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M Matrix and Vector Algebra

B define a 3-by-4 matrix A

After defining a 3-by-4 matrix A, we output it in the form of a matrix. Miathematica

1,2,3,... are recognized as symbols rather than numerical values. We shall recognize this feature
in the following operation.

A={{1,2,3,4},{5,4,7,8},{-4,-3,-2,-1}};
MatrixForm[A]
1 2 3 4
5 4 7 8
4 -3 -2 -1

B find the eigenvalues of a square matrix AA

We shall compute the eigenvalues of a square matrix obtained By AA this end, there are

two ways to do it. The first is computation of the eigenvalues numerically by defining the matrix
numericall using the operation N[ ]. If we do not operate N[ ] on the square matrix, its
components are recognized as symbols, and then it takes considerably large amount of algebra to
find the eigenvalues without introducing any of "round off or approximation" errors. It is noted
that we can compute the eigenvalues for symbols after large compution, but it is not realistic at all.
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Eigenvalues[N[A.Transpose[A]]]
Eigenvalues[A.Transpose[A]]

{201.805, 0.598203, 11.5971}
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It is certain that not only the eigenvalues but also the eigenvectors of a square matrix can be
obtained numerically iMathematica Further, if we wish to compute both the eigenvalues and
eigenvectors, it can be done by using command Eigensystem][ ] rather than Eigenvalues| ] and

Eigenvectors| ].

Eigenvectors[N[A.Transpose[A]]]
Eigensystem[N[A.Transpose[A]]]

{{0.372034, 0.872243, -0.317464)},
{-0.848767, 0.458123, 0.264041},
{-0.375745, -0.17122, -0.910768}}

{{201.805, 0.598203, 11.5971},
{{0.372034, 0.872243, -0.317464},
{-0.848767, 0.458123, 0.264041},
{-0.375745, -0.17122, -0.910768}}}

(
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B A Complex Matrix

Using two 3-by-3 matrices A and B, we shall describe a complex matrix AB. "I" in
Mathematicameans Sqrt[-1] for expression of complex numbers. We can extract the real and
imaginary portions from general complex numbers/matrices using Re[ ] and Im[ ], respectively.
Furthermore, the absolute value and argument of each complex component of a matrix can also be

computed irMathematicausing Abs[ ] and Arg[ ] operations, respectively. "%" is identified
with the variable obtained ( or defined ) in the last operatidfiathematicaand g//N means that
g will be regarded as numbers rather than symbols.

A={{1,2,3},{3,2,1},{-1,1,-1}}
B={{1,0,1},{-1,-1,1},{4,1,2}}
AB=A + | B;
MatrixForm[AB]
MatrixForm[Re[AB]]
MatrixForm[Im[AB]]
Abs[AB]

MatrixForm[%//N]

Arg[AB]

MatrixForm[%//N]

{1, 2,3}, {3, 2,1}, {-1, 1, -1}}
{{1,0, 1}, {-1,-1,1}, {4, 1, 2}}
1+1 2 3+

3-1 2-1 1+1I

-1+41 1+ -1+21

1 2 3

3 2 1

11 -1

1 0 1

-1 11

4 1 2

{Sart[2], 2, Sqrt[10]}, {Sqrt[10], Sqart[5], Sqrt[2]},
{Sqrt[17], Sqart[2], Sqrt[5]}}

1.41421 2. 3.16228

3.16228 2.23607 1.41421
412311 1.41421 2.23607

{{?, 0, ArcTan[3, 1]}, {ArcTan[3, -1]';10\rcTan[2, -1], --},
{ArcTan[- -,'4], --, ArcTan[-1, 2]}
0.785398 0 0.321751

-0.321751 -0.463648 0.785398
1.81577 0.785398 2.03444
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W Vector Algebra

Two three components vectors u and v are defined, then we operate ", "/", ".", and
Outer[Times,u,v]. ™" and "/" are operated to each component, while "." means the inner (

scalar) productTM of two vectors. Outer[Times, u, v] means that.uv

u={ul,u2,u3}
v={vl,v2,v3}

u*v

u/v

u.v
Outer[Times,u,V]

{ul, u2, u3}

{v1, v2, v3}

{ulvl, u2v2, u3dv3}
1 u2 .u3

vl 'vz‘l/s
ulvl+u2v2+u3v3

{{ulvl, ulv2, ulv3}, {u2vi, u2v2, u2 v3},
{u3 v1, u3 v2, u3 v3}}

B Matrix Albegra

After defining two 3-by-3 matrices A and B symbolically, we make algebra "+", "*", /", "\" and
"."in Mathematica It follows from the output that these operations are applied on each

component except "." that assumes matrix multiplication instead of componentwise multiplication.

Transpose[A] means AT. Det[A] is the determinant of a square matrix A, while Inverse[A] is A

1 Intnis example, we define the inverse of A by a new matrix Al.

A={{all,al2,a13},{a21,a22,a23},{a31,a32,a33}};
MatrixForm([A]
B={{b11,b12,b13},{b21,b22,b23},{b31,0b32,b33}};
MatrixForm([B]

A+B

A*B

A/B

A.B

Transpose[A]

AN2

AN-1)
Det[A]
Al=Inverse[A]
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all al2 al3
a2l a?22 a23
a3l a32 a33

b1l bl2 bl3
b21 b22 b23
b31 b32 b33

{{fall + b11, al2 + b12, al3 + b13},
{a21 + b21, a22 + b22, a23 + b23},
{a31 + b31, a32 + b32, a33 + b33}}

{{all b11, al2 b12, a13 b13}, {a21 b21, a22 b22, a23 b23},
{a31 b31, a32 b32, a33 b33}}

