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(1) Consider the real function fc : R Ñ R given by fc : x ÞÑ x2 ` c where c P R is a
parameter.

(a) For c P r´2, 1{4s, show that there is some closed interval Ic Ď r´2, 2s, depending
on c, so that fcpIcq Ď Ic.

(b) Show that the real map x ÞÑ x2 ´ 1 has an attracting cycle of period 2.

(c) For c ą 1{4, show that the orbit of every x0 P R is unbounded.

(d) What happens for c ă ´2? Is the orbit of every point x0 P R unbounded?

(2) Write down your own question from class on Day 1 and answer it.

(3) Prove that the group of conformal automorphisms CÑ C, AutpCq, is the affine group
tz ÞÑ αz ` β | α, β P Cu.

(4) Draw your own version of the bifurcation diagram from class on Day 1. How does it
compare to the one you saw in class? If there is a difference, explain it.

(5) Let fc : CÑ C be given by fcpzq “ z2 ` c. Recall that the filled Julia set of fc is

Kc :“ tz0 P C | the orbit of z0 is boundedu.

Prove that Kc is a nonempty, compact subset of C.

(6) Recall that the boundary of the filled Julia set is the Julia set Jc of fc. Prove that
fcpKcq “ Kc, and prove that fpJcq “ Jc.

(7) (a) Prove that the filled Julia set of the map z ÞÑ z2 is the closed unit disk.

(b) Prove that the filled Julia set of z ÞÑ z2 ´ 2 is the interval r´2, 2s.

(c) Prove that the filled Julia set of z ÞÑ z2 ` 10 is a Cantor set.

(8) Let c P C, and consider fcpzq “ z2 ` c.

(a) Prove that if c P R, then

z0 P Kc ùñ z0 P Kc.

(b) Let A : C Ñ C be reflection across the imaginary axis, and let B : C Ñ C be
reflection across the real axis (aka complex conjugation). Prove that

ApBpKcqq “ BpApKcqq “ Kc.



(9) Consider the following candidate definitions from class on Day 1:

M1 “ tc P C | Kc is connectedu

M2 “ tc P C | Jc is connectedu

M3 “ tc P C | Kc has positive Lebesgue measureu

M4 “ tc P C | Kc has nonempty interioru

How are these sets related to each other? (It might help to wait on answering this
question until later in the term).

The Mandelbrot set. Recall the Mandelbrot set

M “ tc P C | Kc is connectedu.

(10) Prove that c PM ùñ c PM.

(11) Prove that M is a compact subset of C.

(12) A complex quadratic polynomial is specified by three complex parameters ppzq “
αz2 ` βz ` γ, where α, β, γ P C. Why can we get away with studying quadratic
polynomials of the form z ÞÑ z2 ` c? Show that any quadratic polynomial ppzq “
αz2`βz`γ is conjugate (via an element of AutpCq) to a unique quadratic polynomial
of the form z ÞÑ z2`c (this means that the c-plane is a moduli space for the quadratic
family).

(13) Noah’s question, Jan 4. The triangles T1 Ď C and T2 Ď C are equivalent if there is
a real affine transformation A : CÑ C so that ApT1q “ T2. A periodic cycle of period
3 for the map fcpzq “ z2` c determines a (possibly degenerate) triangle T Ď C. As c
runs over C, what is the set of triangles, up to equivalence, that arise from periodic
cycles of period 3 of fc? What is the set of triangles, up to equivalence, that arise
from only the attracting cycles of period 3 of fc, as c runs over C?

Postcritically finite. The polynomial f : z ÞÑ z2 ` c is postcritically finite of the
orbit of the critical point z0 “ 0 is finite. That is, f is postcritically finite if the postcritical
set

P “
ď

ną0

fnp0q

is finite.

(14) Prove that there are infinitely many parameters c P C so that fpzq “ z2 ` c is
postcritically finite.

(15) Find all parameters c so that 0 is periodic of period 7 for the map fpzq “ z2 ` c.

(16) Prove that for all n ě 1, the postcritical set of fn is equal to the postcritical set of f .

Gleason polynomials. Write fcpzq “ z2`c. For n P N, consider the polynomial

Qnpcq “ fnc p0q.



The roots of Qn are called centers of the Mandelbrot set. Each center is contained in a
connected component of the interior of M called a hyperbolic component, and each hyperbolic
component contains one and only one center.

(17) Prove that the roots of Qn are algebraic integers.

(18) Prove that the roots of Qn are simple. Here is a start: Note that Qnpcq “ pQn´1pcqq
2`

c, and define Qn P Zrcs to be the polynomial Qn mod 2. Show that the discriminant
of Qn is nonzero, and conclude that the discriminant of Qn must be odd, and in
particular, it is nonzero. This proof is originally due to Andrew Gleason.

(19) Open Problem. Prove or disprove: the polynomial factor of Qn whose roots are
those values of c for which 0 is periodic of period exactly n is irreducible over Z.
What is the Galois group of this polynomial?

Theorem. The topological closure of all of the centers of M contains the boundary
of M.

You can find a proof of this theorem in the paper The Mandelbrot set is universal by C.
McMullen, posted on our course website.

Kneading data. Consider the real polynomial fcpxq “ x2 ` c for c P R.

(20) Show that if c ą 0, then the real polynomial fcpxq “ x2`c is not postcritically finite.
(This might be a little easier a few more classes).

Let fc be a real postcritically finite quadratic polynomial with postcritical set P . Label the
elements of P as follows:

p1 :“ c, and pi :“ f ip0q, 1 ď i ď n.

Define the set Q :“ f´1pP q. Note that P Ď Q, and that Q Ď R. Write the set Q as

Q “ tq´n ă q´n`1 ă . . . , q´1 “ 0 “ q1 ă . . . , qn´1 ă qnu.

Definition. The kneading data of fc is the map

k : t1, . . . , nu Ñ t´n,´n` 1, . . . ,´2, 1, 2, . . . , n´ 1, nu

given by pi “ qkpiq for 1 ď i ď n. We encode this map k with a the vector

xkp1q, . . . , kpnqy.

This is really a vector of information that keeps track of the relative position of the post-
critical points on R.

Basic question we will think about in our class. What kneading vectors arise from
(real) postcritically finite polynomials fcpxq “ x2 ` c?

Necessary conditions. Let’s make some immediate observations about what kneading
data should be allowed:

‚ Distinct postcritical points. The map k : tindices of P u Ñ tindices of Qu should
be injective.

‚ Critical value condition. We must have kp1q “ ´n.



‚ Periodic or Preperiodic? The last entry is either 1 (in the case where the critical
point is periodic), or there is a unique index 1 ď j ă n for which the last entry
kpnq “ ´kpjq. This is saying that if 0 is not periodic, there is a unique point in the
postcritical set that has TWO inverse images pj and pn contained in P . Let’s say
that the kneading data k is periodic if kpnq “ 1, and otherwise, it is preperiodic.

‚ Monotonicity conditions. The kneading data satisfies

|kpiq| ă |kpjq| ùñ kpi` 1q ă kpj ` 1q.

If we begin with an abstract map k : t1, . . . , nu Ñ t´n, . . . ,´2, 1, 2, . . . , nu, we can ask if it
is the kneading vector xkp1q, . . . , kpnqy is associated to a polynomial x ÞÑ x2` c. If yes, then
k must satisfy the conditions above.

Definition. We say that the (abstract) kneading map k is admissible if it satisfies the
necessary conditions above.

(21) Write a computer program that inputs a positive integer n, and outputs a list of all
periodic kneading data that is admissible.

(22) For period 6, list all admissible periodic kneading data.

(23) Find a real quadratic polynomial whose critical point is periodic of period 5, and
compute the kneading vector.

(24) Prove that for all n ě 1, there is a real quadratic polynomial fpxq “ x2` c such that
the critical point x0 “ 0 is periodic of period n.

(25) David’s question from class, Jan 11. Let fpxq “ x2 ` c be a real postcritically
finite polynomial with postcritical set P . Prove that the minimum element of Q “

f´1pP q is equal to c.

(26) Conner’s question from class, Jan 11. Let

k : t1, . . . , nu Ñ t´n, . . . ,´2, 1, 2, . . . , nu

be a map, and let k “ xkp1q, . . . , kpnqy be the associated vector, which may or may not
be admissible. What happens if you try to build a piecewise linear topological map
F : ra, bs Ñ ra, bs using the recipe from class? What happens if you do the iterative
pullback algorithm using the map σk : pr´2, 2sˆ¨ ¨ ¨ˆr´2, 2sq Ñ pr´2, 2sˆ¨ ¨ ¨ˆr´2, 2sq
with the ˘ signs coming from k if k is not admissible?

(27) Build a piecewise linear, continuous map f : ra, bs Ñ ra, bs with the following kneading
sequence x´4, 2,´3,´2y. Can you find a polynomial with this kneading sequence?

Periodic cycles.

