
Review Problems for the Final Examination
MEAM 501   Analytical Methods in Mechanical Engineering

1997 Fall

1.   State the following definitions, properties, and/or concept :

(1)   What is the Lagrange interpolation of a function f defined on an interval (a,b).

(2)   What is the Legendre polynomilas defined on the interval (-1,1) ?

(3)   What is the Chebyshev polynomilas defined on the interval (-1,1) ?

(4)   What is the Hermite polynomilas defined on the interval −∞ ∞( ),  ?

(5)   What is the Lagerre polynomilas defined on the interval 0,∞( ) ?

(6)   Obtain the 2 point Gauss-Legendre quadrature to integrate a function defined on
the interval (-1,1), that is, obtain the quadrature points and the associate weights.

(7)   Obtain the 3 point Gauss-Lagerre quadrature to integrate a function defined on the
interval 0,∞( ), that is, find the 3 point quadrature points and associated weights.

(8)   Integrate by using a numerical method to integrate
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with the accuracy of 10 6− .

(9)   What is the cubic Hermite interpolation of a function f defined on the interval (0,1)
?

(10)   What is the Bezier spline approximation of a curve ?

(11)   What is the B-spline approximation of a curve ?

(12)   What is the minimum principle ?

(13)   What is the trapezoidal rule ?

(14)   What is the Simpson rule ?

(15)   What is the exponential transformation for quadrature ?

2.   Obtain the first variation of the following functionals, the necessary conditions, and
Euler’s equations on the admissible set K :
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3   Solve the minimization problem by the Ritz method :
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4.   Consider a curve defined by
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using a parameter θ such that θ π∈( )0 2, .

(1)   Obtain the expression of the tangent vector t.

(2)   Obtain the normal and bi-normal vectors n and b, respectively.

(3)   What is the total length of this curve ?