11 al2.,al3 a2l a22 a23 1 a32 a33
U511 Bi%9bia B21 532 D23 HB1 b32 b33
{{fall b1l +al2 b21 + al3 b31, all bl2 + al2 b22 + al3 b32,
all bl3 +al2 b23 + al3 b33},
{a21 b1l + a22 b21 + a23 b31,
a2l bl2 + a22 b22 + a23 b32, a21 b13 + a22 b23 + a23 b33}
, {a31 b11 + a32 b21 + a33 b31,

a31 b12 + a32 b22 + a33 b32, a31 b13 + a32 b23 + a33 b33}
}

{{al1, a21, a31}, {al2, a22, a32}, {al3, a23, a33}}

fafl 12 %a13Ff (a1, &2, &3 F (a1, a32 , a33 )}

11 1, .11 ]h 11

a3 3T 48 3 dh1 a32 a33

-(@l3 a22 a3l) + al2 a23 a3l + al3 a2l a32 - all a23 a32 -
al2 a2l a33 +all a22 a33
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{{(-(a23 a32) + a22 a33) /
(-(@13 a22 a31) + al2 a23 a3l + al3 a2l a32 -
all a23 a32-al2 a2l a33 +all a22 a33),
(213 a32-al2a33)/
(-(@13 a22 a31) + al2 a23 a3l + al3 a2l a32 -
all a23 a32-al2 a2l a33 +all a22 a33),
(-(@13 a22) + al2 a23) /
(-(@13 a22 a31) + al2 a23 a3l + al3 a2l a32 -
all a23 a32-al2 a2l a33 +all a22 a33)},
{(@23 a31 - a21 a33)/
(-(@13 a22 a31) + al2 a23 a3l + al3 a2l a32 -
all a23 a32-al2 a2l a33 +all a22 a33),
(-(@al3 a31) + a1l a33)/
(-(@13 a22 a31) + al2 a23 a3l + al3 a2l a32 -
all a23 a32-al2 a2l a33 +all a22 a33),
(al3a21-alla23)/
(-(@13 a22 a31) + al2 a23 a31 + al3 a2l a32 -
all a23 a32-al2 a2l a33 +all a22 a33)},
{(-(a22 a31) + a21 a32) /
(-(@13a22 a3l) + al2 a23 a31 + al3 a2l a32 -
all a23 a32-al2 a2l a33 +all a22 a33),
(al2 a31-all a32)/
(-(@l3a22 a3l) + al2 a23 a31 + al3 a2l a32 -
all a23 a32-al2 a2l a33 +all a22 a33),
(@12 a21) + all1 a22) /
(-(@l3a22 a3l) + al2 a23 a31 + al3 a2l a32 -
all a23 a32-al2a?l a33 +all a22 a33)}}

If components of a matrix are rational functions, then we can pick up only their denominator or/
and numerator. Indeed, Mathematica
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Denominator[Al]
Numerator[Al]

{{-(al3 a22 a31) + al2 a23 a31 + al3 a2l a32 -
all a23 a32-al2 a2l a33 + all a22 a33,
-(@al3 a22 a3l) +al2 a23 a3l + al3 a2l a32 -
all a23 a32-al2 a2l a33 +all a22 a33,
-(@l3 a22 a3l) + al2 a23 a3l + al3 a2l a32 -
all a23a32-al2 a2l a33 +all a22 a33},
{-(@al3 a22 a31) + al2 a23 a31 + al3 a21 a32 -
all a23 a32-al2 a2l a33 +all a22 a33,
-(@1l3 a22 a3l) + al2 a23 a3l + al3 a2l a32 -
all a23a32-al2 a2l a33 +all a22 a33,
-(@al3 a22 a3l) +al2 a23 a3l + al3 a2l a32 -
all a23 a32-al2 a2l a33 +all a22 a33},
{-(@al3 a22 a31) + al2 a23 a31 + al3 a21 a32 -
all a23 a32-al2 a2l a33 +all a22 a33,
-(@l3 a22 a3l) + al2 a23 a3l + al3 a2l a32 -
all a23 a32-al2 a2l a33 + all a22 a33,
-(@al3 a22 a3l) +al2 a23 a3l + al3 a2l a32 -
all a23a32-al2 a2l a33 +all a22 a33}}

{{-(a23 a32) + a22 a33, al3 a32 - al2 a33,
-(al3 a22) + al2 a23},
{a23 a3l - a21 a33, -(al3 a3l) + all a33,
al3 a2l - all a23}, {-(a22 a31) + a21 a32,
al2 a3l -alla32,-(al2 a2l) + all a22}}

B Solution of Algebraic Equations

We can solve a system of linear ( or even nonlinear ) equations symboliddbdyhematicay

using Solve command. If a single equation is considered, we can express it as a single equation.
If several equations must be considered, then these should be expressed in a form of list (i.e.
vector ) inMathematica After setting up equations, we must specify the variables we would

like to find. In the following examples, we have two equations, and they are solved for x1 and
X2.

Solve[{all*x1+al2*x2==bl,
a21*x1+a22*x2==b2},
{x1,x2}]

{x1->
-((-(@12 a21) + al1 a22) bl) - a12 (a2])\b1 -all b2)
all (-(al2 a21) + all a22)
. a2lbl-allb2
> iz aoD) + aii kb2

, X2
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M Functions and Their Graphical Representation

W Definition of a Function

We shall look at capability d¥lathematicafor function operations and graphic capability. First
two functions f and g are defined so that we can substitute any expression to the argument.

fIx_]:=x-2 x+x"2 + x Cos[Exp[-X]]
gly_I:=y+y”"2 Sin[1/(1+y"2)]

W Operation of a Function

Using these two functions, we shall define a new function f(xy)+g(x+y) that is a function of x
andy. Then we shall express this function as a polynomial of x whose coefficients are functions

of y by using Collect[h,x] command Mathematica The same function is also collected in y
instead of x.