Definition. Let f : CÑ C be a polynomial, and let z0 ÞÑ ¨ ¨ ¨ ÞÑ zn´1 be a periodic cycle of
period n. The multiplier of the cycle is λ “ pfnq1pziq.

‚ If |λ| ă 1, the cycle is attracting. If λ “ 0, the cycle is superattracting.

‚ If |λ| ą 1, the cycle is repelling.



‚ If |λ| “ 1, the cycle is indifferent.

(There are analogous definitions if f is a real polynomial).

(28) Show that if zi and zj are any two points in a given periodic cycle of period n, then
pfnq1pziq “ pf

nq1pzjq.

(29) Let f be a real polynomial that maps the interval ra, bs to itself homeomorphically,
and suppose that a and b are not critical points of f . Show that there must be a
periodic cycle of f , contained in ra, bs, that is either attracting or indifferent.

Preperiodic kneading data. From kneading data k, we can construct a model
piecewise-linear map, by interpolating between the points

p1, kp1qq, pkp1q, kp2qq, . . . , pkpn´ 1q, kpnqq

and, in the preperiodic case with kpnq “ ´kpjq, also pkpnq, kpj ` 1qq.

Definition. If k is admissible kneading data, a cycle of intervals is a sequence

pra1, b1s, ra2, b2s, . . . , rak, bksq,

each one mapping homeomorphically to the next by the model piecewise-linear map. A cycle
of intervals is an obstruction if none of the ai or bi are critical points.

(30) Find more examples of obstructed, admissible kneading data.

(31) Show that periodic kneading data can never be obstructed.

(32) Remember the polynomial

Qnpcq “ f ˝nc p0q

from earlier. Suppose fc is a preperiodic polynomial with preperiod k and period `,
so that c is a root of Qk ´Q`.

(a) Show that

Qk ´Q` “ pQk´1 ´Q`´1qpQk´1 `Q`´1q

so c is also a root of Qk´1 `Q`´1.

(b) What other “boring” factors of Qk ´Q` can you find?

(c) What is the degree of the “interesting” part of Qk ´Q`?

(d) Is the “interesting” part always irreducible?

(33) For preperiodic data of type p3, 2q, we found the “interesting” part of Q5 ´ Q2 was
the cubic polynomial c3` c2´ c`1 and looked at the kneading data for the real root.

(a) Find a complex root of this polynomial and draw the associated Julia set.

(b) Locate this complex point inside of the Mandelbrot set. How does its position
relate the three-eared rabbit polynomial (with c « 0.282` 0.530i)?



(34) Alex’s question, Jan 18. Recall the “obstructed cartoon” from class on Jan 18.

We know that there is no real quadratic polynomial x ÞÑ x2 ` c with this cartoon.
But what about polynomials of other degrees? Find a real polynomial f of degree
d ą 2 with a critical point ‹ whose forward orbit is given by this cartoon. Can you
find an example where f is postcritically finite?

(35) Curt’s question, after hearing Noah’s question, Jan 15.Let S be the set of all

rational maps f : ĈÑ Ĉ of degree 2 that have an attracting fixed point at 8. What
are the triangles (up to equivalence [see Noah’s question]) that arise from attracting
3-cycles of f , as f runs over S?

Definition. A parabolic fixed point of a rational map f is a fixed point z0 with |f 1pz0q| “ 1
and f 1pz0q a root of unity.

(36) Show that fpzq “ z2 ´ 3{4 has a parabolic fixed point at z0 “ ´1{2. What is the
behavior of points near z0 under iteration? Which points get attracted to z0 and
which points get repelled from z0?

(37) Filled Julia set and Julia set are stable under iteration. Let f : CÑ C be a
complex polynomial. We define the filled Julia set of f to be

Kpfq “ tz0 P C | the orbit of z0 is boundedu.

We define the Julia set of f to be Jpfq “ BKpfq. As in the case with quadratic
polynomials, both Kpfq and Jpfq are nonempty, compact subsets of C. Prove that
for all n P N, we have

Kpfq “ Kpfnq and Jpfq “ Jpfnq.

Topologically vs. Geometrically attracting.

Definition. A fixed point z of a map f is topologically attracting if it has a neighborhood
U so that the successive iterates fn are all defined throughout U , and so that the sequence
of maps

n ÞÑ fn|U : U Ñ U

converges uniformly to the constant map U Ñ z.

Proposition. A fixed point for a holomorphic map of a Riemann surface is topologically
attracting if and only if its multiplier satisfies |λ| ă 1.

Proof. In one direction, we can use Taylor’s theorem to prove that if the multiplier |λ| ă 1,
then the fixed point z is topologically attracting for the map f . In the other direction, if f
is topologically attracting, then for any sufficiently small disk Dε around z there exists an



iterate fn that maps Dε onto a proper subset of itself. By the Schwarz Lemma, this implies
that the multiplier |λn| ă 1, and therefore |λ| ă 1.

(38) Write down what it means for a fixed point z of a map f to be topologically repelling,
and prove that your definition is equivalent to the statement that the multiplier
satisfies |λ| ą 1.

Basins of attraction.

Suppose f : CÑ C is a holomorphic map with an attracting fixed point at z0. (Maps on pC
also work.)

(39) Show that z0 has a small neighborhood U so that fpUq Ă U .

Let U0 “ U as above and, for i ě 0, define Ui`1 to be the connected component of f´1pUiq
that contains Ui.

Definition. The immediate basin of z0 is
8
ď

i“0

Ui.

(40) Show that the immediate basin of z0 is independent of the choice of U .

The Kobayashi Metric.

Motivation. We ultimately would like to prove that if a polynomial f : C Ñ C has an
attracting periodic cycle, then that cycle attracts a critical point. This is a really big deal
in complex dynamics, and we will get a lot of mileage out of it. And in fact, the analogous
statement in higher dimensions, say for a polynomial map F : C2 Ñ C2, is false. There are
polynomial diffeomorphisms of C2 with attracting periodic cycles, and these diffeomorphisms
have no critical points, of course. (Google Hènon map.)

Definition. For Ω Ă pC a domain and z0 P Ω, define

Kz0,Ω :“ sup
 

|g1p0q|
ˇ

ˇ g : DÑ Ω holomorphic, gp0q “ z0

(

to be the maximum derivative of any map from the disk taking 0 to z0. (In fact, this
supremum is realized by the Riemann map to Ω.) Define the Kobayashi metric on Ω by
setting the arc length element ds at z0 by

ds2
“

4
`

dx2 ` dy2q
`

Kz0,Ω

˘2 ,

i.e., a multiple of the standard Euclidean metric. (Lengths scale locally by a factor of
2{Kz0,Ω.)

(41) Let Ω “ H “ tx ` iy | y ą 0 u. Prove that for all z0 P Ω, Kz0,Ω is finite. Then
compute the Kobayashi metric on H via the definition above.

(42) Let Ω Ď C. Show that there exists one z0 P Ω for which Kz0,Ω “ 8 if and only if for
all z0 P Ω, we have Kz0,Ω “ 8.



Definition. We say that Ω Ď pC is hyperbolic if Kz0,Ω is finite, so that the Kobayashi metric
is actually a metric (rather than the identically-zero pseudometric).

(43) Verify, in your preferred notation for Riemannian tensors, the assertion in class that
a holomorphic map f : Ω1 Ñ Ω2 does not increase distances: for z, w P Ω1,

d2pfpzq, fpwqq ď d1pz, wq.

(44) Suppose Ω1 and Ω2 are hyperbolic with Kobayashi metrics d1 and d2 respectively.
Assume that Ω1 Ď Ω2, and let ι : Ω1 ãÑ Ω2 denote the holomorphic inclusion map.
From class (and the previous exercise), we know that for all z, w P Ω1,

d2pιpzq, ιpwqq ď d1pz, wq.

Show that equality is realized if and only if Ω1 “ Ω2.

(45) Given integers n,m ě 1, how many real parameters c are there such that the critical
point of f : x ÞÑ x2 ` c has preperiod n, and period m? This means we want fnp0q
to be the first point in the critical orbit that is periodic, and it is periodic of period
m. Do some experiments and then look for your answer on the online encyclopedia
of integer sequences.

On January 30, we finished proving this very important theorem that we will use extensively
in our class:

Schwarz-Pick Theorem. Let f : Ω1 Ñ Ω2 be a holomorphic map between two
hyperbolic domains. Then:

‚ the map f does not increase the Kobayashi metric; that is, f does not increase
hyperbolic distances, and

‚ f is a local isometry with respect to the Kobayashi metrics on domain and range if
and only if f is a covering map.

On the way to proving the Schwarz-Pick theorem, we discussed covering maps.

Covering maps.

(46) Let X and Y be locally compact Hausdorff spaces, and suppose that the map f :
X Ñ Y is proper and a local homeomorphism. Show that f is a covering map.

(47) Give an example of a local homeomorphism that is not a covering map.

(48) Give an example of a proper map that is not a covering map.

(49) Give an example of a covering map that is not proper.

