
Homework #2, Winter 2000 
ME 501  Analytical Methods in Mechanics and Mechanical Engineering 
 
 
Consider transverse vibration of an elastic pipe submerged in water that is mathematically 
modeled by the following homogeneous initial-boundary value problem: 
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with the homogeneous boundary condition 
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and the non-homogeneous initial condition 
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That is, vibration is induced by the initial displacement 0u  and velocity 0v . 
 
 
(1) Assuming the solution ( ),w x t  in the form 
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show that the following differential equation  
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must be satisfied for all k for any complex numbers , 1,2,..., .kc k∈ = ∞C   
 
 
(2) Suppose that the initial displacement and velocity are expanded by 
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satisfies the non-homogeneous initial condition. 
 
 
(3) We shall call the pair ( ) 2, , 1, 2,....,k k k ku kλ λ ρω= = , is the eigenvalue and eigenfunction, 
and it satisfies the boundary value problem: 
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and the boundary condition 
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Assuming that EA, k and ρ are constant, and assuming the solution as  
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find kλ , while it satisfies the boundary condition. 
 
 
(4) Suppose that ( ), ;v x t τ  is the solution of the homogeneous initial boundary value problem 
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with the homogeneous boundary condition 
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and the specially designed non-homogeneous “initial” condition defined at time τ 
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Then show that 
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is a solution of the non-homogeneous initial-boundary value problem 
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with homogeneous boundary and initial condition: 
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(5) Show that 
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satisfies the non-homogeneous initial-boundary value problem 
 

( ) ( ) ( )
2

2 , , 0, 0,u uEA ku f x t L T
t x x

ρ ∂ ∂ ∂ − + = ∈ × ∂ ∂ ∂ 
  

 
with the homogeneous boundary condition 
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It is noted that a solution of the non-homogeneous initial-boundary value problem can be 
obtained by adding the homogeneous solution w  and a particular solution fw  obtained by 
using the homogeneous solution w . 
 



Up to this point, we have only looked at mathematics. Now we shall input some engineering. 
 
(A) Optimal Design: In (3), we pass through the eigenvalue problem for a constant EA. 
Suppose that EA can be a function of x, say 
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while the stiffness constraint 
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is satisfied, where id  are “design variables.” Describe how you can determine the design 

variables id  so as to maximize the minimum eigenvalue 2
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Give me you idea how to approach to these optimal design and optimal control problems by 
knowing some mathematics described in above. Not that I do not ask you to solve the 
problems mathematically at this time. I wish to hear from you how you would approach to 
these problems. They are very typical problems we can see in mechanical engineering now a 
day. 


