Solution of Homework #1, Fall 1998
MEAM 501 Analytical Methods in Mechanics and Mechanical Engineering

Consider the static equilibrium equation of an elastic string supported by distributed
springs, whose spring constant is k per unit length, and spanned by a tensile force T

with a possibly distributed force f:
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(1) Applying the boundary condition
u(O) = u(L) =0

derive a discrete system by using the weighted residual method together with the

functions

which approximate the trial function space U and the test function space W, respectively.
Here, it is noted that any linear combination of the functions f, satisfies the boundary

condition, that is, a candidate solution

n
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j=1
satisfies the boundary condition u(O) = u(L) =0 apriori.

Multiplying arbitrary basis functions y i(X) for a weighting function ( or of the test

function space W), we have
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we have a system of linear equations ( a discrete problem/system ) :
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(2) Obtain the stiffness matrix K and the generalized force vector f:
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Using the MATLAB program

L=1;
T=1;
m=10;
n=7;



KG=zeros(mn);
fG=zeros(m 1),
dx=L/ 100;
x=0: dx: L;
i n=si ze(x, 2);
for i=1:m
for j=1:n
Kij=(T*(j*pi/L)"2+exp(-x)).*x.~(i-1).*sin(j*pi*x/L);
fi=(1+sin(3*pi*x/L)).*x. ~(i-1);
KQi , j)=0.01*sun(kij)-0.005*(Kkij(1)+kij(in));
f G(i)=0.01*sun(fi)-0.005*(fi(1)+fi(in));
end
end
KG
fG

for m =10, n = 7, we have the following matrix K and vector f :

KG =

6.6780 0.0981 18.9790 0.0499 31.4379 0.0333  43.8667
3.3204 -6.3334 9.4596 -12.5783 15.6996 -18.8129 21.9193
1.9676 -6.3482 9.0306 -12.5802 15.4440 -18.8135 21.7371
1.2939 -5.3855 8.8194 -12.1015 15.3169 -18.4948 21.6462
0.9121 -4.4202 8.2389 -11.6231 149470 -18.1763 21.3778
0.6759 -3.6217 7.4732 -11.0459 14.4557 -17.7695 21.0206
0.5200 -2.9904 6.6761 -10.3697 13.8788 -17.2743 20.5879
0.4119 -2.4953 5.9245 -9.6389 13.2340 -16.7068 20.0863
0.3341 -2.1051 52481 -8.8982 12.5430 -16.0825 19.5254
0.2762 -1.7947 46536 -8.1791 11.8292 -15.4172 18.9160

1.2120
0.6060



0.4346
0.3489
0.2924
0.2505
0.2177
0.1914
0.1700
0.1522

(3) Solve the matrix equation
Ku=f
by using, for example, MATLAB with the command
pinv(K)
that takes the pseudo-inverse (or generalize inverse ) of the matrix K. In

MATHEMATICA the pseudo-inverse is taken by Pseudolnverse[K]. That is, solve the

matrix equation by

u=K"f

where K" is the pseudo-inverse of K which is a generalized inverse of a standard
square matrix to a rectangular matrix. At this moment, please not make any question

on the pseudo-inverse. We shall discuss this more details later when the singular value

decomposition of a rectangular matrix will be studied. Make comparison the solutions

for

m n
10 7
7 7
5 7




j m=10 m=7 m=5

1 0.1214 0.1214 0.1214
2 -0.0003 -0.0004 -0.0003
3 0.0163 0.0162 0.0141
4 -0.0002 0.0000 -0.0003
5 -0.0015 -0.0010 0.0044
6 0.0001 0.0000 0.0001
n=7 0.0031 0.0029 -0.0001
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(4) If we assume fj(x)zsingjp%g’, then L(fj), L=-Td—2+k, are infinitely

dx

many times continuously differentiable on the interval (0,L). Thus, we may take

the functions for the test function space:

where dXi is the Dirac delta function at a point X;. In this case, the weighted residual

method yields the collocation method. Repeat (3) for this choice by setting up the
sampling points X; from the interval (0,L) with equal distance of adjacent sampling

points.