Collect[f[x y] + g[x+y],X]

Collect[f[x y] + g[x+yl].y]
Coefficient[f[x y] + g[x+y],x"2]

3 sk d i +-sm? ------------

1+(x+y) X +Y)
x(1-y+y e 1 +2y sl )
1+(x+y)
x+x Slﬂ[i----?+y(x +sl:,nr )+
1+(x-|2 g(+y)
y(l-X+xé)6¥fE ]+—2-x]1- a— )
1+(x+y)
2
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B Graphics

The functions f and g are defined in arbitrary arguments x and y by adding _ after x and y, we can
define functions in other variable, say z. We shall plot the functions f(z) and g(z) in the interval
(-4,4) using Plot command. The third command ParametricPlot draws a curve defined on the
two dimensional plane with a parameter x in (-4,4). A new function fg is then defined by
f(pg)g(1+p-q) that is a function of p and q. The profile of this function is plotted on the domain
(-2,2)x(-2,2). "PlotRange -> All" in Plot command means that the whole profile of the function
is plotted without trancation of the function. "PlotPoints -> 20" in Plot command means that 20
subintervals are assumed in each direction to define the profile. If this number is increased, we
can expect smooth profile. For most of functions, it can be utilized the default value for
PlotPoints. The last ContourPlot is for drawing contour lines with density that shows the value
of the function.

Plot[f[z],{z,-4,4}]
Plot[g[z].{z,-4,4}]
ParametricPlot[{f[x],g[x]},{x,-4,4}]
fg=flp q] g[1+p-q]
Plot3D[fg,{p,-2,2},{q,-2,2},

PlotRange -> All,

PlotPoints -> 20]
ContourPlot[fg,{p,-2,2},{q,-2,2},

PlotPoints -> 30]

20t
15¢

10

-4 -2 2 4
-Graphics-
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4 L
2 L
) ) 2 4
-2+
-Graphics-
4 L
2 L
5 10 15 20
) —
-Graphics-
2 -
(-(pa) ? Pa+p q(Egg[E )
(L+p-q+ (1 Fp-a)ySif )

1+(1+p-Q)
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-SurfaceGraphics-

o[

_2.§

-2 -1 0 1 2

-ContourGraphics-

It is possible to find a root, i.e. a solution of a nonlinear equation defined by a function. Indeed,
FindRoot command, see the first line, finds a root of f(x)=5 in the visinity of x=1. The second
line computes a root in the visinity of x=-2Mathematicaalso tries to find the minimum value

and a minimizer in the visinity of a specified point, say (p, q) = (-1, 0) using Newton's
method. It often fails to find the minimum and its associated minimizer.
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B Root and Minimum of a Function

FindRoot[f[x]==5,{x,1}]
FindRoot[f[x]==5,{x,-2}]
FindMinimum[fg,{p,-1},{q,0}]
FindMinimum[f[x],{x,-4}]
{x->2.23891}

{x ->-1.99411}

FindMinimum::fmgz:
Warning: FindMinimum encountered a vanishing gradient.
The result returned may not be a minimum; it may be a
maximum or a saddle point.

{0.,{p->-1.,9->0.}}
{16.2795, {x -> -4.03448}}
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B Calculus and Flow Commands

After refefining the function f, we output this new function in the three forms :

1. input form in MATHEMATICA
2. FORTRAN form
3. TeXform

Depending on a specific purpose, we can output variables in these three forms. For example, it
might be possible to write a FORTRAN program udt@thematicaas shown in below. If
complex equations must be written in a paper using Mathematicamay help to write the
eqguation in TeX format. The fifth statement f{x]>>output.m means that the variable ( or function
) f(X) is output into a file output.m. We can integrate a given function on a specified interval ( or
domain ) numerically using Nintegrate command. Next we define a list ( array ) "difference”
with all zero entries using Table commandviathematica Three component array is

generated here. Now we wish to develop a small program Msitigematicacommands. To

do this, we must declare Block] ....... ] to specify the range of program. To control flow of
execution, a local index variable "i" is defined by {i}. If there are two local indecies to control
flow, then we must declare, e.qg., {i,j}. Dol ...... |Mathematicas the same to DO loop in
FORTRAN. In this example, we make the loop equivalent to

DO 100i=1,3

100 CONTINUE

in FORTRAN. Taylor's series of a given function can be taken by specifying the evaluation
point and the number of terms using Serires[ ] commaMhthematica In the following

example, we expand the function f(x) in 2*i terms, i = 1, 2, and 3. Serires[ ] expresses Taylor's
exansion with the order of "error”, thus in order to use this result as a new function or variable,
we must drop the O[ ] term. To do this, we use Normal[ ] command. After computing the
integral of the Taylor series by using Nintegrate command, we compute the difference of these
from the integration of the original function. Then ListPlot[ ] draws the graph of the list ( or
array ) of "difference," while we append this result in the existing output file "output.m" using <<
<command. The last statement defined by !'file means show the content of file "output.m.”
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fIx_]:=x-2 x+x"2 + Cos[Exp[-X]];
InputForm(f[x]]
FortranForm[f[x]]

TeXForm[f[x]]

f[x]>>output.m
lexact=NIntegrate[f[x],{X,-2,2}]
difference=Table[0,{i,1,3}]
Block([{i},

Do[fi=Series][f[x],{X,0,2*1}];
Print["Taylor's Series (",2*,") = "/fi];
Iseries=Integrate[Normal[fi],{x,-2,2}];
Print["Iseries = ",Iseries];
difference([i]]=lexact-Iseries;
Print["difference = ",N[differencel[[i]],2*1]],

{i,1,3}]

]
ListPlot[difference]
N[difference,10]>>>output.m
Houtput.m

-X + X2 + Cos[EN(-X)]

-X + x**2 + Cos(E**(-x))
-X + {x"2} + \cos ({e-x}})
6.87039

{0, 0, 0}
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Taylor's Series (2) = Cos[1] + (-1 + Sin[1]) x +

Cos[1] Sin[1l] 2 3
1 - —mmem m e ) X + O[X]
2 2
8 (2 - Cos[1] - Sin[1])
Iseries =4 Cos[1] +

difference = 3.1
Taylor's Series (4) = Cos[1] + (-1 + Sin[1]) x +

3
Cos[1] Sin[1] 2 Cos[1] x
b

2 2 2
-Cos[1] 5Sin[1] 4 5
8 (6 Cos[1] - 5 Sin[1])

Iseries =4 Cos[1] - +
15

8 (2 - Cos[1] - Sin[1])