(50) Suppose f : X Ñ Y is a proper map between locally compact Hausdorff spaces. Let
U Ď Y , and prove that the restriction

f |f´1pUq : f´1
pUq Ñ U



is a proper map. Now let V be a connected component of f´1pUq. Prove that the
restriction

f |V : V Ñ U

is proper.

(51) Let ι : D ãÑ C denote the holomorphic inclusion map. Prove that ι is not a covering
map.

(52) Let f : X Ñ Y be a covering map. Prove that the cardinality of the set f´1pyq
is locally constant over Y . Conclude that if Y is connected, then this cardinality is
constant as y runs over Y . This is called the degree of the covering map f ; CAUTION:
it may be infinite.

(53) Let f : U Ñ V be holomorphic. Show that if f 1puq ‰ 0, then f is a local homeo-
morphism at u P U ; that is, there is some neighborhood W Ď U that contains u so
that

f |W : W Ñ fpW q

is a homeomorphism.

Riemann mapping theorem. Let Ω Ď C be a nonempty, simply connected open
subset that is not all of C. Then there is a biholomorphic map φ : Ω Ñ D, called a Riemann
Map for Ω.

One can obtain this theorem from the much more powerful statement:

Uniformization theorem. There are exactly three simply connected Riemann sur-
faces (up to biholomorphism). They are:

C, pC, and D.

Corollary. Let X be a connected Riemann surface. Then the universal cover of X is

biholomorphic to exactly one of: C, pC, or D.

This is essentially saying there there are three kinds of geometry for Riemann surfaces:
hyperbolic, Euclidean, and spherical. The situation is more complicated in higher dimen-
sions.

(54) As a sanity check, prove that no two of C, pC, and D are biholomorphic.

Facts. See Chapter 2 of the early version of Milnor’s book posted on the course website
for proofs of the following facts:

‚ Spherical case. If X is a Riemann surface with universal cover pC, then X is

biholomorphic to pC.

‚ Euclidean case. If X is a Riemann surface with universal cover C, then either

˚ X is biholomorphic to C,



˚ X is biholomorphic to the cylinder C{Z, which in turn is biholomorphic to the
punctured plane C˚, or

˚ X is biholomorphic to C{Λ, where Λ is a lattice of rank 2 (to say that Λ is a
lattice means that that Λ is an additive subgroup of C. The rank 2 part means
that Λ is generated by two elements that are linearly independent over R). In
this case, X is called a torus.

‚ Hyperbolic case. In ALL other cases, the universal cover of X is biholomorphic to
D.

Based on the facts above, we see that most Riemann surfaces X are hyperbolic. This means
that their universal cover is the unit disk, and they inherit a Kobayashi metric from the
Poincaré metric on D, using the universal covering map f : D Ñ X to define the metric on
X locally.

Basins are hyperbolic. In some of the arguments in our class, we have used the fact
that the basin of an attracting fixed point is hyperbolic. We will prove this by showing that

if U is the basin of an attracting fixed point of a rational map f , then pC ´ U contains at
least three points. By the Facts above, this means that U is hyperbolic. Before we consider
pC´ U , we need some definitions and theorems. Obtaining this result is very important and
requires a few pages of discussion.

Definition. A collection F of holomorphic functions from a Riemann surface S to a compact
Riemann surface T is called a normal family if every infinite sequence n ÞÑ fn P F contains
a subsequence which converges locally uniformly to some limit g : S Ñ T .

Definition. The sequence n ÞÑ pfn : S Ñ T q converges locally uniformly to g : S Ñ T if for
every compact K Ď S, the sequence

n ÞÑ pfn|K : K Ñ T q

converges uniformly to g|K : K Ñ T .

Note that if the sequence fn : S Ñ T converges locally uniformly to g : S Ñ T , then g is
necessarily holomorphic.

The following is an incredibly useful theorem from complex analysis.

Montel’s Theorem, 1927. Let S be a Riemann surface, and let F be a collection of

holomorphic maps f : S Ñ pC what omit three different values. That is, assume that there

are distinct points a, b, c P pC so that fpSq Ď pC ´ ta, b, cu for every f P F . Then F is a
normal family.

Definition. Let f : pCÑ pC be a rational map of degree d ě 2. Let fn denote the nth iterate
of f . Consider the family of iterates F “ tfn : n P Nu. The Fatou set of f is the largest

open subset of pC on which F is a normal family.

Definition. The complement of the Fatou set is called the Julia set of f , denoted Jpfq. It

is a compact subset of pC.



Example. Let’s show that Jpfq “ S1 for fpzq “ z2. Clearly fnpzq Ñ 0 or 8 when |z| ‰ 1.
This means that Jpfq Ď S1.

(55) For the map fpzq “ z2, prove that for all z P S1, there is no neighborhood of z on
which the family of iterates is normal. This establishes that S1 Ď Jpfq, and therefore
Jpfq “ S1 by the remarks above.

(56) Let f : pC Ñ pC be a rational map of degree d ě 2. Prove that the Julia set Jpfq is
totally invariant. That is, show that

f´1
pJpfqq “ Jpfq “ fpJpfqq.

Hint: show that the Fatou set is totally invariant.

(57) Let f be a rational map with an attracting fixed point at z0 P
pC. Let U be the

basin of z0; that is, U is the open subset of pC consisting of all w so that the orbit
n ÞÑ fnpwq converges to z0. Show that U is contained in the Fatou set of f .

The Riemann-Hurwitz formula. We will establish this in class on Feb 6. Let f : X Ñ Y
be a holomorphic map between compact Riemann surfaces of degree d. Then

χpXq “ d ¨ χpY q ´
ÿ

xPX

pdegpf, xq ´ 1q

where degpf, xq is the local degree of f at x. This number is greater than 1 if and only if x
is a critical point of f .

Application: rational maps on the Riemann sphere. When we apply the Riemann-

Hurwitz formula to a rational map f : pCÑ pC we see that
ÿ

xPpC

pdegpf, xq ´ 1q “ 2d´ 2.(1)

One way people sum this up is to say that “the number of critical points of a rational map of
degree d, counted with multiplicity, is 2d´ 2”. You can verify that this number really is the
number of critical points of f by writing fpzq “ ppzq{qpzq, where p and q are polynomials of
degree d with no common factor. Then use the quotient rule. Ew.

Theorem. (Finite totally invariant subsets.) Let f : pC Ñ pC be a rational map of

degree d ě 2, and let E Ď pC be a finite totally invariant set; that is, f´1pEq “ E “ fpEq.
Then E has at most two elements.

Proof. Suppose that E contains k ě 1 elements. Because E is finite, and because E is totally
invariant, the restriction

f |E : E Ñ E

is a permutation. This means that there is some m ě 1 so that

fm|E : E Ñ E

is the identity. For a given e P E, consider the equation fmpzq “ e. The map fm has degree
dm, so there should be dm solutions to this equation, counted with multiplicity. But because



E is totally invariant, and because fm is the identity on E, the only solution is z “ e. This
means that

degpfm, eq “ dm.

Therefore, each e P E is a critical point of the map fm. We now apply Equation 1 to fm to
see

2dm ´ 2 “
ÿ

xPpC

pdegpfm, xq ´ 1q ě
ÿ

ePE

pdegpfm, eq ´ 1q “ |E|pdm ´ 1q.

The result follows.

Grand orbits. We say that the points z and w in pC have the same grand orbit under f if
their orbits merge at some point. More precisely, if are integers n,m ě 1 so that

fnpzq “ fmpwq.

Let GOpf, zq denote the set of all w P pC that have the same grand orbit as z.

Proposition. The set GOpf, zq is totally invariant under f .

(58) Prove the proposition above.

Example. Let fpzq “ z2. Then GOpf, 0q “ t0u and GOpf,8q “ t8u. We also have

GOpf, 1q “ tz P pC | there is m ě 1 so that z2m
“ 1u.

Definition. We say that z P pC is grand orbit finite if GOpf, zq is a finite set. We define
the exceptional set of f to be the set of all grand orbit finite points, and we denote it as
Epfq.

Proposition. Let f : pC Ñ pC be a rational map of degree d ě 2. Then Epfq contains at
most two points. If |Epfq| “ 1, then f is Möbius conjugate to a polynomial. If |Epfq| “ 2,
then f is Möbius conjugate to z ÞÑ z˘d.

(59) Prove the proposition above.

Corollary. Let f : pC Ñ pC be a rational map of degree d ě 2. Then the exceptional set
Epfq is a subset of the Fatou set of f . In particular, Epfq X Jpfq “ H.

(60) Prove the corollary above.

Corollary2. The Julia set Jpfq is either infinite or empty.

We will now prove that Jpfq is never empty provided that f is a rational map of degree
d ě 2.

Theorem. Let f : pCÑ pC be a rational map of degree d ě 2. Then Jpfq is nonempty.