Using the following MATLAB program



m=10;
n=7;
KG=zeros(m+2, n);
f G=zeros(m+2, 1) ;
dx=L/ (m+l);
x=0: dx: L;
i n=si ze(x, 2);
for j=1:n
K&:,j)=((T*(j *pi/L)"2+exp(-x)).*sin(j*pi*x/L))";
end
fG=(1+sin(3*pi*x/L))";
KG
fG
uG=pi nv(KG *f G
fj=zeros(in,n);
for j=1:n
fj(o,j)=sin(j*pi*x/L)";
end
u=fj *uG
pl ot (X, u)
title('profile of the solution u for mF10 & n=7")
xl abel ("' x")

yl abel (" u")

we have

i m=10 m=7 m=5

1 0.1206 0.1198 0.1186
2 -0.0004 -0.0004 -0.0004
3 0.0156 0.0153 0.0149
4 0.0000 0.0000 0.0000
5 0.0008 0.0007 0.0001
6 0.0000 0.0000 0.0000
7=n 0.0002 0.0001 -0.0001




(5) If we change the boundary condition to

u(0)=0 and gi( )=0

that is, the elastic string is supported at x = 0, but the symmetry condition is applied at
x = L, i.e., the slope of the string becomes zero at x = L. In this case, the choice of sine
function as in (1) is not appropriate, because of the symmetry boundary condition. If we

choose

derive the discrete problem. It is noted that the degrees of freedom, that is called the

generalized displacement, must satisfy the boundary condition:

d df 8 1 B _ 5o
au;—— dx aJUjX =0 at x=L ,thatis a juL =0
=1 j=1 j=1

Thus, this becomes a constraint while we solve the matrix equation Ku =f . To avoid

this constraint, we may make modification to the weighted residual form:
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by applying the integration by parts. Then the boundary condition, especially, the

symmetry boundary condition is applied to the first term, that is,

_\Lae d?u du Lee du dw
(Lu)- f, W—Qg T 2+ku f;jwdx T&(O) w(0) + Qgﬁ'&—x+kuw fwédx

and then we need not introduce an additional constraint to satisfy the symmetry

condition. Using this framework, repeat (3).

In order to deal with the boundary condition involving the first derivative of the solution
u, we prefer the form after applying the integration by parts ( or more generally the

divergence theorem for multiple space dimensions ).

In order to simplify more, we would assume
w(0)=0 ie. y,(x)=x" , i=12..,m
then we have

(L{u)- f,w)= aﬁ"d—Ud—+kuw- fwSax
dx dx @

Using the MATLAB program

L=1;

T=1,

m=5;

n=7;
KG=zeros(mn);
f G=zeros(m 1);
dx=L/ 100;

x=0: dx: L;

i n=si ze(x, 2);



for i=1:m

for j=1:n
Kij=T*i*j*x.~M(i-1).*x."(j-1)+exp(-Xx).*x."i
fi=(1+sin(3*pi*x/L)).*x."i;
KGi,j)=0.01*sun(kij)-0.005*(kij(1)+kij(in));
fQ(i)=0.01*sun(fi)-0.005*(fi(1)+fi(in));

end

end

KG

fG

uG=pi nv(KGQ *f G

fj=zeros(in,n);

for j=1:n
FiCo,i)=(x.")";

end

u=fj *uG

pl ot (X, u)

title('profile of the solution u for me10 & n=7")

xl abel ("' x")

yl abel (" u")

we have

CEXGN G

i M=10 M=7 M=5

1 0.9974 1.0063 1.1025
2 0.3221 0.1486 -1.3431

3 -7.3551 -6.2620 1.0096
4 19.04841 | 15.9451 0.3846
5 -20.8524 -16.3045 -0.4784
6 9.8063 6.5644 -0.5301

7=n | -1.4969 -0.5922 0.3604




