options and µb are changed.

Figure 16 shows a zoomed-in view of the mesh and the �ow around the leading edge, trailing

26

Table 3 Euler equations: Final error reduction factor based on (p + ∆p) �ne-space solution

with ∆p = 1 and q = 3. The exact �ne-space solution is computed using GMRES and the

approximate �ne-space solution is computed using an iterative method with element-block

Jacobi smoothing.

α (degrees) Fine-space solution p = 1 p = 2 p = 3

1 exact 13.55 2.55 1.29

approximate 11.50 2.97 1.01

2 exact 12.32 3.06 1.17

approximate 13.89 2.53 1.26

Table 4 Optimization parameters used for viscous Navier-Stokes cases (q = 3).

p = 1 p = 2 p = 3

Line search backtracking factor options [0.004, 0.02, 0.1] [0.003, 0.08, 0.1] [0.006, 0.05, 0.2]

µb 0.05 0.12 0.2

fadapt 1.0 1.0 1.0

ηV 0.2 0.15 0.1

BFGS iterations for SEQ 1 and 2 1 1 1

BFGS iterations for SEQ 3 3 3 3

edge, and wake. An exact �ne-space solution is used to drive the optimizer. First, let's take a look

at the boundary layer structures around the leading edge, where there is a rapid change of velocity

close to the airfoil surface. We expect that the high-order nodes of the elements in the boundary

layer structure will move towards the airfoil surface, and this is shown in Figure 16(j). Second,

we take a look at the x-momentum component of the drag adjoint and notice that the �ow in the

middle element (B) changes appreciably between α = 2◦ and α = 4◦ (see Figures 16(e) and 16(h)).

This di�erence in the drag adjoint causes di�erent node movement in this element, as shown in

Figure 16(k). Third, notice that the �ow at the end of the wake in element C changes signi�cantly

due to the change in the angle of attack (see Figures 16(f) and 16(i)). This causes di�erent node

movement in this element for α = 2◦ and α = 4◦, as shown in Figure 16(l).

27

(a) �ne-space Mach contours (0 to 0.6), α = 2◦ (b) �ne-space adjoint solution, α = 2◦

(c) �ne-space Mach contours (0 to 0.6), α = 4◦ (d) �ne-space adjoint solution, α = 4◦

Fig. 15 Navier-Stokes, M = 0.5, Re = 5000: �ne-space primal and adjoint x-momentum solu-

tions.

Unlike for Euler, in the Navier-Stokes case, the di�erence in the optimized mesh is more visible

in certain elements of the mesh when the optimizer is driven by the exact �ne-space solution or by

the �ne-space surrogate. Figure 17 shows the di�erence in node movement for an element around

the trailing edge due to accuracy of the �ne-space solution used in driving the optimizer. Table

5 shows the �nal error reduction factors for viscous Navier-Stokes problem obtained with various

p and q = 3. Similar to Euler, the case that starts with an optimum starting mesh (α = 2◦) is

provided with cheaper iterative solver. The number of iterations for element-block Jacobi smoothing

is kept the same as before.

G. Multiple Element Optimization for the Reynolds-Averaged Navier-Stokes Equations

Finally, we consider a Reynolds-averaged Navier-Stokes (RANS) problem, closed with a

negative-turbulent-viscosity modi�cation of the Spalart-Allmaras (SA) one-equation model [40],

∇ · ~F(u) +∇ · ~G(u,∇u) = ~S(u), (14)

where ~F and ~G are respectively the inviscid and viscous �uxes, and ~S is the SA source. The geometry

is the RAE 2822 airfoil, and the �ow conditions are M = 0.734 and Re = |~V |c/ν = 6.5× 106. The

28

(a) Initial leading edge (b) Initial trailing edge (c) Initial wake

(d) Initial p = 3 solution around

leading edge(α = 2◦)

(e) Initial p = 3 drag adjoint around

trailing edge (α = 2◦)

(f) Initial p = 3 solution around

wake (α = 2◦)

(g) Initial p = 3 solution around

leading edge(α = 4◦)

(h) Initial p = 3 drag adjoint

around trailing edge (α = 4◦)

(i) Initial p = 3 solution around

wake (α = 4◦)

x-position
0.03 0.04 0.05 0.06 0.07 0.08 0.09

y-
po

si
tio

n

0.03

0.035

0.04

0.045

0.05

0.055

initial
optimized (, = 2°)
optimized (, = 4°)

(j) Element A

x-position
0.9 0.95 1 1.05 1.1

y-
po

si
tio

n

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
initial
optimized (, = 2°)
optimized (, = 4°)

(k) Element B

x-position
2 2.2 2.4 2.6 2.8 3

y-
po

si
tio

n

0.05

0.1

0.15

0.2

0.25

0.3
initial
optimized (, = 2°)
optimized (, = 4°)

(l) Element C

Fig. 16 Navier-Stokes, M = 0.5, Re = 5000 (p = 2 and q = 3): initial mesh, �ne solution/

drag adjoint, and sample of optimized element (shown in red in the initial mesh) around the

leading edge, trailing edge, and wake. The optimizer is driven by an exact �ne-space solution.