Proof. For the sake of contradiction, assume that Jpfq is empty. Then the Fatou set of f is

equal to pC, so the family of iterates F “ tfn | n P Nu is normal on the whole sphere. This
means that there is a subsequence

k ÞÑ pfnk : pCÑ pCq



that converges to a holomorphic limit g : pC Ñ pC. Because the map g is holomorphic on pC,
it is necessarily rational and so it has a finite degree. Consider the sequence of degrees

k ÞÑ degpfnkq “ dnk .

Since the maps fnk Ñ g, we must have dnk Ñ degpgq as k Ñ 8. But dnk goes to 8 since
d ě 2.

We are finally ready for our theorem.

Theorem. (Basins are hyperbolic.) Let f : pC Ñ pC be a rational map of degree d ě 2.

Let z0 P
pC be an attracting fixed point of f with basin U . Then U Ď pC is hyperbolic.

Proof. By one of the homework problems above, the basin U is contained in the Fatou set

of f , so we have U X Jpfq “ H. Therefore, Jpfq Ď pC ´ U . Because Jpfq is infinite, the
complement C´ U contains at least three points. Therefore, U is hyperbolic.

We are finally done with that discussion.

(61) QR Topology Problem, afternoon session, January 2009. Let . . . Ď X2 Ď X1

be a nested sequence of closed, nonempty, connected subsets of a compact Hausdorff
space X. Prove that

8
č

i“1

Xi

is connected.

The locus H in parameter space of quadratic polynomials. Now that
we know that every attracting cycle of a rational map attracts a critical point, we can do
some things. Let’s return to quadratic polynomials.

Proposition. The polynomial fcpzq “ z2 ` c can have at most one attracting cycle.

Let’s use this to define a new subset of c-parameter space:

H “ tc P C | fc has an attracting cycleu.

This is a nonempty open subset of C. Let’s define a map

per : HÑ N
that takes a c P H and returns the period of the unique attracting cycle. What does the set
per´1pnq look like?

(62) Prove that per´1pnq is nonempty and open in C.

(63) Compute per´1p2q.

In class, we are proving this result:

Theorem. Let f : C Ñ C be a complex polynomial. Then the filled Julia set Kf is
connected iff the set of critical points Critpfq is contained in Kf .

Corollary. The Mandelbrot set M is equal to

tc P C | the orbit of the critical point of fc is boundedu.



This gives us an alternative definition of M, and in fact, it is this definition that your
computer uses to test whether a given c P C belongs to M.

(64) Using the theorem above, prove that H ĎM.

Because H is an open subset of C, we actually have that H Ď intpMq.

(65) The BIGGEST open problem in the ENTIRE subject. Prove or disprove:

(Density of Hyperbolicity Conjecture or DHC)

H “ intpMq.

You will win fame and fortune if you can settle this one. One way to figure this out
is to settle:

(66) The other BIGGEST open problem in the ENTIRE subject. Prove or
disprove:

(MLC) The Mandelbrot set is locally connected.

Douady and Hubbard showed that (MLC) ùñ (DHC), and in fact, this is why people
started trying to prove (MLC); they wanted to establish (DHC). But both problems are very
hard.

(67) Noah’s question, Feb 1. Let f : C Ñ C be a quadratic polynomial, and consider
the quartic polynomial f 2. The polynomial f 2 has four fixed points. Two of these
fixed points are fixed points of the map f , and the other two fixed points come from
a periodic cycle of period 2 for the map f . Is there any way, just given the four fixed
points tp1, p2, p3, p4u of f 2, to tell which of the pi are fixed points of f , and which are
part of the 2-cycle of f?

(68) Dylan’s question, Feb 1. When do two rational maps have the same Julia set? In
the polynomial case, the answer is completely understood - have a look at the paper
The polynomials associated with a Julia set by Schmidt and Steinmetz on the course
website.

(69) (Noah, Connor, Jacob, and Jonathon)’s question, Feb 6. Consider fpzq “
z2 ` c, and take U0, a small disk around 8, just like we did in class. We know that
the basin of 8 is hyperbolic, so the boundary of U0 has some hyperbolic length. Let
L0 be this length. Let Li be the hyperbolic length of the boundary of Ui, where
Ui “ f´ipU0q. What happens to the sequence i ÞÑ Li as iÑ 8?

(70) For each of the cubic polynomials, draw the filled Julia set, and then sketch the
‘Cantor pants’ for each one; that is, the surface that Dylan drew on the board at
the end of class on Feb 6. It might be a good idea to use FractalStream (or another
program) to help with this (see Figure 1).

(a) ppzq “ z3 ´ 0.6iz ` i

(b) ppzq “ z3 ´ 0.6iz ` 0.5i

(c) ppzq “ z3 ´ 0.6iz ` 0.5i´ 2



Figure 1. On the left, we see the Cantor pants surface from class. On the
right, we see the dynamical plane for a quadratic polynomial of the form
z ÞÑ z2` c, where c is real and less than ´2. If you project the picture on the
left down onto a copy of C, you should get the picture on the right.

(71) Consider the family of cubic polynomials fcpzq “ z3 ´ 3c2z ` 0.4 ´ 0.2i. Draw two
copies of the c-parameter plane for this family. Color the first copy according to the
behavior of one critical point, and color the second according to the behavior of the
other critical point. You should notice something about your pictures. There is an
affine transformation that will map one picture to the other. Why are these pictures
related this way?

(72) Come up with a jingle to help Dylan remember the Riemann-Hurwitz formula.

(73) Let f : pCÑ pC be a rational map of degree d ě 2. Suppose f has a fixed point at z0

with multiplier λ “ f 1pz0q. Prove that λ does not depend on your choice of complex

coordinates on pC. Now prove that for any polynomial f : pC Ñ pC, the point at 8 is
a superattracting fixed point.

(74) Complete the argument that you do actually get a set of Cantor pants in the case
where the total degree is 2 with one escaping critical point, as follows. We had set
U0 a small disk neighborhood of infinity, Uk “ f´kpU0q, and Vk “ UkzUk´1. Suppose
that Un is the first of these to contain the critical point.

(a) Show that Vn is a pair of pants (a sphere minus 3 disks).

(b) Show that Vn`1 is a degree two cover of Vn. Find all topological degree two
covers of a pair of pants.

(c) The boundary of Vk can be divided into an “upper” piece Bk´1 that touches
Uk´1 and a “lower” piece Bk that touches Vk`1. Show that f gives a degree two
covering map from Bk to Bk´1 for all k ą 0.



(d) Show that Bn is two circles and f : Bn Ñ Bn´1 is a homeomorphism on each
component of Bn. What possibilities does this leave for Vn`1?

(e) Use the fact that Un`1 is a subset of the sphere to reduce to only one possibility
for Vn`1 and show you get an infinite tree of pairs of pants.

(75) (a) Find a cubic polynomial where one critical point escapes and the other is at-
tracted to a periodic cycle of period 2. Draw the Julia set and describe its
features.

(b) Do the same, but where one critical point is attracted to a periodic cycle of
period 3. Can you find examples with pieces that look like a rabbit? An airplane?

(76) Pick a cubic polynomial example where one critical point escapes and the other is
attracted to a fixed point. (For instance, you could look at one coming from previous
exercises.) Some of the components of the Julia sets will have non-empty interior. Of
the uncountably many components of the Julia set, only countably many can have
interior, since an open subset of the plane has at most countably many connected
components. Which components have non-empty interior? (You will have to figure
out a scheme to describe the components of the Julia set first.)

(77) Recall the map per : H Ñ N. How many components are there in per´1p5q? Draw
cartoons for each of them.

Sizes of Fatou components and derivatives at postcritical points.

Definition. Let f : C Ñ C be a complex polynomial of degree d ě 2. Every connected
component of the interior of the filled Julia set Kpfq is called a Fatou component of the
polynomial f .

Figure 2. The rabbit polynomial with critical orbit marked.

Looking at the filled Julia set for the rabbit polynomial, we noticed that there is a difference
in size among the three Fatou components that are periodic of period 3: namely, the body of



the rabbit and his two ears. Write p0 “ 0, and pi “ f ip0q. Label the component containing
pi as Ui. Component U1 is smaller than U0 because the map f |U0 : U0 Ñ U1 is essentially
z ÞÑ z2. But why should U1 be smaller than U2? As we discussed in class, to understand this
phenomenon, one should investigate the derivative f 1pp1q.

(78) Let f : C Ñ C be a complex polynomial of degree d ě 2. Prove that the filled Julia
set of f is full; that is, show that C ´Kpfq is connected. Hint: Use the maximum
modulus principle.

(79) It follows from the problem above that the connected components of the interior of
Kpfq are homeomorphic to disks. Let U be a connected component of intpKpfqq.
Show that f maps each connected component of f´1pUq surjectively onto U .

(80) For the rabbit polynomial f , prove that the component U1 is smaller than U0. And
then prove that U2 is smaller than U1.

(81) Find a parameter c P C such that for the polynomial z ÞÑ z2 ` c, the component U2

is smaller than U1.

