Solutions of Review Problems for the Final Examination
MEAM 501 Analytical Methods in Mechanical Engineering

1997 Fall

1. State the following definitions, properties, and/or concept :
(1) What is the Lagrange interpolation of a function f defined on an interval (a,b).

Within a given interval (a,b), we place n+1 points, sqyXx,,....., X,+1, and using the
values f; = f(xi) of the given functioff(X) at these points, we approximate the function
f by an degree polynomiaf, :

n+1 n+l

9=y 1K L=,
1=1 =1 !

(2) What is the Legendre polynomilas defined on the interval (-1,1) ?

Legendre polynomial®,(x), n=0,1,2,....., are obtained by the orthogonalization of
the polynomial basis functior{i X, X2, ...... } with respect to the inner product

(1.9)= [ 10l

together with an appropriate normalization. Using the generalized Rodriguez formula,
they can be written by

()= O )

2"nl dx

and they satisfy the differential equation
gl d—PD— n(n+1)P,
"~ dx

That is, the Legendre polynomials are the eigenfuctions of the differential operator

gl dw B
"~ dx dax B

associated with the eigenvalu&8+1).

Legendre Polynomials
In[1]:=
LP=Table[(-1)*n/(2"n*n!)D[(1-x"2)"n,{x,n}],{n,0,10}];
LP=Simplify[LP]
Out[2]=
2 2 2 4
-1+3x x(-3+5x) 3-30x +35x



2 4 2 4 6
X(15-70x +63x) -5+105x -315x +231x

2 4 6
X (-35 + 315 X - 693 X + 429 X )

2 4 6 8
35-1260 x +6930 x - 12012 x + 6435 x

2 4 6 8
X (315 - 4620 x + 18018 x - 25740 x + 12155x)

128
2 4 6 8
(-63 + 3465 x - 30030 X + 90090 x - 109395 x +
10
46189 X ) / 256}

In[3]:=
Plot[Release[LP],{x,-1,1}]

Out[3]=
-Graphics-
In[4]:=
LegendreP[2,x]
Out[4]=

2

(3) What is the Chebyshev polynomilas defined on the interval (-1,1) ?



Legendre polynomial®,(x),n=0,12,....., are obtained by the orthogonalization of
the polynomial basis functior{i X, X2, ...... } with respect to the inner product

(f.9) =I_11\,,1fxz f(x)g(x)dx

together with an appropriate normalization. Using the generalized Rodriguez formula,
they can be written by

-)"nl n 1o
Pn(x):( ) n'\l—xzd—ngl—xz)n 2
! d &
and they satisfy the differential equation

2
(1— x2)ﬁ - x% +n?P, = 0.
dx? dx :

(4) What is the Hermite polynomilas defined on the intefval «0) ?

Legendre polynomial®,(x),n=0,1,2,....., are obtained by the orthogonalization of
the polynomial basis functior{i X, X2, ...... } with respect to the inner product

(f.9) =J'w exp(-x2) f(x)g(x)cx

—00

together with an appropriate normalization. Using the generalized Rodriguez formula,
they can be written by

dl’l

—(_1\n 2 2
P.(x)=(-2) exp(x )—dxn[exp( X )]
and they satisfy the differential equation

AR 5 R
dx? dx

+2nk, =0.

(5) What is the Lagerre polynomilas defined on the intefgab) ?

Legendre polynomial®,(x), n=0,1,2,....., are obtained by the orthogonalization of
the polynomial basis functior{i X, X2, o, } with respect to the inner product

(f,0) = Iooéxp(—x)f(x)g(x)dx



together with an appropriate normalization. Using the generalized Rodriguez formula,
they can be written by

R = Serp(x) X" exp(-x)

and they satisfy the differential equation

d’p, drP
X +(1-x)—2+nkR, =0

(6) Obtain the 2 point Gauss-Legendre quadrature to integrate a function defined
on the interval (-1,1), that is, obtain the quadrature points and the associate
weights.