29

x-position
0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

y-
po

si
tio

n

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
initial
optimized (exact)
optimized (approx)

(a) α = 2◦

x-position
0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

y-
po

si
tio

n

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
initial
optimized (exact)
optimized (approx)

(b) α = 4◦

Fig. 17 Navier-Stokes, M = 0.5, Re = 5000 (p = 2 and q = 3): comparison of node movement

of an element around trailing edge (egrp = 1, elem = 61) when using approximate and exact

�ne solution.

Table 5 Navier-Stokes, M = 0.5, Re = 5000: �nal error reduction factor based on (p + ∆p)

�ne-space solution with ∆p = 1 and q = 3. The exact �ne-space solution is computed using

GMRES and the approximate �ne-space solution is computed using an iterative method with

element-block Jacobi smoothing.

α (degrees) Fine-space Solution p = 1 p = 2 p = 3

2 exact 3.60 60.34 7.40

approximate 3.36 2.02 2.68

4 exact 43.87 3.04 3.24

approximate 22.44 1.43 28.57

boundary conditions are adiabatic walls on the airfoil and a free-stream conditions in the far-�eld.

The output of interest is the drag.

Two di�erent angles of attack are considered here: α = 2.79◦ and α = 3.29◦. The initial guess

to the optimizer is an h-adapted mesh for α = 2.79◦. Figure 18 shows the primal Mach number,

x-momentum, and turbulent viscosity solution computed with high-order approximation (p = 4).

We see a shock structure on the upper surface of the airfoil, a boundary layer structure around the

airfoil, and a turbulent wake structure. Figure 19 shows regions of the �ow where high error occurs.

Table 6 shows the optimization parameters used for our analysis. First, note that unlike in

30

(a) Mach number (α = 2.79◦) (b) Mach number (α = 3.29◦)

(c) x-momentum (α = 2.79◦) (d) x-momentum (α = 3.29◦)

(e) Turbulent viscosity (α = 2.79◦) (f) Turbulent viscosity (α = 3.29◦)

Fig. 18 RANS: �ne-space primal solutions.

the previous two cases, the settings for p = 1 are slightly di�erent than the ones for p = 2 and

p = 3. With p = 1, the problem is under-resolved, particularly because of the thin boundary and

shear layers, and it is therefore more prone to having negative Jacobian determinants and local

over-optimization. This is why in Table 5, µb and ηV are increased while the number of BFGS

iterations for SEQ 3 (the third optimization in the sequence) is decreased compared to the previous

31

(a) α = 2.79◦ (b) α = 3.29◦

Fig. 19 RANS (p = 3): Initial error indicators.

two cases. Furthermore, notice that µb decreases as p increases. With sharper solution features

of RANS, more aggressive optimization is needed and can be used here. We have also observed

that the probability of over-optimizing locally is lower compared to the previous two cases. Also,

notice that for p = 2 and p = 3, there are four options of line search backtracking factors instead of

three. We found that having one additional option tends to improve the global performance of the

optimizer. Moreover, fadapt is now set to 0.25. In addition to reducing computational cost, lower

fadapt is better here since there is a larger range of errors within the mesh and only targeting some

elements with high errors improves the global performance of the optimizer. Finally, notice that

the number of BFGS iterations for SEQ 3 for p = 2 and p = 3 are increased. More BFGS iterations

are needed here since RANS cases are generally more complex than Euler or laminar Navier-Stokes

cases.