(82) Consider the family fλpzq “ ´λp1´z{2q
2. In the λ-parameter plane, draw the subset

M1
“ tλ P C | the filled Julia set of fλ is connectedu.

Show that M1 is the image of the Mandelbrot set M, scaled up by a factor of 2.

(83) Jasmine’s question, Feb 15. Given a positive integer k, is there a quadratic
polynomial f : z ÞÑ z2 ` c for which 0 is periodic, and in the corresponding cycle of
Fatou components, Uk is the smallest? What is a systematic way to understand this
in the Mandelbrot set?

(84) Maxime’s question, Feb 15. Let f be a quadratic polynomial of the form z ÞÑ
z2` c, and suppose that 0 is periodic. Consider the sequence of derivatives along the
postcritical points

2p1, 2p2, . . . , 2pn´1.

What do these numbers measure? More specifically, are they somehow related to
Dylan’s combinatorial data (this is one of our coming attractions!)??

(85) Sarah’s question, Feb 15. Following up on Maxime’s question: what does this
quantity

n´1
ź

i“1

1

f 1ppiq
“

1

2n´1p1 ¨ ¨ ¨ pn´1

measure? A posteriori, this turns out to be a quantity that is geometrically mean-
ingful, but why?

Hubbard trees, combinatorially. To describe the combinatorics of a not-necessarily-
real polynomial, we generalize the kneading data by Hubbard trees. We consider trees as
topological spaces, so, for instance, we can freely add or remove two-valent vertices, as long
as they are not marked.

Definition. A ribbon structure on a tree (or other graph) is a choice of cyclic order on the
edges incident to each vertex. (Note that there is only a choice for vertices of valence at



least 3.) If a tree is embedded in C, we give it a ribbon structure by taking the counterclock-
wise cyclic order at each vertex. A ribbon graph is a graph with a ribbon structure.

(86) Show that any ribbon tree can be embedded in C so that the ccw order agrees with
the ribbon structure. Show that this embedding is unique up to isotopy. What is a
correct statement for more general graphs?

We are interested in two special types of maps between ribbon trees. An inclusion ι : T0 ãÑ T1

between ribbon trees is a locally injective map so that the cyclic order around a vertex v
of T0 maps by ι to a subset of the cyclic order around ιpvq.

Definition. A branched covering f : T1 Ñ T0 is a map that is a local homeomorphism
(preserving the ribbon structure) at all points of T1 except for a finite number of branch
points. Around a branch point v of order k, the incident edges map to the incident edges
around fpvq, repeated k times in cyclic order. Thus v is a vertex of T1, except possibly when
k “ 2 and fpvq is a leaf (1-valent vertex) of T0.

(87) Show that if f : T1 Ñ T2 is a branched cover, there is a single number n so that each
edge of T2 has n preimages in T1.

Definition. A combinatorial Hubbard tree is a pair of ribbon trees T0 and T1, a finite marked
set P Ă T0, and maps ι : T0 Ñ T1 andfT : T1 Ñ T0 so that

‚ ι is an inclusion of ribbon trees and fT is a branched covering;

‚ ιpP q Ă pfT q
´1pP q;

‚ P is the forward orbit of the critical values of fT under fT ˝ ι; and

‚ T0 is the convex hull of P , in the sense that every point of T0 is between two points
of P . (In particular, every leaf of T0 is a point of P .)

We showed in class that the map fT for a combinatorial Hubbard tree can be extended,
uniquely up to isotopy, to a topological branched cover f : C Ñ C, by considering the
sequence of edges that you see around the boundary when you cut open the plane along
the Ti.



(88) Let fT : T1 Ñ T0 is a branched cover of total degree n. Show that if you read the edges
around the boundary of T1 in cyclic order, you see the edges around the boundary of
T0, repeated n times. (This fills in a missing step in the proof above.)

Given a combinatorial Hubbard tree, we can also consider just the self-map fT ˝ ι : T0 Ñ T0

on the smaller tree.

(89) Suppose that you have a quadratic combinatorial Hubbard tree, with only a single
branch point v of order 2. Show that the critical value fT pιpvqq is a leaf of T0.
Conclude that in this case fT ˝ ι on T0 determines the whole structure.

(90) Construct cubic polynomials so that the map on T0 agrees but the whole structure
pT0, T1, ι, fT q is different.

(91) Andy’s question, Feb 15. Can you find examples like above where the trees
differ, even as abstract trees? That is, can you find two sets of combinatorial data
f : T1 Ñ T0 and f 1 : T 11 Ñ T 10 (plus associated ribbon data) so that T0 “ T 10 and the
restriction for f to T0 agrees with the restriction of f 1 to T 10, but T1 ‰ T 11, even as
abstract trees?

Definition. Suppose that f1 : C Ñ C and f2 : C Ñ C are orientation-preserving branched
covers that are postcritically finite. Let Pi be the postcritical set of fi. We say that f1

and f2 are combinatorically equivalent if there are orientation-preserving homeomorphisms
φ : CÑ C and ψ : CÑ C such that

‚ the following diagram commutes

pC, P1q
ψ //

f1

��

pC, P2q

f2

��
pC, P1q

φ // pC, P2q

and

‚ the maps φ and ψ are isotopic relative to the set P1. This means that

φ|P1 “ ψ|P1 ,



and there is a homotopy from φ to ψ through homeomorphisms that agree on P1.

(92) Give an example of two distinct cubic polynomials f : C Ñ C and g : C Ñ C that
are combinatorially equivalent.

(93) Show that if two quadratic polynomials are combinatorially equivalent, then they
have the same Hubbard tree.

(94) Conversely, show that if two quadratic polynomials have the same Hubbard tree,
then they are combinatorially equivalent.

(95) Noah’s question, Feb 15. We know that the map T0 Ñ T0 on the smaller tree is
not enough to determine the extended map on the plane uniquely in general (as Dylan
showed us). Let’s think about what extra information might be required - maybe
something about the derivative of the map at the postcritical points as discussed
above? Let’s turn this into a question: can you find two distinct postcritically finite
polynomials, of degree d ě 2, with the same T0 Ñ T0, and with the same derivatives
at corresponding points in their respective postcritical sets?

(96) Write a computer program that inputs a combinatorial Hubbard tree and outputs
a polynomial that realizes the Hubbard tree (if such a polynomial exists). It might
be a good idea to start with degree d “ 2. Hint: consider the pullback construction
that we used for the real cartoons. What happens for the Complex cartoons (aka
Hubbard trees)?

(97) Recall the kokopelli map fpzq “ z2`cK (see the figure below). Label the postcritical
set tp0, p1, p2, p3u as usual. Notice that the point p3 is on kokopelli’s right leg instead
of her left leg. Does kokopelli have a cousin where the postcritical point p3 is on her
left leg? Why or why not?

(98) Mandelbrot set geography. Zoom into the component of per´1p4q in the Man-
delbrot set where kokopelli lives, and think about the question above based on the
picture you see. Click around in some of these components and study the associated
Julia sets and Hubbard trees. Formulate three questions based on what you observed.

Hubbard trees, geometrically. Let’s begin with a complex polynomial f : CÑ C
of degree d ě 2 that is postcritically finite. We would like to associate a Hubbard tree to it.
In class, we worked with quadratic polynomials, and we extracted a tree from the picture of
the filled Julia set. To make this association precise, we require the following results from
complex dynamics.

Theorem (Böttcher coordinates). Let fpzq “ zkp1 ` gpzqq be an analytic map defined
in a neighborhood U Ď C of 0, with k ě 2. Then there exist a smaller neighborhood V Ď U
of 0 and a unique analytic map φ : V Ñ C with φ1p0q “ 1 and pφpzqqk “ φpfpzqq.

Definition. The map φ is the Böttcher coordinate of the superattracting fixed point z0 “ 0
for f .

The map φ is actually injective and conjugates f to the model map z ÞÑ zk in a neighborhood
of 0. You can check that φ is injective in the following proof.



Figure 3. The kokopelli polynomial with critical orbit marked.

Proof. As we discussed in class, we will define a sequence of holomorphic maps n ÞÑ φn and
prove that they converge uniformly on compact subsets in a neighborhood of 0. The limit
will be the map φ that we are looking for. Define

φnpzq “ pf
n
pzqq1{k

n

.

In order to make sense of this expression, we need to be careful about which root we are
taking. Let’s write φn as a telescoping product to think about this:

pfnpzqq1{k
n

“ z ¨
pfpzqq1{k

z
¨
pf 2pzqq1{k

2

pfpzqq1{k
¨ ¨ ¨

pfnpzqq1{k
n

pfn´1pzqq1{kn´1 .

The mth term in the product is

pfmpzqq1{k
m

pfm´1pzqq1{k
m´1 “

pf pfm´1pzqqq
1{km

pfm´1pzqq1{k
m´1

“
pfm´1pzqq

k{km
¨ p1` gpfm´1pzqqq1{k

m

pfm´1pzqq1{km´1

“ p1` gpfm´1
pzqqq1{k

m

.