3
difference = 2.546
Taylor's Series (6) = Cos[1] + (-1 + Sin[1]) x +

3
Cos[1] Sin[1] 2 Cos[1] x
(L= oo s o) X oo

2 2 2

-Cos[l] 5Sin[1l] 4 Cos[1l] 23 Sln[l] 5
( ) X+ (e - ) X
24 24 120

11 Cos[1] 37 Sin[1] 6 7
+ ) x + O[x]
240 360
8 (6 Cos[1] - 5 Sin[1])
Iseries =4 Cos[1] -

15
8 (2 - Cos[1] - Sin[1]) 16 (33 Cos[1] + 74 Sin[1])
+

3 315
difference = -1.52289
-X + X2 + Cos[EN(-X)]
{3.060580652256568187, 2.545625404880224605, -1.522886542773512646}
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1.5 2 2.5 3

-Graphics-

M Differentiation, Integration, and Fourier Series
We can differenciate and integrate a functioMathematica

DIf[x],x]

g SHE]
B

Integrate[f[x],{x,0,1}]
General:intinit: Loading integration packages.

(é + Coslntegral[1] - Céslntegral[-]

fiexact=%

(é + Coslntegral[1] - Céslntegral[-]

For most of functions, analytic integration takes considerably a lot of time and memory to
evaluate ilfMathematicaand may not be so practical. If the exact form of integration is not
required, numerical integration could be a good replacement. To this end Nintegrate command
can be used. As shown in the following example, Nintegrate implies really small error.

figuadrature=NIntegrate[f[x],{x,0,1}]
N[fiexact]-fiquadrature

0.627165

-1.1382&810

It is certain that we can define some special functions such as the step function using IFJ ..... ]
command irMathematica In the following example, we define a step function, then derive its
Fourier series using Nintegrate[ ... ] and Sum][...] commands. Summation is taken in odd
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number i whose range is (1, ..... , N) by specifying {i,1,n,2}. The last 2 indicates summation is
taken for ever other terms.

stepfunction[x_,a_]:=If[x<a,0,1]

f=stepfunction[x,0]

n=10;

fsn=NIntegrate][f {x,-Pi,Pi}}/(2 Pi)+
Sum|[NIntegrate[f*Sin[i*x],{x,-Pi,Pi}]*Sin[i*x]/PIi,

{i,1,n,2}]
Plot[fsn,{x,-Pi,Pi}]
Iffx<0,0,1]
1.5708 2. Sin[x] 0.666667 Sin[3 X] 0.4+Sin[5 X]
Pi Pi - Pi Pi
0.285714 Sin[] X] 0.222222 Sin[9 X]
Pi Pi
1 L
0.8
0.6
0.4
0.
VAN U~ UVA\
3/ Y2 Y \J 1 2 3

-Graphics-

B Curve Fitting

UsingMathematicave can make curve fitting of a set of discrete data. For the function
f(x) = e*sin(2mx)

we shall define a data set by

Ep(i:—l+M,f(Xi)E , i=123,...,n+1
0 n U

for a large n, say 100. Then this data set is fitted using the following 5 basis functions
{exp(x) sn(x) x x x3}

That is, the data is fitted by a linear combination of these basis functions :
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f(x) = ¢ exp(x) + ¢, Sin(X) + CoX + C4X? + X

by the least squares method : the coefficient c1, ....., c5 are determined so as to minimize the
residual
1 n+1 )
R=3 Z{ f(x)—coexp(x) + cosin(x; ) + cax; +c4%2 +c5xi3}
1=1

In Mathematicawe use Fit] ..... ] command to make the best curve fitting as follows :

fli_,n_]:=Exp[-1+2*(i-1)/n]*Sin[2*Pi*(-1+2*(i-1)/n)]
n=100;

data=Table[{-1+2*(i-1)/n,f[i,n]},{i,1,n+1}];
g=ListPlot[data]
fi=Fit[data,{Exp[x],Sin[x],x,x"2,x"3},X]
h=Plot[fi,{x,-1,1}]

Show([g,h]

-Graphics-

0.143%74 E - 2019.3Fx - 1.02853 x + 316.868 x +
2023.6 Sin[x]
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-Graphics-

-Graphics-

Since the above choice of the basis functions is not quite effective, we shall make curve fitting
using the basis functions of a m-th degree complete polynomial :

m
f(x):chxJ
l:

0

For m=10, we have very accurate curve fitting as follows :
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fi=Fit[data, Table[x"},{j,0,10}],]
h=Plot][fi,{x,-1,1}]
Show]g,h]

0.00173229 + 6.277% X + 6.1%739 X -38.1008 x -

38,5752 x +60.7599 X2 + 66.7642 X - 37.2472 X -

46.26%2 X + 8931181 xl(-)l- 11.9312 x

11
/\ 0.5}
-1 -0. 0.\5
-0/5
-1¢F
1.5}
-2t
-Graphics-

-Graphics-
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W Examples in ME210

B Bending Moment and Shear Force Diagrams

We shall apply Mathematica to solve problems in ME210. As the first example, let us draw the
bending moment and shear force diagrams of the cantilever subject to a given set of loading and
support conditions as shown in the following figure. A distributed load of 3 kips/ft extends over

8 ft of the beam and the 10 kip load is applied at the attached short beam.

Pp=10kips

Pd=3kips/ft

a=8ft c=2ft

In this case, the bending moment distribution M and shear force diagram V becomes

0 X
D—(pdx)z x<a
U
M() = H{palfe-a+ 35 asxsb
ﬁ—(pda)%—a+gg+Ppc—Pp(x—a—b) b<x
and
Py X X<a
V(x) = p,a asx<b

H—pda—P b<x

respectively. Noting that

—(pda)% - a+ggz —(pdx)g +%{(pdx)x— 2(pya)x +(p,a)a} = —(pdx)g +%pd(x - a)*

we can set up the following Mathematica program to draw the bending moment and shear force

diagrams :
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W

(oM@l e ]
-UII o111
1w

3;

Pp=10;

M=-(Pd*x)*(x/2)+
((Pd*(x-a))*(x-a)/2)*If[x<a,0,1]+
Pp*c*If[x<a+b,0,1]-
Pp*(x-a-b)*If[x<a+b,0,1]