Table 6 Optimization parameters used RANS cases (q = 3)

p = 1 p = 2 p = 3

Line search backtracking factors [0.002, 0.04, 0.9] [0.008, 0.04, 0.5, 1.2] [0.002, 0.06, 0.1, 1.5]

µb 6 1.2 0.6

fadapt 0.25 0.25 0.25

ηV 0.3 0.15 0.1

BFGS iterations for SEQ 1 and 2 1 1 1

BFGS iterations for SEQ 3 2 5 5

32

Figure 20 compares the change in �ow solution and mesh due to the change in α. The Mach

number solutions shows that the small change in α causes changes in the shock location and the

angle of the turbulent wake. In region A, we can see that boundary layer structure formed on the

upper surface of the airfoil, and similar to the previous case, this results in high-order nodes moving

closer to the airfoil surface. In region B, we can see how elements around the shock are curved to

improve the output calculation. The node movement is more vigorous for α = 3.29◦ since the initial

mesh is optimized for α = 2.79◦. The relatively small change in α causes a slight change in the

shock location and it is up to the curved elements to improve the approximation. Lastly in region

C, we see that the change in turbulent viscosity results in di�erent node movement of the element

in the wake. Table 7 shows the bene�ts obtained from curved elements for RANS.

Table 7 RANS: Final error reduction factor based on (p+ ∆p) exact �ne-space solution with

∆p = 1 and q = 3.

α (degrees) p = 1 p = 2 p = 3

2.79 1.08 1.80 2.56

3.29 1.08 1.07 7.97

VI. Conclusions and Future Work

In this paper, a method is presented for tailoring basis functions in a �nite element discretiza-

tion to better approximate a solution. This tailoring requires virtually no additional infrastructure

beyond that already available to support curved elements in a high-order discretization, in this case

discontinuous Galerkin. Instead, the locations of high-order geometry nodes become tunable param-

eters that warp the reference-to-global coordinate mapping and allow for accurate approximation

of high-order solution features using low-order polynomials in reference space. An element-local

optimization algorithm is introduced for determining the ideal positions of these nodes, driven by

both least-squares and output-based error metrics. For scalar problems, at least a ten-fold reduction

in the error is observed, both in least-squares and in output measures. For the Euler, Navier-Stokes,

and RANS equations, the bene�ts varied more with physical model and approximation order, though

33

B

C A

Mach number solution on the final, optimized mesh

A. Boundary Layer

Initial Optimized

B. Shock Boundary
Initial

Optimized

Turbulent viscosity

C. Turbulent Wake

Initial

Optimized

(a) α = 2.79◦

B

C A

Mach number solution on the final, optimized mesh

B. Shock Boundary
Initial

Optimized

C. Turbulent Wake

Turbulent viscosity

Initial

Optimized

A. Boundary Layer

Optimized Initial

(b) α = 3.29◦

Fig. 20 RANS (p = 3): Mach number solution on the �nal, optimized mesh along with mesh

comparison on Regions A-C. In Regions A and B node movements are motivated by the

change in Mach solution, while in region C, node movements are motivated by the change in

turbulent viscosity.

34

in general, at least a factor of two error reduction for most runs. Some tuning was performed of

the optimization parameters, speci�c to the approximation order and modeling physics, and the

elimination of this tuning in the interest of full automation is the subject of ongoing work. We note

that the proposed element shape optimization does not add any degrees of freedom to the system

of equations. It does require �ne-space information, though this could be re-used from output-

based h/p/hp adaptation. Future work includes implementation of metric-based node placement

and combination with hp adaptation.

Acknowledgments

The authors acknowledge the �nancial support of the University of Michigan, the Department of

Energy (grant DE-FG02-13ER26146/DE-SC0010341), the US Air Force O�ce of Scienti�c Research

(grant PO: HPC2UM-AFOSR-2015-01), and the Michigan Institute for Computational Discovery

and Engineering (MICDE) Fellowship.

References

[1] Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R.,

Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.-O., van Leer, B., and Visbal, M., �High-

Order CFD Methods: Current Status and Perspective,� International Journal for Numerical Methods

in Fluids, 2013, DOI: 10.1002/�d.3767.

[2] Houston, P., Senior, B., and Süli, E., �hp-Discontinuous Galerkin Finite Element Methods for Hy-

perbolic Problems: Error Analysis and Adaptivity,� International Journal for Numerical Methods in

Fluids, Vol. 40, 2002, pp. 153�169.

[3] Fidkowski, K. J. and Darmofal, D. L., �Review of Output-Based Error Estimation and Mesh Adapta-

tion in Computational Fluid Dynamics,� American Institute of Aeronautics and Astronautics Journal ,

Vol. 49, No. 4, 2011, pp. 673�694.

[4] Wang, L. and Mavriplis, D., �Adjoint-based h− p adaptive discontinuous Galerkin methods for the 2D

compressible Euler equations,� Journal of Computational Physics, Vol. 228, 2009, pp. 7643�7661.

[5] Fidkowski, K., �High-Order Output Based Adaptive Methods for Steady and Unsteady Aerodynamics,�

37th Advanced CFD Lectures series; Von Karman Institute for Fluid Dynamics (December 9�12, 2013),

edited by H. Deconinck and R. Abgrall, von Karman Institute for Fluid Dynamics, 2013.