We will find r ą 0 such that if |z| ă r, then |p1`gpfm´1pzqqq| ă 1. That way, we can get rid
of the ambiguity in the choice of root by picking the principal branch of p1`gpfm´1pzqqq1{km.
Indeed, recall that if |z| ă 1, then the principal root of p1 ` zqα is defined by the binomial
series

p1` zqα “ 1` αz `
αpα ´ 2q

2
z2
` ¨ ¨ ¨

We first find r1 ą 0 and a constant C ą 0 so that |gpzq| ă C|z| for |z| ă r1. Then let r2 be
the positive root of the equation

xk´1
p1` Cxq “ 1,

and set r :“ minpr1, r2, 1{p2Cqq. Then if |z| ă r, we have

|fpzq| “ |z|k|1` gpzq| ď |z|rk´1
p1` Crq ď z,



so |fmpzq| ď r for all m, and

|gpfm´1
pzqq| ď C|fm´1

pzq| ď
C

2C
“

1

2
.

Therefore, the principal branch of

p1` gpfm´1
pzqq1{k

m

is well-defined for |z| ă r. Now our sequence of maps n ÞÑ φnpzq is well-defined for |z| ă r.
We will show that this sequence of maps converges for |z| ă r. To do this, consider the
associated series

ÿ 1

km
log

`

1` gpfm´1
pzq

˘

.

We have
ˇ

ˇ

ˇ

ˇ

ÿ 1

km
log

`

1` gpfm´1
pzq

˘

ˇ

ˇ

ˇ

ˇ

ď
ÿ 1

km
ˇ

ˇlog
`

1` gpfm´1
pzq

˘
ˇ

ˇ .

For |w| ď 1{2, the maximum value of | logp1 ` wq| is log 2 which is achieved at w “ ´1{2,
and so our sum is bounded above by the geometric series

ÿ log 2

km
.

We have proven that n ÞÑ φnpzq converges for |z| ă r, and the limit is holomorphic. In fact,
we can do better. We can prove that the limit is injective (see the following exercise). Let’s
define the open neighborhood V in the statement of the theorem to be the disk |z| ă r.

(99) Show that the map φ : pV, 0q Ñ pV, 0q constructed in the theorem above is injective,
and has the property that φ1p0q “ 1. Now show that φ is the unique such map with
these properties.

Extending Böttcher coordinates. The previous theorem gives us a local model for the
behavior of our map in a neighborhood of a superattracting fixed point. How far can we
extend the map φ?

Let B be the immediate basin of z0 “ 0, the superattracting fixed point of f , and fix z P B.
There is some m ą 0 so that fmpzq is inside V . Let’s try to define our Böttcher coordinate
φ at z to be

φpzq :“ pfmpzqq1{k
m

.(2)

This seems like a great way to extend φ, and it sometimes works! However, we will have
trouble defining a holomorphic map this way in general because it involves choosing a root.
This will be problematic if fmpzq “ 0, or if the basin B is not simply connected.

Application: polynomials. We know a bit about the circumstances under which a basin
is not simply connected. Suppose f : CÑ C is a polynomial. Then f has a superattracting
fixed point at 8, and let B be the basin of 8. We know that the filled Julia set of f is
connected if and only if it contains all of the critical points of f . Equivalently, B is simply
connected if and only if it contains no critical points of f .

We can apply Böttcher’s theorem to the polynomial f at the superattracting fixed point at
8. Suppose that f has degree d ě 2. Then Böttcher’s theorem gives us a conjugacy between



f in a neighborhood of 8 and the map z ÞÑ zd (in a neighborhood of 8). Let’s write

φ : pV,8q Ñ pV,8q

for our Böttcher coordinate. It turns out that we can extend φ, using the extension in
Equation (2), until we crash into a critical point of f in the basin B. As a consequence, if B
contains no critical points of f , that is, if the filled Julia set Kpfq is connected, then we can
extend our Böotcher coordinate throughout the ENTIRE basin of 8!! Here are some really
neat consequences of that. In fact, because φ : Brabbit Ñ Bz ÞÑz2 is a conformal isomorphism, it

Figure 4. Since the filled Julia set of the rabbit polynomial is connected,
the basin Brabbit is simply connected. This means that we can extend our
Böttcher coordinate through out the whole basin to a conformal isomorphism
φ : Brabbit Ñ Bz ÞÑz2 , that conjugates the rabbit polynomial Brabbit Ñ Brabbit to
z ÞÑ z2 restricted to Bz ÞÑz2 Ñ Bz ÞÑz2 . The checkerboard pattern on the right
essentially comes from polar coordinates. This structure can be pullback via φ
to give a checkerboard pattern in the picture on the left that can be exploited
to understand the rabbit polynomial asa map Brabbit Ñ Brabbit.

has a conformal inverse; ψ : Bz ÞÑz2 Ñ Brabbit. Because the Julia set of the rabbit polynomial
is locally connected1, the map ψ extends continuously to the boundary of the basin to give
a semi-conjugacy between the squaring map on the unit circle, and the rabbit polynomial
restricted to its Julia set. Cool.

In order to define Hubbard trees in a stern & earnest way, we need to discuss internal
rays.

Proposition (internal rays for quadratic polynomials). Let p : CÑ C be a quadratic
polynomial whose critical point z0 is periodic, forming the superattracting cycle zi “ f ipz0q

of period k. Let Vi be the component of the interior of the filled Julia set that contains zi.
Then

‚ there exists a unique homeomorphism ηV0 : D Ñ V 0, analytic in the interior, such
that

ηV0pz
2
q “ pkpηV0pzqq so ηV0p0q “ z0.

‚ Let V be a connected component of the interior of the filled Julia set. Then there
exists some minimal m such that pm : V Ñ V0 is an analytic isomorphism, so that

1This requires an argument



the map ηV : DÑ V given by

ηV :“ ppm|V q
´1
˝ ηV0

is a homeomorphism, analytic in the interior D Ď D.

Proof. The proof of the first bullet follows immediately from Böttcher’s theorem and remarks
about extending the Böttcher coordinate throughout the whole immediate basin (we can
extend it until we crash into a critical point of the map).

(100) Prove the second bullet point in the proposition above.

Definition. Let p be a quadratic polynomial with periodic critical point of period k. In
each connected component of the interior of the filled Julia set V , the arc

ηV pre
2πit
q, 0 ď r ď 1

is called the internal ray of V at internal angle t. The point ηV p0q is called the center of V ,
and the point ηV p1q is called the root of V .

Figure 5. Here we can see the internal rays for the basilica. The components
V0 and V1 are in a 2-cycle. The component V0 contains the critical point, and
V1 contains the critical value. The second iterate of f fixes V0, and it fixes
V1. Each restriction f 2|Vi : Vi Ñ Vi has a Böttcher coordinate that extends
through all of Vi. This coordinate conjugates f 2 to the model map z ÞÑ z2.
We use the Böttcher coordinate to transport the checkerboard pattern into V0

and V1. This pattern can be used to understand the polynomial f 2 on both
V0 and V1.

Hubbard trees, finally. Let f : C Ñ C be a quadratic polynomial with periodic critical
point. We know then that the filled Julia set Kpfq is connected, and in fact, it is also
locally connected (you can take this for granted, or you can see Chapter 10 in Hubbard’s
Teichmüller theory, vol 2 book). The filled Julia set Kpfq is then path connected, and any



pair of points in Kpfq can be joined by an embedded arc in Kpfq. We need a few properties
of these arcs, established in the following exercise (Hubbard, Teich vol 2, p105):

(101) Suppose that K Ď C is compact, connected, locally connected, and full (the set K is
full if C´K is connected). Prove the following statements:

‚ If Γ Ď K is an embedded arc, then for any connected component V of the interior
of K, the intersection V X Γ is connected: it is a subarc of Γ, or a single point,
or it is empty.

‚ If Γ1,Γ2 Ď K are two embedded arcs joining the same points x and y, then:

(a) Γ1 X BK “ Γ2 X BK

(b) V X Γ1 “ H ðñ V X Γ2 “ H

(c) The sets V XΓ1 and V XΓ2 are either both the same single point, or both
arcs that enter V at the same point and exit it at the same point.

Definition. A regulated path in Kpfq is an embedded arc that intersects each component
of the interior only in internal rays (hence either one ray, if the path ends at the center of
the component, or two, if the path crosses the component).

Definition. The Hubbard tree Tf of a quadratic polynomial with a superattracting cycle is
the union of all regulated paths joining pairs of points in the postcritical set.

Theorem (Douady and Hubbard, early 1980s). The Mandelbrot set is connected.

We don’t have time to cover this in class. However, you can find a complete proof of this in
the secret stash of course notes on the website. We are happy to talk with you more about
it - in fact, if Hubbard comes to our workshop, we might ask him to explain the proof. It is
one of the most beautiful applications of complex analysis I have ever seen.

Topological combinatorics of rational maps.