V=-Pd*x+
Pd*(x-a)*If[x<a,0,1]-
Pp*lf[x<a+b,0,1]

Plot[M,{x,0,a+b+c+d}]

Plot[V,{x,0,a+b+c+d}]

L=a+b+c+d

M/.{x->L}

V/{x->L}

3%, 3(8%x) Ifix<a0,3]

+

2 2

20 lflx<a+b, 0, 1] -

10(-11+x) Iff[x<a+b, 0, 1]

3x+3(8+x) Ifx<a,0,1]-
10If[x<a+b,0, 1]

T Q

-50¢t

-100 ¢

-150 ¢

-200¢

-250¢

-300¢

-Graphics-
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B Reaction Force and Deflection of a Beam

Subject to a Distributed Force
We shall compute reaction and deflection of the statically indeterminate beam subject to a linearly
distributed load as shown in the following figure. The beam is fixed at the right end, while it is
supported by a hinge at the left end. Let the length of the beam is L, and the x coordinate is taken
from the left end point along the beam axis. Young's modulus and the moment of inertia of the

beam cross section are assumed to be constant over the beam. Here w0 represents the magnitude
of the distributed load at the right end point.

E =Youngs modulus

|=Momentofinertia v

A v ¢ A

-

> L -

Noting that the bending moment distribution is given by

=RX- %DWOX

where Ra is the unknown reaction at the hinge support, the beam deflection y is defined by the
follwoing beam equation
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d?y _ o MW, X
B Y =M() = Rx DTX%%

Integrating this twice and applying the support condition

(0) = (L) = (1) =0

we can obtain the deflection as follows :
dy

dy
y= Iddx+§

Then apply the three support conditions, Solve[ ...Nlathematicayields ¢, ¢y and R,

Clear[L]

M=(Ra*x-((1/2)*w0*(x/L)*x)*(x/3))/El
dydx=Simplify[Integrate[M,x]+C1/El]
y=Simplify[Integrate[dydx,x]+C2/El]
yO=y/.{x->0}

yL=y/{x->L}

dydxL=dydx/.{x->L}
Solve[{y0==0,yL==0,dydxL==0},{C1,C2,Ra}]

Ra lecf)_(__
EI

24C1L+12L RAx - WO X

SAEIL

3w+ 2b
120 C2 L + 120 C1 Cx + 20 L Ra x - w0 X
120 EIL
c2
El
120C2L+720 4L P20L Ra-L wo
20 EIL

24C1L312  Ra-L wo

SAEIL
fc1 QL----"‘!Q-)--, c2 > 04>

120



IntroMATH 25

B Reaction Force and Deflection of a Beam
Subject to a Point Force

We shall obtain reaction and deflection of a statically inderminate beam that is subject to a point
force P at the distance a from the left end point where the beam is supported by a hinge, and is

fixed at the right end. If the x coordinate is taken from the left end, the support condition of the
beam is given by

¥0)=0  ad  y(1)=(L)=0
where y is the deflection of the beam.

P

Ha—»

;ﬁ; Young's Moduius E ’

Momentof inertial
|—> X
[« L >

If the reaction at the hinge support is denoted by Ra, the bending moment distribution becomes

for x<a

RX
M(x) = e
x-P(x-a) for as<x
Thus, we can obtain the deflection of the beam by integrating the beam equation twice :
d? for x<a

X
BSY=M(x) = R
dx E&x—P(x—a) for as<x

Noting that we have two different description of the bending moment distribution in the beam
eguation, we must integrate the second order differential equation separately in two different
intervals (0, a) and ( a, L ), and then we must apply the continuity condition on the deflection as

well as the slope of the deflection at the interface x = a:
limy(a-¢)=y(a)=y(a)=limy(a+e)

. dy, \_dy _ay )Y
le&(a s)—&(a)——(a+)—lelrg—(a+s)
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We shall integrate the beam equation separately in the two different intervaMaghmgmatica
We first integrate the beam equation twice :

e
dx El J Rxax+c,

dy, 1
= —dx+—=
L S el

% :é{f (Rx- P(x—a))dx+c3}

dy, 1
=[ —=dx+—=c
% dx =

where g, ¢y, c3, and g are constants generated by integration which must be determined by the
continuity and support conditions. Using Solve] ..... ] command for five conditions with
respect to five unknowns, we can fingl ¢, c3, ¢4, and R, as follows :

M1=Ra*x/El

dyldx=Integrate[M1,x]+C1/EI

yl=Integrate[dyldx,x]+C2/El

M2=(Ra*x-P*(x-a))/El

dy2dx=Integrate[M2,x]+C3/El

y2=Integrate[dy2dx,x]+C4/El

y0=y1/.{x->0}

yL=y2/.{x->L}

dydxL=dy2dx/.{x->L}

jdydxa=(dy2dx-dy1dx)/.{x->a}

Jya=(y2-y1)/ {x->a} _ ,

Solve[{y0==0,yL==0,dydxL==0,jdydxa==0,jya==0},
{C1,C2,C3,C4,Ra}]

{C1,C2,C3,C4,Ra}=Simplify[{C1,C2,C3,C4,Ra}/.%l/First]

Ra x
El
C1, Rax
El' 2 El
3
€2 Clx Rax
El' EI 6EIl
Rax-P (-a+x)
El

C3 aPx (-P2+ Ra) x
= .
El' EI 2 El

§4+£_32<2an (-]?5+Ra)x
El' EI 2El  6€El
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Cc2
El
2 .3
C4 C31°al’P L (P+Ra)
El' El 2Bl 6El

9:1 aL% L (-P + Ra)
El' EI  2El

éél Cf _____ %’ a2Ra a (-P + Ra)

2EI " 2El

C)l C2 an CZF' F§9Ra a (-P +Ra)
TEMOE 6 El 6 El

152
6F (2aLP-L P)+L (6a P-6@3aL R-L P)
243
2p
,C2->0,G4>
e >2__?__L_2_E32___E__E)
&
6F 2aLP-L P)+L (6a P- 6(§aLP L P)
121
c3->
613_(2a|_3|_%)+ﬁ(6aF?6(§a|_ cLP)
243
(a(a+2L)P 2(a(2a+L)P) P aP 3aP
{ b e