35

[6] Demkowicz, L. and Gopalakrishnan, J., �A Class of Discontinuous Petrov-Galerkin Methods. Part I:

The Transport Equation,� Computer Methods in Applied Mechanics and Engineering , Vol. 199, No.

23-24, 2010, pp. 1558�1572.

[7] Demkowicz, L. and Gopalakrishnan, J., �A Class of Discontinuous Petrov-Galerkin Methods. Part II:

Optimal Test Functions,� Numerical Methods for Partial Di�erential Equations, 2011, pp. 70�105.

[8] Demkowicz, L., Gopalakrishnan, J., and Niemi, A., �A class of discontinuous Petrov-Galerkin methods.

Part III: Adaptivity,� Applied Numerical Mathematics, Vol. 62, 2012, pp. 396�427.

[9] Kast, S. M., Dahm, J. P., and Fidkowski, K. J., �Optimal test functions for boundary accuracy in

discontinuous �nite element methods,� Journal of Computational Physics, Vol. 298, 2015, pp. 360�386.

[10] Melenk, J. and Babu²ka, I., �The partition of unity �nite element method: Basic theory and applica-

tions,� Computer Methods in Applied Mechanics and Engineering , Vol. 139, No. 1 - 4, 1996, pp. 289 �

314.

[11] Dolbow, J. and Belytschko, T., �A �nite element method for crack growth without remeshing,� Inter-

national Journal for Numerical Methods in Engngineering , Vol. 46, No. 1, 1999, pp. 131�150.

[12] Benson, D., Bazilevs, Y., De Luycker, E., Hsu, M.-C., Scott, M., Hughes, T., and Belytschko, T.,

�A generalized �nite element formulation for arbitrary basis functions: from isogeometric analysis to

XFEM,� International Journal for Numerical Methods in Engineering , Vol. 83, No. 6, 2010, pp. 765�785.

[13] Farhat, C., Harari, I., and Franca, L. P., �The discontinuous enrichment method,� Computer Methods

in Applied Mechanics and Engineering , Vol. 190, No. 48, 2001, pp. 6455�6479.

[14] Fidkowski, K. J., Oliver, T. A., Lu, J., and Darmofal, D. L., �p-Multigrid solution of high�order discon-

tinuous Galerkin discretizations of the compressible Navier-Stokes equations,� Journal of Computational

Physics, Vol. 207, 2005, pp. 92�113.

[15] Capon, P. J. and Jimack, P. K., �On the Adaptive Finite Element Solution of Partial Di�erential

Equations Using h-r Re�nement,� Tech. Rep. 96.03, University of Leeds, School of Computing, 1996.

[16] Bank, R. E. and Smith, R. K., �Mesh Smoothing Using A Posteriori Error Estimates,� SIAM Journal

on Numerical Analysis, Vol. 34, No. 3, 1997, pp. 979�997.

[17] Schneider, R. and Jimack, P. K., �Toward Anisotropic Mesh Adaptation Based Upon Sensitivity of a

Posteriori Estimates,� Tech. Rep. 2005.03, University of Leeds, School of Computing, 2005.

[18] Thompson, J. F., �General curvilinear coordinate systems,� Applied Mathematics and Computation,

Vol. 10, 1982, pp. 1 � 30.

[19] Hawken, D., Gottlier, J. J., and Hansen, J., �Review of Some Adaptive Node-Movement Techniques in

Finite-Element and Finite-DI�erence Solutions of Partial Di�erential Equations,� Journal of Computa-

36

tional Physics, Vol. 95, 1991, pp. 254 � 302.

[20] Lang, J., Cao, W., Huang, W., and Russell, R. D., �A two-dimensional moving �nite element method

with local re�nement based on a posteriori error estimates,� Applied Numerical Mathematics, Vol. 46,

2003, pp. 75 � 94.

[21] Sastry, S. P. and Kirby, R. M., �On interpolation errors over quadratic nodal triangular �nite elements,�

Proceedings of the 22nd International Meshing Roundtable, Springer, 2014, pp. 349�366.

[22] Reed, W. and Hill, T., �Triangular Mesh Methods for the Neutron Transport Equation,� Los Alamos

Scienti�c Laboratory Technical Report LA-UR-73-479, 1973.

[23] Cockburn, B. and Shu, C.-W., �Runge-Kutta discontinuous Galerkin methods for convection-dominated

problems,� Journal of Scienti�c Computing , Vol. 16, No. 3, 2001, pp. 173�261.