The quadrature points are identified with the roots of the second degree Legendre
polynomial :

_(-1)? d? 2ol 2
P(x) = o ﬁgl x) @__( 1+3x)
that is
P2(x):—(—1+3x2):o o x=t L
V3
i.e.
1 1
X1 _ﬁ and X2_+ﬁ'

Noting that the quadrature is defined by

J’_li(x)dx = iwi F(x) = Wit (xg) +ws f ()

and noting that this quadrature can integrate the polynomial 1 exatttly, we have the
following relation :

1
IldX:W1+W2 =2
-1

! 1 1
IXdX:W1§T§+W2§+T§:0 =Y Wl:WZ
-1 ,\/'3 ,\/’3

Therefore, the weights are obtained as

Wl:W2:1.



(7) Obtain the 3 point Gauss-Lagerre quadrature to integrate a function defined on
the interval (0,), that is, find the 3 point quadrature points and associated
weights.

We extablish the 3 point Gauss-Lagerre quadrature to integrate

+0o
J'Oexp(—x) f(x)dx = wy exp(—xq) (%) + W exp(=x;) f (%o) + Wy exp(—x3)  (x3)
by using the roots of the third degree Lagerre polynomial
32 13
Py(X) =1-3x+—-X"—=X
44 >3-

as the quadrature poing, X,, and x5, that is

In[11]:=

NSolve[LaguerreL[3,0,x]==0,x]

Out[11]=

{{x -> 0.415775}, {x -> 2.29428}, {x -> 6.28995}}

This means that the three quadrature points are given by

X1 =0.415775, x, =2.29428, and x5 =6.28995.

Then the weights would be determined so as to

+o00

J'exp(—x)ldx = wy exp(—xq) + W exp(=Xy) + Wz exp(-xs)
0

+00

J'exp(—x)xdx = wy exp(—xq ) Xg + Wy exp(—X; )Xo + Wa exp(—Xg) X3
0

Ig;p(—x)xzdx = wy exp(—xq) %, + Wy exp(=xz )% + Wz exp(—x3) x5
0

Using MATHEMATICA

In[12]:=

x1=0.415775;

X2=2.29428;

X3=6.28995;

P1=Integrate[Exp[-x],{x,0,Infinity}];

P2=Integrate[Exp[-X] x,{X,0,Infinity}];

P3=Integrate[Exp[-Xx] x*2,{x,0,Infinity}];

NSolve[{P1==w1*EXp[-x1]+W2*EXxp[-x2]+W3*EXp[-Xx3],
P2==w1*EXp[-X1]*X1+W2*EXp[-x2]*x2+W3*EXp[-x3]*X3,
P3==w1*EXp[-x1]*x1"2+W2*EXp[-x2]*x2"2+W3*Exp[-x3]*x3"2},
{wl,w2,w3}]

Out[18]=

{{wl -> 1.07769, w2 -> 2.76214, w3 -> 5.60113}}



we can obtain the weights :
w; =1.07769, w, =2.76214, and w; =5.60113.
Therefore

¥, = 0415775, X, =2.29428, and X3 = 6.28995
w, =1.07769, w, =2.76214, and W, =5.60113

(8) Integrate by using a numerical method to integrate

woexp(-x?)sinx
| e

with the accuracy oip=*.

dx

n=100;

Xmin=-5;

Xmax=5;

h=(xmax-xmin)/n;
x=xmin:h:xmax;
f=(exp(-x."2).*sin(x))./(1+x."2);
plot(x,f)

title('Profile of the Function’)
xlabel('x")

ylabel('y")
I=h*(sum(f)-(f(1)+f(length(f)))/2)

Profile of the Function
0.3 T

0.2

-0.2

-0.3



Since the given function is anti-symmetric<a0, the value of interal must be zero.
Applying the extended trapezoid rule, we have

| =
4.4563e-17

(9) What is the cubic Hermite interpolation of a function f defined on the interval
0,1)?