2L
Thus we have
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Pa(L - a)®

TS

Pa’
C,=—
6

(2L3+a )
218

Now assuming a=L/2, we shall plot the profile of the deflection of the beam by setting P=1, L=1,
and EI=1.

a=L/2;

y1/{P->1,L->1 EI->1}
gl=Plotlyl/{P->1,L->1,EI->1}{x,0,a/ {L->1}}]
y2/{P->1,L->1 EI->1}
g2=Plot[y2/.{P->1,L->1,El->1},{x,a/{L->1},L/{L->1}}]
Show[g1,92]

3
m+5x

32 9%

-0.002¢

-0.004

-0. 006

-0. 008+
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-Graphics-
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-Graphics-

W Examples for ME311

B Application of the Castigliano Theorem

E=Youngs modulus
|=Momentofinertia
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We shall consider the same example for the statically inderminate beam bending with the linaerly

distributed load with the hinge support at the left end ( x=0 ) and the fixed support at the right end
(x=L), see the figure in above. Using this example, the reaction and the amount of the rotation
of the beam are obtained at x=0. Noting the second Castigliano theorem yields the deflection of

the beam at the left end support ( x=0 ), the reactigatfhis hinge support can be obtained by
solving the relation of the zero deflection at x=0 :

_ U _ a4 01
Ya =Y(0) = R, aRaBZEII J'M—dx 0
where  M(x) = Rax— o[ Bg

Translating these intblathematicawe can solve the reactiory By using Solve command.

M=Ra*x-((1/2)*wO*(x/L)*x)*(x/3)
ya=Integrate[M*D[M,Ra]/El,{x,0,L}]
Solve[ya==0,Ra]

W03x

RaxXzT—

General::intinit: Loading integration packages.

I_3 Ra 4L wO

3El 30El

{iRa 35

The slope of the deflection (i.e. rotation of the beam ) at the left end hinge support x=0, can be
obtained by applying the second Castigliano theorem after introducing a ficticious applied moment
at the point where we wish to know the rotation. Indeed, if we translate this

o _ = lim 9% = jim FIM
X_o M0—>06M0 Mo—»OOMO
where  M(X) = ~Mg + Ry - E; ’L( gg

into Mathematicacommnads, we can obtained the slope of the delection at x=0 as follows :
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M=-MO+Ra*x-((1/2)*wO0*(x/L)*x)*(x/3)
thetaO=Integrate[M*D[M,MO]/EIl {x,0,L}]/.{MO->0}
thetaO=theta0O/.{Ra->L*w0/10}

WO?>X

-MO + Rast = -~
-(I? Ral?’_L_WO
2El 24 El
© wo)
120 El
W Application of the Rayleigh-Ritz Method (1)

P

;ﬁ; Young's Moduius E
Momentof Inertia |
—

We shall obtain the deflection of the beam supported by a hinge at the left end and also fixed at the
other end subject to a point load P at the center. The deflection of this beam was already obtained
by integrating the second order differential equation written in terms of the bending moment M

and the second derivative of the deflection as we have studied in ME210. We shall solve this
problem by using the energy method that is one of the most important subjects covered in

ME311. More precisely, we shall compute an approximated deflection, that should be very close
to the exact solution, by the Rayleigh-Ritz method based on the principle of the minimum

potential energy : the deflection in equilibrium minimizes the total potential energy, i.e., the total
potential energy attains its minimum at the deflection that yields equilibrium of a structure. The
total potential energy consists of the total strain energy and work potential :

B 1t T2l Lo
F—U+W—§J'O EIWde (P)wDED

Note that the positive direction of the deflection is up-ward vertical direction, and the applied
point force P is down-ward vertical. Thus, when we form the work potential, we must consider
the applied force with the negative sign. The principle of the minimum potential energy says the
deflection in equilibrium minimizes the total potential energy :
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2
mlnF mln—J' El éu;wgdx )\NBLB

Since the support condition must be satisfied with all of possible deflections for equilibrium,
minimization of the total potential energy should be considered among deflections satisying the
support condition. In this particular example, zero deflection at the left end, zero deflection and
slope at the right end point must be satisfied :

H)=0

If we parameterize possible deflections for equilibrium, e.g., by

w(x) = x(x - L)Z(Cl+(‘2x+03,x2 F o )

using "arbtirary" parameters C1, C2, C3, ....... , we may determine these parameters so that the
total potential energy is minimized. Then we can define the deflection that yields equilibrium of
the structure. If possible deflections are parameterized, the total potential energy becomes a
function of these parameters. If a finite number of parameters is used for approximation of a
deflection, it becomes a function on a finite number of variables ( i.e. parameters ). Then the
necessary condition of the minimum is vanishing the first derivatives of the function with respect
to these variables :

oF

w(0) =w(L) =

This means that we can derive the same number of equations with the number of parameters
introduced. Solving the set of equations with respect to the parameters yields the deflection that

minimizes the total potential energy, i.e., in equilibrium. Assuming only three paramgters C

Co, and G, we shall obtain the deflection usiMpthematica
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W2=x*(x-L)"2(C1+C2*x+C3*x"2)
F=(El/2)*Integrate[D[D[w2,x],x]"2,{x,0,L}]-
(-P)*w2/.{x->L/2}
F=Expand[F];
Solve[{D[F,C1]==0,D[F,C2]==0,D[F,C3]==0},
{C1,C2,C3}]
w2r=w2/.%//First

x(—L+2x) (C1+C£X+C3X)

(EI@-H al32c1+821) +

80 3L (c2-2¢C31L) +

123 (2c1+c2)(Cc1®2c2L+C3L)+

481 (T2 +5C1C3-22€FC3L +17C3 L)
5

# 9cico?18c2 L-28C1T3L+50C2C3L -

1883 L) PaL

361 -20C1CAL316C21 +22C1C3L -

2023135 c3 L)) /2+

(019-2--'-_4%-33-5) P
8
P 5P
HCL 35 g ©3 > O
5Px

x (L 3D
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Plotjw2r/.{P->1,El->1,L->1},{x,0,1}]

