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1. Knowing the parametric coordinates of the node of the HEXA8 element as follows (20
points) :

node ξ η ζ
1 -1 -1 -1
2 +1 -1 -1
3 +1 +1 -1
4 -1 +1 -1
5 -1 -1 +1
6 +1 -1 +1
7 +1 +1 +1
8 -1 +1 +1

(a) define the shape function N3 ξ η ζ, ,( ) of node 3, and (b) evaluate it at node 2, at the

centroid, and at a point ξ η ζ, , , ,( ) = − − +
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. (c) Sketch the function profile of

the shape function N3 on the surface defined by η ζ= =0 0and . It should become a

function of ξ in the interval (-1,1).
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2. When the HEXA8 element is used to approximate the geometry and displacement, and
when the strain assumed approximation is considered, explain why the component εx  of
the strain is approximated by a polynomial

ε η ζx a a a= + +0 1 2

where a0, a1, and a2 are unknown coefficients. Similarly, the shear strain γ xy  should be
approximated by

γ ζxy b b= +0 1

in the strain assumed element. Explain why this approximation makes sense. Here we have
assumed that the local coordinates (x,y,z) are almost parallel to the parametric coordinates
ξ η ζ, ,( ). (20 points)

When the normal strain is assumed to be

ε η ζx a a a= + +0 1 2

we have
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that is, the displacement component ux  becomes a trilinear function of the parametric
coordinates which is the same with the displacement approximation in HEXA8.

On the other hand if it is a linaer function of ξ, then the diplacement becomes

quadratic in ξ. However, this is not the case of HEXA8 element.

Similarly, for the shear
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and this is compartible with the displacement approximation in HEXA8 element.

3. Suppose that a given function

g ξ ξ( ) = −1 2

in the interval −( )1 1, , must be approximated by a constant function

g aapproximation ξ( ) = ,

where the coefficient a is an appropriate number. Find a by using the least squares method.
(20 points)

The least squares problem becomes
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4. For the finite element model consisting of two bar elements axially loaded as shown in
Fig. 1. Let Young’s modulus be E1 and E2, let the length of the elements be L1 and L2,
and let the cross sectional area of the elements be A1 and A2, respectively. (20 points)

(1) Find the sensitivity of the displacement at the loading point, that is, at node 3, if design
variables is the cross sectional area A1.

Noting that the finite element equation of the problem becomes
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This yields

∂
∂
u

A

E A

L

E

L
u

E A

L

E A

L

E A

L

E A

L

E

L
u

E A

L

u

A
3

1

2 2

2

1

1
2

1 1

1

2 2

2

2 2

2

2 2

2

2

1

1
2

1 1

1

2

1
= −

+






−






= − = −

(2) Find the sensitivity of the axial stress of the first bar element when a design variable is
Young’s modulus E1 of the first bar element.

P

1 2 3

E1, A1 E2, A2

L1 L2
Figure 1   Two Bar Element Model ( Axially Loaded )
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Therefore, the sensitivity of the axial stress of the first element is obtained by
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5. How is the stress gradient related to the finite element approximation error ? Similarly
how is the size of the finite element related to the finite element approximation error ? (10
points)

Finite element approximation error is proportional to the magnitude of the stress
gradient, and it is also proprtional to the size of the finite element if no stress
singularity exist in the element.

6. Explain the h-element and p-element in the adaptive finite element method. (10 points)

h-adaptive method is based on the local refinement of the initial element without
changing the shape functions of the element. Typical h-method is refinement of a
QUAD element into 4 QUAD elements, a HEXA element into 8 HEXA elements, at a
time of adaptation.

p-adaptation is based on increasing the degrees of polynomials of the shape functions,
while the original finite element mesh is kept. In this case, the original element
connectivity of finite elements and the nodal coordinates are not changed, but the
involved shape functions are modified by using higher order polynomials.


