Final Examination
MEAM 501 Analytical Methods in Mechanical Engineering

1997 Fall

1. State the following definitions, properties, and/or concept ( 40 points ) :

(1) Define the Lagrange interpolation of a funcfialefined on an intervai(b) by
usingn+1 pointsxy,...., X,+1 0[a,b]. State clearly major properties of the basis
functions of the Lagrange interpolation.

Within a given interval (a,b), we place n+1 points, sqyx,,....., X,+1, and using the
values f; = f(xi) of the given functiori(x) at these points, we approximate the function
f by an degree polynomial, :
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The basis functions;(x) have the following properties :

1) they aren degree polynomials

and
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(2) State the property of the Legendre polynomilas defined on the interval (-1,1) ?

1
They are orthogonal with respect to the inner pro@ifia) :J'f(x)g(x)dx, and they
-1

are obtained from the set of polynomial basis funct{dns, X2, X, e X, } by
Gram-Schmidt orthogonalization process .

(3) Are the two functiond;(x) = x +1and f,(x) = sin(tx) orthogonal in an interval
(0,2) ? If not, orthogonalize them by adding an appropriate constant or polynomial to
the function f; . From these make up two orthonormal basis functions.

(1, ) = J'Ol(x +1)sin(Tx)dx :J'ol(x + 1)ﬁ~ldicos(nx)gdx
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fi=f+k=x+1+k
to orthogonalize. In deed,
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that is

k=-2,
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Therefore, f; = f +k=x —% and f, =sin(rx) are ortogonal.

(4) What is the trazoidal rule of numerical integration of a func¢tamman interval
(a,b) ? What is the order of quadrature error in terms of the length of the interval
h=b-a.

x=b b-a

f(x)dx = T(f(a) + f (b))

X=a

The Taylor expansion

yields
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= f(x) - > f*(x)(a-x)(b-x)
Integration of this over the interval implies

D=2 ¢()+ (b)) = [ T () -2 [ T (x)(a-x)(b- x)d
—5 (1@ 1(0))= [ F(x)dx =2 [ "(x)(a-x)(b-x)dx

Thus, the quadrature error is propotional to the cubic power of the length of the interval
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(5) What is the two point Gauss-Legendre quadrature of a furiciioan interval (-
1,1) ?

Using the two quadrature poinis\/i§ which are the two roots of the second degree

Legendre polynomial, and the associated weights 1, we form the quadrature :

ﬁ (x)dx = f%%§+ f%\%@

This rule can integrate upto cubicr{ 21 degree ) polynomials exactly, wheris the
number of quadrature points.

(6) What is the Bezier spline of a curve usirg control pointsx, ..., X+, O[a,b] ?

The Bezier curve characterizedipyl control points of a characteristic polygon is
defined by

n+1
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where x; are the coordinates of the control points and the paratriete0, 1 ].

(7) State the minimum principle ?
Equilibrium is attained at the minimum point of the corresponding quadratic functional.
For example, the equilirium represented by a system of linear equations ( or matrix
equation ) :

Ax=Db

for a symmetric matrixd, we can define the minimization problem equivalent to this
equilirium :

minixTAX -x'b
x 2

If the matrixA is nonnegative in the sense that

xTAXx =0 , OXx,

both are equivalent. That is, the solution of the system of linear equation is the
minimizer of the functional, and also the minimizer of the functional is a solution of the
system of linear equations.



2. Obtain the first variation of the following functional, the necessary conditions,
Euler's equation, and the natural boundary condition ( 20 points ) :

I(v) = % IO{(a0 +aysn(nmd)(v)? + 0 o+ ;klv J'fvdx Rv(0) - Rv()
K=V

V ={v: piecewise continuously differentiable functionson (0,1)}

The necessary condition can be obtained as follows :

3J(v) = %éj’:{(ao + gy sin(nmx))(v)? + xv2} dx + % kyOv(1)? - 6J'Olfvdx - Rdv(0) - Bdv(1)
= % Ol{(ao +ay sin(nTx))3(v)? + x6v2} dx + kyv(1)dv(2) —J;)lfévdx - Rov(0) - Rdv(1)
= J;)l{(ao + ay sin(nTX))V 8V +xvdv} dx + kyv(1)3v(1) —J'Olfévdx - RV(0) - V(1)
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+igV(D)dv(1) - Rydv(0) - RdV(2)
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Thus, Euler’s equation and the natural boundary conditions are obtained as follows :

Ha0+alsm(nnx))%g+XV—f in (0,2)

(a0 + alsin(nn))%(l) +kv() - R =0

av
0)+PR, =0
aodx() 0

3 Solve the minimization problem by the Ritz method with a single term ( 20 points ) :

min  J(V)
suchvthat

v(0)=v(1)=0
where



J(v) = %J'l(v')zdx —J':2vdx.

0

Noting that@(x) = x(x —1) satisfies the essential boundary conditions ( constraints ) at
x =0 and 1, we approximate the solution by the Ritz metod

v(X) = c@(x) = cx(x - 1)
where c is determined to be minimizing the functional
14 2 1
I(v) = Jy(c) = EI ({ cx(x - 1)}) dx —IZCX(X - 1)dx.
0 0
Noting that

1 ot 2 !
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1() > lo( ) Io( )

and the necessary condition of the minimization
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4. Consider a curve defined by
[x = coy(0)
/= sin(0)
Hr=6/2m



using a parameté such tha® [1(0,2m) whose profile is shown in the following
figure. ( 20 points )

(1) Obtain the expression of the tangent vetctor

t= {(_Sine)éx +(cosB)g, + éz}/\ 1+ lengz

(2) Obtain the normal and bi-normal vectorandb, respectively.

t

= g? :{(—cose)éx + (‘Sme)éy}
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:{(sine)éx +(—COSe)éy +éz}/\1+ EQ];-EZ

(3) Obtain the total length of this curve ?
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