0.2 0.4 0.6 0.8 1
-0.002 !
-0.004 |

-0. 006

-0.008¢

-Graphics-

W Application of the Rayleigh-Ritz Method (2)

Deflection of the beam fixed at the both ends shown in the following figure, will be obtained by
the Rayleigh-Ritz method based on the principle of minimum potential energy of a linearly elastic
structure. A uniformly distributed load is applied on the right half portion of the beam with

intensity . For simplicity, let Young's modulus E be constant, and let the moment of inertia

of the cross section be also constant. The length of the beam is described by L. In the
Rayleigh-Ritz method, approximated deflection of the beam must satisfy the support condition
written in the deflection and its slope. Since the both ends are fixed, the deflection and slope
must be zero at these points, i.e.,

where w is the deflection, approximationsafithe deflection may be written by

vvi(x):xz(x—L)Z(Cl+sz+C3x2+ ........... +Ci+1xi)

Substitution of this into the form of the total potential energy

F= % J’OL El éu;—‘;"(x)gdx —J'L; P (XwW(x)adx
2

total strain energy U work potential -W

yields a function F of a finite number of paramete{s G, ....., G41 :
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The necessary condition for the minimum of the total potential energy, that is approximated by
wi, is vanishing the gradient of F with respect to the parametgr€£..., G4 :

oF _
E(c;l,c?,....,qﬂ)_o
oF _
E(c:l,cz,....,qﬂ)_o
oF _
o (CL.C5,.....Gis1) =0

Solving these i+1 number of equations in the i+1 parametgr€£....,G; 1, we can

determine the deflection;w We shall obtain the three approximated deflections for i = 0, 1, and
3 usingMathematica

Young's Modulus=E
Momentof Inertia=| Pd
«< |p >|< p ——»

o Lowest Order Approximation

wO=x"2*(x-L)"2*(C1)

F=(El/2)*Integrate[D[D[wO0,x],x]*2,{x,0,L}]-
Integrate[pd*w0,{x,L/2,L}];

F=Expand[F];

Solve[D[F,C1]==0,C1]

wOr=w0/.%//First

Cx (L)
(c1 K h

pd2x (-L ? X)
48 El
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o Second Lowest Order Approximation

W1=x"2*(x-L)"2*(C1+C2*x)

F=(El/2)*Integrate[D[D[w1,x],x]"2,{x,0,L}]-
Integrate[pd*w1,{x,L/2,L}];

F=Expand[F];

Solve[{D[F,C1]==0,D[F,C2]==0},{C1,C2}]

wlr=w1l/.%//First

2 (L+%) (C1+C2x)

3pd 7.pd
fca 256 EI'’ C2384 ElIL i

2, 3pd  7pdx
56 ET B84 £

x2 (-L+

o Third Order Ritz Approximation

W3=x"2*(x-L)"2*(C1+C2*x+C3*x"2+C4*x"3)
F=(El/2)*Integrate[D[D[w3,x],x]"2,{x,0,L}]-
Integrate[pd*w3,{x,L/2,L}];
F=Expand[F];
Solve[{D[F,C1]==0,D[F,C2]==0,D[F,C3]==0,D[F,C4]==0},
{C1,C2,C3,C4}]
w3r=w3/.%//First

x2(-L+§<) (C1+C22x+C?3x +C4x)

3 pd pd 33 pd
f{c1 S , G2 -GS ,
6144 El 256 Elll024 ElL 2

C4 -;1_1_p9'---}}

512 l::BI L

2, 83 pd pdx E33pd>‘? 11pd)x

X61\44 El 25616&}[ EIL ng El L3

o Graphs of the three approximations

X2 (-L+

Since the 1st order and the 3rd order Ritz approximations are almost identical, we can say that the

deflection of a beam can be obtained using rather few terms of a polynomial with sufficient
accuracy.
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Plot[{wOr/{pd->1,El->1,L->1},
wir/{pd->1,El->1,L->1},
w3r/.{pd->1,EI->1,L->1}},{x,0,1}]

0. 0012}
0. 001 ¢
0. 0008t
0. 0006
0. 0004 ¢

0. 0002

0.2 0.4 0.6 0.8 1
-Graphics-

B Example of a Plane Frame Structure

In above, we present examples of a beam that can be analyzied by the method studied in ME210.
Here we shall provide an example of the plane frame structure, shown in the following figure,
that might not be solved by the method studied in ME210.

<4— L —»

v D v
— A WY

Ry

The frame structure consists of three beams, the length of which is the same, say L. At point A,
it is fixed, i.e., the deflection and rotation ( the slope of the deflection ) are constrained to be zero,

while it is supported by a hinge at D. A uniformly distributed logdigoapplied along the
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member AB. Since this is a plane frame, we must consider at least bending and axial
deformation. Shear effect can be neglected, and torsion is not involved. We shall obtain the

reaction forces Rand F§, at the hinge support D using the energy method, more precisely, by

applying the second Castigliano theorem. Noting that point D is supported by a hinge, both x
and y components of the displacement are zero, the Castigliano therem implies that

* *

5X=6L:0 and 6y:aL:O

o0R, oR,
where U* is the total complementary strain energy that must be the same with the total strain
energy for any linearly elastic structure :

s =0 2lim2 2 0
=2 Bl w ), e

Here n is the total number of members consisting of a given frame strugtisréhe length, M

is the bending moment,; N the axial force, Elis the bending rigidity, EAs the rigidity of

member i in the axial deformation, and s is the coordinate defined in each member along the beam
axis. Noting that the axial force and bending moment are given by

O0-R in member CD
N = ER in member BC
ER in member AB
and
H
EJ—R;, in member CD
M=RL-Rs in member BC
O
RL-RyL+ RLxs+(pLOs)§ in member AB

we can set up the followingathematicgorogram to find the reactions at D :
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N1=-Ry;

M1=-Rx*s;

N2=RX;

M2=-Rx*L-Ry*s;

N3=RYy;

M3=-Rx*L-Ry*L+Rx*s+(p0*s)*s/2;

UN=(Integrate[N1"2,{s,0,L}]+
Integrate[N2"2,{s,0,L}]+
Integrate[N3"2,{s,0,L}])/(2*EA);

UM=(Integrate[M1"2 {s,0,L}]+
Integrate[M2"2,{s,0,L}]+
Integrate[M3"2,{s,0,L}])/(2*El);

deltax=Simplify[D[UN+UM,RXx]]

deltay=Simplify[D[UN+UM,Ry]]

Solve[{deltax==0,deltay==0},{Rx,Ry}]

{Rx,Ry}=Simplify[{Rx,Ry}.%l//First]

@)Jgs L (-(L p0) + 40 Rx + 24 Ry)
EA 24 El
General::spelll:

Possible spelling error: new symbol name "deltay”
is similar to existing symbol "deltax".