We will now proceed to the second half of the course, exploring the world of rational maps.

For our class, we will think of a rational map as a holomorphic map f : pCÑ pC. Equivalently,
this means that in coordinates, there are polynomials p and q so that fpzq “ ppzq{qpzq. The
degree of f is equal to the maximum of the degrees of p and q. Three examples are shown
in Figure 6.

(102) Verify that these three rational maps are postcritically finite. What is the dynamics
on the postcritical set?

What should a rational map be topologically? Before answering this, let’s think topologically
about maps between surfaces.

Definition. Let X and Y be compact, oriented topological surfaces. A continuous map
f : X Ñ Y is called a branched covering map provided that at every point x in the domain,
there is an oriented change of coordinates in a neighborhood of x, and a change of coordinates
in a neighborhood of y “ fpxq in which f is given by z ÞÑ zk for some k ě 1. The number
k is called the local degree of f at x.



Figure 6. Three different Julia sets for postcritically finite rational maps, for
(a) fpzq “ 1 ´ 1{z2, (b) fpzq “ zp14 ` 14z3 ´ z6q{p6 ` 21z3q, and (c) fpzq “
4{27 ¨ pz2 ´ z ` 1q3{pzpz ´ 1qq2.

Definition. If the local degree of f at x is greater than 1, then x is called a critical point
of f , and fpyq is called a critical value of f .

Definition. The degree of the branched cover f : X Ñ Y is equal to the number of points
in a generic fiber f´1pyq.

Riemann-Hurwitz formula, topologically. The Riemann-Hurwitz formula holds in this
topological setting. Suppose that f : X Ñ Y has degree d. Then:

χpXq “ d ¨ χpY q ´
ÿ

xPX

pdegpf, xq ´ 1q

where degpf, xq is the local degree of f at x.

Rational maps, topologically. Let S2 denote a topological 2-sphere, equipped with an
orientation. You can take the unit sphere in R3 if you’d like.

(103) Construct an orientation-preserving homeomorphism from S2 to the Riemann sphere pC.

We will look at branched covering maps f : S2 Ñ S2 from the sphere to itself, of some finite
degree d.

(104) Show that there are 2d ´ 2 critical points of f . Show that if Σ is a closed surface
other than the sphere or the torus, then there are no branched covers from Σ to Σ.
Classify branched covers of the torus by itself.

To make things topological reasonable, we will restrict to the post-critically finite case.

Definition. A W. Thurston map or branched self-cover of S2 is a branched cover f : S2 Ñ S2

and a finite set P Ă S2 so that fpP q Ă P and P contains all the critical values of f .

We use the same notion of combinatorial equivalence for polynomials, a combination of
homotopy and conjugacy.



Virtual endomorphisms. Let’s put this structure in a broader context.

Definition. A virtual endomorphism of a connected topological spaceX0 is another spaceX1

and a pair of maps π, φ : X1 Ñ X0 so that π is a connected covering map of finite degree
and φ is any continuous map.

A pcf self-cover f : pS2, P q ý gives a virtual endomorphism: set Q “ f´1pP q. The pcf
property says that P Ă Q, so S2zQ Ă S2zP . We then have two maps f, i : S2zQ Ñ

S2zP , where f is the restriction of the original map (now a covering map), and i is the
inclusion.

The term “virtual endomorphism” comes from group theory. The theory of covering spaces
tells us that finite-degree connected covers π : X1 Ñ X0 correspond to finite-index subgroups
of π1pX0q. (That is, π1pX1q is naturally a subgroup of π1pX0q.) The other map φ gives us
a map φ˚ : π1pX1q Ñ π1pX0q. Putting these together, we get a partially-defined “map”
φ˚ ˝ pπ˚q

´1 : π1pX0q 99K π1pX0q, defined on a finite-index subgroup of π1pX0q. We can then,
for instance, start iterating this group-level map; it will be defined on smaller and smaller
subgroups of π1pX0q (but still of finite index).

We can also take graphical models of these virtual endomorphisms.

Definition. A spine for a surface Σ is a graph G embedded in Σ so that Σ deformation
retracts on to G. In other words, each component of ΣzG is an annulus, with one end on G
and the other end a non-compact end of Σ.

From a virtual endomorphism of surfaces πΣ, φΣ : Σ1 Ñ Σ0 (as coming from a branched self-
cover), take a spine G0 for Σ0. Then π´1

Σ pG0q is also a graph (since πΣ is a covering map);
call this graph G1. It comes with a natural map πG : G1 Ñ G0, the restriction of πΣ. To get
a proper virtual endomorphism of graphs, we need an additional map φG. This comes from
the following composition:

G1

Σ1

G0.

Σ0

φΣ

i1 i0r0

φG

That is, we take r0 ˝ φΣ ˝ i1, where

‚ i1 is the inclusion of G1 as a spine in Σ1,

‚ φΣ is the inclusion of surfaces, and

‚ r0 is the retraction mapping from Σ0 to G0, so that r0 ˝ i0 is the identity and i0 ˝ r0

is homotopic to the identity.

(105) Find graphical spines for one of the rational maps in Figure 6. Describe explicitly
the covering map π and the map φ related to the inclusion. (For extra credit, do all
of them.)

(106) How is the third rational map in Figure 6 related to barycentric subdivision of a
triangle?



Twisting the rabbit. To see how this works, we’ll do a little exercise: we will see how a
twisted rabbit is equivalent to an airplane. We start with a virtual endomorphism defining
the rabbit self-cover fR:

and apply a Dehn twist to get a virtual endomorphism defining Tδ ˝fR, where Tδ is a positive
(left-handed) Dehn twist along a curve δ:

This pair of graphs G0, G1 in the plane can be interpreted in two ways.

‚ We can think of the graphs as describing a branched self-cover directly. There is a
natural covering map fG defined on the graphs, preserving the colors and orientations.
By the extension lemmas that we talked about earlier, this can be extended uniquely
(up to homotopy) to a branched self-cover of the sphere.

‚ We can think of the graphs as describing a virtual endomorphism of graphs. The
covering map is the map fG from above. The other map φG comes from including
G1 in the plane, and then deformation retracting G1 onto G0.

(107) Describe explicitly the map φG as a map between graphs in the twisted rabbit example
above, before simplifications.

Now we want to simplify the picture, to look like one of the models we have for the rabbit,
co-rabbit, or airplane. These all have the property that the graph G0 looks like a subgraph
of G1. We will try to find this model by modifying G0 to look more like G1, then see how
G1 “ f´1pG0q changes to match. (Notice that G0 and G1 change simultaneously when we do
this; but in some sense G1 changes less than G0, so we ignore the change in G1 in deciding
which change to do to G0.)



Iterating and homotopy equivalence. Just to see that we actually have dynamics, let’s
iterate virtual endomorphisms. First let’s make an even more general setting.

Definition. A topological correspondence between two spaces X1 and X2 is a third space,
Y , and maps s : Y Ñ X1 and t : Y Ñ X2.

You should think of a topological correspondence as giving a set of “arrows” from elements
in X1 to elements in X2, with s giving the source of the arrow and t giving the target. For
instance, a function f : X1 Ñ X2 gives a correspondence with Y “ X1, s “ idX1 , and t “ f .
This also works if f is a partially defined function, defined on a subset X 1

1 Ă X1; then we
take Y “ X 1

1.

Definition. If we have a correspondence pY1, s1, t1q from X1 to X2, and a correspondence
pY2, s2, t2q from X2 to X3, then the composition of the two correspondences is Y3 “ Y1ˆX2 Y2,
i.e., the pull-back in the diagram

X1 X2 X3

Y1 Y2

Y3

s1 t1 s2 t2

s3 t3



with the indicated maps. Concretely, we may take

Y3 “
 

py1, y2q P Y1 ˆ Y2

ˇ

ˇ t1py1q “ s2py2q
(

s3ppy1, y2qq “ s1py1q

t3ppy1, y2qq “ t3py2q.

(108) Show that the definition of composition of correspondences agrees with what it should
be in the case of functions or partially-defined functions.

(109) Show that “covering maps are invariant under base change”: if π : Y Ñ X is
a covering map and φ : Z Ñ X is any continuous map, then the pull-back map
φ˚pπq : Y ˆX Z Ñ Z is also a covering map. Deduce that composing two virtual
endomorphisms gives a virtual endomorphism.

(110) Pick your favorite rational map (perhaps a polynomial, or perhaps one of the examples
from Figure 6), find the corresponding virtual endomorphism of graphs, and iterate
it at least twice. Compare the graphs you find with the Julia set. Hint: You may
want to look at the poster for the course for the rational map fpzq “ p1`z2q{p1´z2q.

You can also ask when two virtual endomorphisms should be considered “equivalent”. (Re-
member, for instance, that different spines for the same rational map give different graphical
models, but ultimately represent the same map.)