The cubic Hermite interpolation is defined by a cubic polynomial :

(=11 t Eaz%
{ v} 0
ENS
where g@are coefficient of the bas{it t2 t3} of cubic polynomials. Let the degrees
1) 2) _
of freedom be given b f ,Edf d ,f ’[pif d O Wheref(') is the value of at
ST 0atD H

nodel. Then the coefficient vector a is related to the degrees of freedom as follows :

O +@ O lD O O
0 0 -1 0
TaD 0_@ 1 0 OghH - FH ® 1 0 05 MgO O
0, 0= 0 ie [ 0= 0 () O
0o f® 50O 1 1 i0mp feg @11 10 g i@ g
0 2)
g 20 10 1 2 3fff @4@%)1235%@5
dt U H dt U H

Therefore, the basis (i.e. blending ) functionis{t) }of the cubic Hermite
interpolation are obtained as

[ O
fh(t)={1 t 2 ts}%iz@
[fs80
ENE
= £ D
0 0O El:plfdl

(S HLEI A
=)
=)
E%

1 2 34 %ﬁ
={Hy(t) Ha(t) Ha(t) Ha(t)} dt U H

where



H,(t) =1-3t% + 23
Ha(t) =t(1-1)
Ha(t) = 3t% - 23
H,(t) = t?(=1+1)

(10) What is the Bezier spline approximation of a curve ?

The Bezier curve characterized byl control points of a characteristic polygon is
defined by

n+1
0= B with O _1)|(2’_i ey
4 | |

where{ri} are the coordinates of the control points and the parakhiéted, 1 ].

(11) What is the B-spline approximation of a curve ?

The B-spline is introduced to confine the effect of change of the location of a control
point in the localized neighborhood, while other curves defined by e.g. Bezier splines
are globally affected by a local change of control points. To do this, a curve is
generated by

n+1
r(t) = Z r'NK(t)
1=1

where Nik(t) are the blending functions for the B-spline curve defined by the following
recursive formula :



M if t<t<ty

NL(t) =
i ® otherwise

NK(D) = =N |, i ~ONET) k=1
tik-1-F Gk —tivg

tO[0,n—k+2]

i=1...,n+k+1

if i-1<k
~k if k<i-1<n+1
Fh-k+2 if n+1<i-1

ti:

Here we have used the conventi(%w =1.

(12) What is the minimum principle ?
Equilibrium is attained at the minimum point of the corresponding quadratic functional.
For example, the equilirium represented by a system of linear equations ( or matrix
equation ) :
Ax=Db
for a symmetric matrixd, we can define the minimization problem equivalent to this
equilirium :
.1
min=x"Ax - x"b
x 2

If the matrixA is nonnegative in the sense that

x'Ax=0 , O,
both are equivalent. That is, the solution of the system of linear equation is the

minimizer of the functional, and also the minimizer of the functional is a solution of the
system of linear equations.

(13) What is the trapezoidal rule ?

Integration of a functiohover an intervaldb) is approximated by the area of a
quatrilateral formed b, b, f(b), andf(@) :

I :J'bf(x)dx = E(f(a) + (D))

2

Integration error is approximately evaluated as

E=-2(b-a°r'(F) , £0(ab)



(14) What is the Simpson rule ?

| :J:)f(x)dx = %@f (a) + 4f E%b% ()

and the error is approximated by

1 5
Ex-——(b-a)’f"" , ¢0(ab
S5opP-a T (€) .+ £0(ab)
Idea of the Simpson rule is that a given function f is approximated by a quadratic

polynomial in the interval (a,b) by using the valugg), fm2 bry and f(b). More

D’
precisely,
()= f(@)ls=1+ 12 2H1-)+ 1(b) Zo{s+1)
with
atb b-a
X = + S
2 2
and then

|:Ij(x)dx=IbEf( os-1)+ 12 gl— )+ (o) s(s+1)§p|x

:J'llg (@)= s(s 1) +f gl— )+f s(s+1)§|¥ds

Qf 4fEﬁl bry, =+ f(b)5
(15) What is the exponential transformation for quadrature ?