[24] Roe, P. L., �Approximate Riemann solvers, parameter vectors, and di�erence schemes,� Journal of

Computational Physics, Vol. 43, 1981, pp. 357�372.

[25] Bassi, F. and Rebay, S., �GMRES discontinuous Galerkin solution of the compressible Navier-

Stokes equations,� Discontinuous Galerkin Methods: Theory, Computation and Applications, edited

by K. Cockburn and Shu, Springer, Berlin, 2000, pp. 197�208.

[26] Bassi, F. and Rebay, S., �High�order accurate discontinuous �nite element solution of the 2-D Euler

equations,� Journal of Computational Physics, Vol. 138, 1997, pp. 251�285.

[27] Collins, E. M. and Luke, E. A., �Evaluation of Curved Element Discontinuous Galerkin Meshes,� AIAA

Paper 2008�5254, 2008.

[28] Toulorge, T. and Desmet, W., �Curved Boundary Treatments for the Discontinuous Galerkin Method

Applied to Aeroacoustic Propagation,� AIAA Paper 2009�3176, 2009.

[29] Hesthaven, J. S. and Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and

applications, Springer Science & Business Media, 2007.

[30] Persson, P.-O. and Peraire, J., �Curved mesh generation and mesh re�nement using Lagrangian solid

mechanics,� AIAA Paper 2009-0949, 2009.

[31] Truong, A. H., Old�eld, C. A., and Zingg, D. W., �Mesh movement for a discrete-adjoint Newton-Krylov

algorithm for aerodynamic optimization,� AIAA Journal , Vol. 46, No. 7, 2008, pp. 1695�1704.

[32] Warburton, T., �A low-storage curvilinear discontinuous Galerkin method for wave problems,� SIAM

Journal on Scienti�c Computing , Vol. 35, No. 4, 2013, pp. A1987�A2012.

[33] Botti, L., �In�uence of reference-to-physical frame mappings on approximation properties of discontin-

uous piecewise polynomial spaces,� Journal of Scienti�c Computing , Vol. 52, No. 3, 2012, pp. 675�703.

[34] Rannacher, R., �Adaptive Galerkin �nite element methods for partial di�erential equations,� Journal

37

of Computational and Applied Mathematics, Vol. 128, 2001, pp. 205 � 233.

[35] Venditti, D. A. and Darmofal, D. L., �Grid adaptation for functional outputs: application to two-

dimensional inviscid �ows,� Journal of Computational Physics, Vol. 176, No. 1, 2002, pp. 40�69.

[36] Lu, J., An a Posteriori Error Control Framework for Adaptive Precision Optimization Using Discontin-

uous Galerkin Finite Element Method , Ph.D. thesis, Massachusetts Institute of Technology, Cambridge,

Massachusetts, 2005.

[37] Oliver, T. A., A High�order, Adaptive, Discontinuous Galerkin Finite Elemenet Method for the

Reynolds-Averaged Navier-Stokes Equations, Ph.D. thesis, Massachusetts Institute of Technology, Cam-

bridge, Massachusetts, 2008.

[38] Johnen, A., Remacle, J.-F., and Geuzaine, C., �Geometrical validity of curvilinear �nite elements,�

Journal of Computational Physics, Vol. 233, 2013, pp. 46 � 89.

[39] J. E. Dennis, J. and More, J. J., �Quasi-Newton Methods, Motivation and Theory,� Society for Industrial

and Applied Mathematics Review , Vol. 19, 1977, pp. 359 � 372.

[40] Allmaras, S., Johnson, F., and Spalart, P., �Modi�cations and Clari�cations for the Implementation

of the Spalart-Allmaras Turbulence Model,� Seventh International Conference on Computational Fluid

Dynamics (ICCFD7) 1902, 2012.

38

	Nomenclature
	Introduction
	A Discontinuous Finite Element Discretization
	Conservation Law
	Discretization
	Curved Elements

	Warping High-Order Curved Elements
	Warp Optimization
	Design Variables
	Objective Function
	Least-Squares Error
	Computing Outputs of a System

	Constraint
	Optimization Problem

	Results
	Boundary Layer Approximation for a Laminar Airfoil
	Single Element Optimization with a Manufactured Solution
	Multiple Element Optimization for the Scalar Advection-Diffusion Equation
	Multiple Element Optimization for the Two-dimensional Navier-Stokes Equations
	Multiple Element Optimization for the Euler Equations
	Multiple Element Optimization for the Viscous Navier-Stokes Equations
	Multiple Element Optimization for the Reynolds-Averaged Navier-Stokes Equations

	Conclusions and Future Work
	Acknowledgments
	References