2LRY’ L (-(Lp0) +6 Rx +8Ry)
EA 6El

Rx 520+ 2 cEIf2EAL)

(-6 BA’L pO+BEAL (3EI+5EAL)p0)/
GBEAL (-B8EI -672EABIT - 176 EA L)),
Ry->-(BBA L p0+ 8EAL{3El+5EAL)p0)/

(-286°El - 672 A EIE Y176 EA L)}

{ EAL (3EI-4EAL)pO
4(18%E +42EAEIT $11EA L)
EAL (12 EI+47 EAL)pO
8 (18l +428AEIT 3 11EA L)
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M Examples in ME305

n
A
O @)
4 3
2 > ¢
1 2
O O
¢ 2 —p

We shall make an analysis of finite element interpolation error of the 4 node quadrilateral element
for plane problems using Taylor's exansion of an arbitrary functiotMgthematica

2 2

di0)= 3y (09 (0 1 2950+ of(s -3 01

=02 (SO,to)

The shape functions of the 4 node quadrilateral element are

Ni(st)=—(2-9)-t) . Np(st)=-(1+s)1-t)

Na(st) =

AP B
N N

(1+s)(1+t) : Ny(st)==(1-s)(1+t)

Then the first derivatives of the interpolation error may be represented by
4

4
TN TP 08 gy 0
0s ;QZ(SltI) 0s (S,t) s ) ot ;QZ(S!tI) ot (S,t) 3
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gT2=Normal[Series[g[s0,t0],{s0,s,2},{t0,t,2}]]
gl=gT2/.{s0->-1,t0->-1};
g2=gT2/.{s0-> 1,t0->-1};
g3=gT2/{s0-> 1,t0-> 1};
g4=gT2/{s0->-1,t0-> 1},
gv={g91,92,93,94};
SF={(1-s)*(1-t)/4,

(1+s)*(1-t)/4,

(1+s)*(1+t)/4,

(1-s)*(1+t)/4}
deds=Simplify[gv.D[SF,s]-Derivative[1,0][g][s,t]]
dedt=Simplify[gv.D[SF,t]-Derivative[0,1][g][s.t]]

als, t] + (-s +(s]()% [s, ] +
(s+ ) 5.1,
2

t+10) QY 5,9+ (s + %Py 5.0+
s+ %Y s,
2 -+

0,2 2
(_t + tg) g\ 2)[5, t] (‘.-S +§6} g) [S, t] +

s+ &% s, g
24

@, 0- %R q-25 6%, q-
s@%s, q+s2 §s. )12

General::spelll:

Possible spelling error: new symbol name "dedt"
Is similar to existing symbol "deds".

2195, 9+, 9-% § Vs 1
t1d%%s. 1+ € 1 8%s, 1) 12

For the geometry described in the following figure, we shall consider the case of pure bending
chracterized by the deformed configuration shown in the figure using the bold face. We shall

compute the normal strains, @nd §, and shear strainyg, of this deformation, and the

normalized strain energie§(,,lly, and ;(y, due to these three strains with respect to E/(1-v*2),
where E is Young's modulus and v is Poisson's ratio. After obtaining these strain energies, we
shall plot the ratio)gyll x With respect to the element geometry aspect rgth;(h
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4 3
h
y 1 \I\
o —

xv={0,hx,hx,0}

yv={0,0,hy,hy}

jac={{xv.D[SF,s],yv.D[SF,s]},
{xv.D[SF.,t],yv.D[SF,t]}};

MatrixForm[jac]

jacobian=jac[[1,1]]*jac[[2,2]]-jac[[2,1]]*jac[[1,2]];

jacinv=Simplify[Inverse[jac]];

MatrixForm[jacinv]

uv={-a,a,-a,a}

duds=Simplify[uv.D[SF,s]];

dudt=Simplify[uv.D[SF,t]];

vv={0,0,0,0}

dvds=Simplify[vv.D[SF,s]];

dvdt=Simplify[vv.D[SF,t]];

ex=jacinv[[1,1]]*duds+jacinv[[1,2]]*dudt;

ey=jacinv|[[2,1]]*dvds+jacinv|[[2,2]]*dvdt;

gxy=jacinv[[1,1]]*dvds+jacinv[[1,2]]*dvdt+
jacinv[[2,1]]*duds+jacinv[[2,2]]*dudt;

ex=Simplify[ex]

ey=Simplify[ey]

gxy=Simplify[gxy]

Ix=Integrate[(ex"2)*jacobian,{s,-1,1},{t,-1,1}];

ly=Integrate[(ey”2)*jacobian,{s,-1,1},{t,-1,1}];

Ixy=Integrate[(gxy”2)*jacobian,{s,-1,1},{t,-1,1}];

Ix=Simplify[Ix]

ly=Simplify[ly]

Ixy=Simplify[Ixy]

pr=0.3;

d33=(1-pr)/2;

Plot[(d33*Ixy/.{hy->x*hx,a->1})/(Ix/.{hy->x*hx,a->1}),
{x,0.5,4}]

{0, hx, hx, 0}
{0, 0, hy, hy}
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hx (1 - t)+ hx (1 +t)

4 4

©
0

©
o

©
N

0
hy(l-s)r hy (1 + s)

4 4

-Graphics-