2. Obtain the first variation of the following functionals, the necessary conditions,
and Euler’s equations on the admissible set K :

1) Jv)= 01{(\/)2 + xv2} dx—J'Olfvdx
K ={vOV:v(0) = v(1) =0}

V ={v: piecewise continuously differentiable functions on (0,1)}



_—5I +xv2 dx—éj'lfvdx
== J' 2 4+ xdv2 dx J' févdx
= 5_[0{ 2V &V +x2vdv} dx —J'OfESvdx
1 1
= J’O {vov +xvdv}dx ~ J’Ofesvdx
=[v v g + ﬁ —V' 3V + xvdv} dx — I v
=[vavT, J’O (-v'+xv—f)dvdx=0 , 0dv st &v(0)=d&v(})=0

that is

1
I (-v'+xv—f)dvdx=0 , Odv st. &v(0)=dv(1)=0
0

From this we can derive Euler’s equation
-V'+xv-f=0 ie -v+xv=f in (0,1

while we do not have the natural boundary condition, since we have constraints at the
both end points.

@ 300 =3 [+ x?axs Zk(0)” - [[fvdx - Py(0)

K=V
=15 I dx += koav -5 I fvdx — P&v(0)
== J’ S dx += I<06v I fdvdx — Pdv(0)

J’ {v &V +xvdv} dx + kyv(0)d J’ fdvdx — Pov(0)
0

=[v 5\,]@ I{ —V" v + xvdv} dx + kov(0)3 I fdvdx — Pdv(0)
0

=V (1)3v(2) - v (0)3v(0) + J'{ —V"' &V + xvdv} dx + kov(0)d J' fdvdx — Pdv(0)

0

1
=V (1)dv(2) +[ -V (0) + kyv(0) P]év J'{—\/'+xv—f}6vdx=0 ., Odv
0



Thus, we have the following Euler equation and two natural boundary conditions at the
both end points :

-v'+xv=f in (0,1
V(1)=0

v (0) =kv(0) - P

(3) zf{ (B1(x P(V)? +K(X)V }dx+%k0v(0)2+%k1\/(0)2

—J’Ofvdx - Fv(0)-Tv (0)
K=V

V ={v: piecewise twice continuously differentiable functions on (0,1)}

1

3J(v) = J’O{(a (X)V*)3v" =P(v)v +k(x)vav} dx + kyv(0)3v(0) + kv (0)3V (0)
- I 1f6vdx - Fov(0) - Tav (0)

=[(B1(0v )V ], +[H(EI vy V], - [P(V)SVc,

+J'01{(EI (V') +(PV) + kv - f}6vdx
+kyv(0)dv(0) + kv (0)dV (0) — Fav(0) — ToV (0)

= (EI()v' (1)av (1) +{-(EI1(0)v" (0)) + k' (0) - T}V (0)
-{(EIv") () + Pv (}v(2) +{(EIv") (0) + PV (0) + ko(0) - F}3v(0)

+J’01{(E| (V') +(PV)+kv—flovdx=0 , Odv

Thus, we can get the following Euler equation and the natural boundary conditions :
(BI(x)v')'+(Pv)+kv=f in (02

EI(Q)v'()=0 ; moment is zero at=1

(ElV')Y()+Pv()=0 ; force balance at=1

EI(O)V'(0)=+kV (0)-T : moment balance &t= 0



(EIv'Y (0)+ PV (0) = -kov(0)+ F force balance at="0

3 Solve the minimization problem by the Ritz method :

min  J(v)
sucf\lthat
v(0)=0

where
1 .1 1
J(v) = EL{(\/)2 + xvz}dx —IOZde-

In the Ritz method, we approximate the minimi¥eand its arbitrary variatiodW by

and

6W:6wn226ci(g(x) st. ¢(0)=0,
=1

and we shall substitute these into the necessary condition ( the first variation must be
zero at the minimizeW ) :

1 1
3I(w) = J’O%%D:%D+ XW,OW, gdx —J'026Wn(x)dx =0 , Odw, st dw,(0)=0

dx L0 dx O
that is
n n B n n H
¢;9; (%) S (X)E+ X ) ;@i (x)0y 86 e (X)Hix
Io X,Z i @Z % ]Zl i) Z =
n
—IZéZéci(ﬁ(x)dx:O 0dc , i=12...n
0 =1
Defining
_ (Ode d9;
N _J.ogd_x ax A9 fix
and



we have

ii&ik”cj - zéq- fi=0, oG,i=12..,n

=1 j=1 =1
that is
n On O
o) kijc; - fil=0 , o ,i=12..,n
1=1 )=1 E
Noting that
ax=0 , Ox = a=0
we have

k”CJ - fi =0 , | =12,...,Nn.
=

Soving this yields the unknown coefficients
Cj ) [ =12,...,Nn.

Once the coefficients are obtained, substitution of these into

we can find an approximation of the minimi¥ér

n=>7;
LP=Table[x"i{i,1,n}];
Plot[Release[LP],{x,0,1},PlotRange->All]
DLP=D|LP,x];
fi=Table[0,{i,1,n}];
kij=Table[0,{i,1,n},{j,1,n}];
Block({i,j},
Doffi[[i]]=NIntegrate[2*LP[[i]],{X,0,1}];
Dolkij[[i,j]]]=NIntegrate[ DLPI[i]]*DLP[[j]]+
X*LP[IFLPI], 0,1}
 Kill 1=l 4,03, 6,2,00)
cj=Inverselkij].fi
wn=cj.LP;
Plot[wn,{x,0,1},GridLines->Automatic]



f___.___ﬂ——
0.&
0.4
0.2
0.2 0.4 n.s n.s 1
Out[101]=

{1.67519, -0.999956, -0.000397617, 0.141285, -0.0538021,
0.00474059, 0.00019126}

4. Consider a curve defined by

k = cos(e + 92)
[y =sin(6) +sin(6?)
Ez= 8/2m

using a parametep such thatg 0(0,2m)-

(1) Obtain the expression of the tangent vegtor
(2) Obtain the normal and bi-normal vectgr@ndp, respectively.

(3) What is the total length of this curve ?

In[40]:=

x=Cos[s+s"2];

y=Sin[s]+Sin[s"2];

z=s/(2*Pi);
ParametricPlot3D[{x,y,z},{s,0,2*Pi}]
dx=DI[x,s];

dy=D[y,s];

dz=DJz,s];
ds=Sqrt[dx"2+dy"*2+dz"2];
LO=NIntegrate[ds {s,0,2*Pi}]
tv={dx/ds,dy/ds,dz/ds}

nO=DJtv,s];
n1=Sqrt[nO[[1]}"*2+nO[[2]]"2+nO[[3]]"2];
nv=n0/n1



Out[43]=
-Graphics3D-
NIntegrate::ncvb:

Nintegrate failed to converge to prescribed accuracy

after 7 recursive bisections in s near s = 4.83511.

Out[48]=
41.7097 ....... Total Length of the Curve
Out[49]=

2
{-(@+2s)Sin[s+s])/

1 22
Sqrt[----- + (Cos[s] + 2s Cos[s]) +

2 22
(1+2s) Sin[s+s]])),

2
(Cos[s] +2s Cos[s])/

1 2 2
Sqrt[----- + (Cos[s] + 2s Cos[s]) +
2
4 Pi

2 22
(1+2s) Sin[s+s]],

1 2 2
1/ (2 Pi Sqrt[----- + (Cos[s] + 2s Cos[s ]) +
2

4 Pi

2 22
(1+2s) Sin[s+s]])}



Output of the normal and binormal vectors are more
or less non-sense. Thus, | will not put them.