Definition. Let πX , φX : X1 Ñ X0 and πY , φY : Y1 Ñ Y0 be two virtual endomorphisms. A
morphism between them is a pair of maps f0 : X0 Ñ Y0 and f1 : X1 Ñ Y1 so that

f0 ˝ πX “ πY ˝ f1

f0 ˝ φX „ φY ˝ f1

where „ means homotopy. (Recall that φX and φY are only defined up to homotopy.) We say
that pπx, φxq and pπY , φY q are homotopy equivalent if there are a pair of morphisms, pf0, f1q

from X to Y and pg0, g1q from Y to X, so that f0 ˝ g0 „ idY0 and g0 ˝ f0 „ textrmidX0 . We
can lift the homotopies to show that f1 ˝ gi „ idY1 and g1 ˝ f1 „ idX1 , as shown below.

X1 X0

Y1 Y0

πX

φX

πY

φY

f0g0f1g1 „ „

(111) Show how to get a homotopy equivalence of virtual endomorphisms from each of the
steps in the proof above that the twisted rabbit gives the airplane.

Multicurves. We have been using simple closed curves in the complement of a finite
set P on the sphere to get interesting examples of homeomorphisms on pS2, P q, like Dehn
twists. We will continue to use simple closed curves in our discussion of postcritically finite
branched covers.



Definition. Let X be a compact, oriented topological surface, and let P Ď X be a finite
set. A multicurve on pX,P q is a collection of disjoint, simple closed curves, no two of which
are homotopic relative to P . Furthermore, we require that the curves in our collection be
nonperipheral; that is, no curve in our collection bounds a disk, and no curve in our collection
bounds a once-punctured disk.

(112) Show that the maximum number of components that a multicurve on pS2, P q can
have is |P | ´ 3.

(113) Show that there are infinitely many different multicurves on pS2, P q if |P | ě 4.

We want to use multicurves on pS2, P q to understand a postcritically finite branched cover
f : pS2, P q Ñ pS2, P q with postcritical set P . To do this, we want to study what happens to
multicurves under our map. More specifically, we want to study what happens to multicurves
under pullback.

(114) Let f : pS2, P q Ñ pS2, P q be a PCF branched cover with postcritical set P . Let
Γ “ tγ1, . . . , γnu be a multicurve on pS2, P q. Show that f´1pΓq is a multicurve on
pS2, f´1pP qq.

(115) Let f : pS2, P q Ñ pS2, P q be a PCF branched cover with postcritical set P . Let
Γ “ tγ1, . . . , γnu be a multicurve on pS2, P q. Is fpΓq a necessarily multicurve on
pS2, fpP qq?

Let f : pS2, P q Ñ pS2, P q be a PCF branched cover with postcritical set P . Let Γ “

tγ1, . . . , γnu be a multicurve on pS2, P q. Because P contains the critical values of f , the
map

f : pS2, f´1
pP qq Ñ pS2, P q

is an honest covering map; in particular, it is a local homeomorphism in the complement of
f´1pP q upstairs.

The collection f´1pΓq will be a multicurve on pS2, f´1pP qq. In our class, we are doing
dynamics. This means that we want to think of the multicurve f´1pΓq on pS2, P q, and not
on pS2, f´1pP qq. Because fpP q Ď P , we have that P Ď f´1pP q. We therefore have an
inclusion map

pS2, f´1
pP qq ãÑ pS2, P q.

You can think about this map as ‘erasing’ the extra points in f´1pP q ´P . In doing this, we
can think of the curves in f´1pΓq as living in pS2, P q.
Paying a price: The curves in f´1pΓq may NOT form a multicurve in pS2, P q. For example,
it is possible that two of the curves in f´1pΓq are homotopic rel P , when they were not
homotopic rel f´1pP q. Moreover, it is possible that some of the curves in f´1pP q are now
peripheral, when they were not in the complement of f´1pP q.

(116) Give an example of a PCF branched cover f : pS2, P q Ñ pS2, P q, and a multicurve Γ
on pS2, P q, for which two of the curves in f´1pP q are homotopic rel P .

Dynamical multicurves. What should a dynamical multicurve be? It should somehow be
a multicurve Γ on pS2, P q for which the curves in f´1pΓq, considered in the space pS2, P q,
give us the same multicurve back. Here is a definition.



Definition. Let f : pS2, P q Ñ pS2, P q be a PCF branched cover. The multicurve Γ in
pS2, P q is said to be f -stable, or f -invariant, if for all γ P Γ, every component of f´1pγq is
either 1) peripheral (aka ‘erased’), or 2) homotopic to some γ1 P Γ relative to the set P .

Trivial f-stable multicurves. Dylan is not a fan of this definition. Here is one reason
why: suppose we have a PCF branched cover f : pS2, P q Ñ pS2, P q, and a multicurve Γ that
has the property that for all γ P Γ, every component of f´1pγq is erased. By the definition
above, this multicurve is f -stable. We will call this a trivial f -stable multicurve.

Given a PCF branched cover f : pS2, P q Ñ pS2, P q, how do we find the f -stable multic-
urves?

Excellent question! It turns out that this is usually REALLY HARD. Especially given the
fact that a priori, our map f could have infinitely many f -stable multicurves. Yikes!

Sarah’s Conjecture, March 15. Let f : CÑ C be a PCF quadratic polynomial. Then f
has NO nontrivial f -stable multicurves.

(117) Give an example of a PCF rational map f with at least two different nontrivial
f -stable multicurves.

(118) (Sarah’s question, March 15.) Does the rabbit polynomial have any nontrivial
f -stable multicurves?

(119) Give an example of a PCF rational map f with a trivial f -stable multicurve.

(120) Give an example of a PCF rational map f such that EVERY multicurve in pS2, P q
is a trivial f -stable multicurve. WHAT????

(121) (A good question for Kevin Pilgrim at our companion workshop.) Give
an example of a PCF branched cover that has infinitely many nontrivial f -stable
mutlicurves.

(122) (Sarah’s question, March 15.) Can a PCF rational map have infinitely many
nontrivial f -stable multicurves?

(123) Prove or disprove Sarah’s conjecture, stated above.

The matrix associated to an f-stable multicurve. Let f : pS2, P q Ñ pS2, P q be a PCF
branched cover and let Γ “ tγ1, . . . , γnu be an f -stable multicurve. Consider the matrix
MΓ P MatnˆnpRq whose pi, jq-th entry is

ÿ

tαPf´1pγjq | α is homotopic to γi rel P u

1

dα
, where dα is the degree by which α maps to γj.

A few remarks are in order. First, we can see that this matrix is encoding how the nonpe-
ripheral components of f´1pΓq map to Γ, which seems like relevant data to keep track of. We
are also keeping track of degree information with dα, but for some reason, we are inverting
this number. hmm. At this point in our course, this may appear to be unmotivated - we will
explain why this is the relevant information to keep track of in the next few weeks.

Perron-Frobenius Theorem, 1907. Let A P MatnˆnpRq, and suppose that A has positive
entries. Then A has a leading eigenvalue. That is, A has a simple eigenvalue λ ą 0 with an



associated eigenvector v that has positive entries. Moreover, λ ą |ω|, where ω is any other
(complex) eigenvalue of A.

The leading eigenvalue of MΓ. Our matrix MΓ has non-negative entries (not necessarily
positive entries). Since you can approximate any such matrix with a sequence of matrices
with positive entries, some weaker version of the Perron-Frobenius theorem still holds in our
setting. In particular, the matrix MΓ will have a ‘leading eigenvalue’ λ ě 0. The associated
eigenvector will have non-negative entries (not necessarily positive ones). The eigenvalue λ
may no longer be simple, but it will have the property that λ ě |ω| where ω is any other
(complex) eigenvalue of MΓ.

We are just about ready to state William Thurston’s Theorem, a central part of our class.
We need one more definition.

Definition. Let f : pS2, P q Ñ pS2, P q be a PCF branched cover. The f -stable multicurve
Γ is an obstruction if the leading eigenvalue of MΓ is greater than or equal to 1.

William Thurston’s Topological Characterization of Rational Maps, 1980s. Let
f : pS2, P q Ñ pS2, P q be a PCF branched cover2. Then f is combinatorially equivalent to a
rational map F if and only if f has no obstructions. If F exists, it is unique up to conjugation
by Möbius transformations.

Applying this theorem in practice is notoriously difficult since it requires us to check the
obstruction criterion. This means that we have find ALL f -stable multicurves and check
that they are not obstructions. If you are lucky and you understand the f -stable multicurves
for your branched cover f , this is an easier task. Any successful application of this theorem
is usually a big deal, precisely because it is very hard to apply.

Definition. If the postcritically finite branched cover f : pS2, P q Ñ pS2, P q has an obstruc-
tion, then we say that f is obstructed.

Twisting z ÞÑ z2 ` i. Unlike what happens by twisting the rabbit polynomial (or any
quadratic polynomial with periodic critical point), it is possible to twist a quadratic poly-
nomial with preperiodic critical point to make it obstructed. Twisting z ÞÑ z2 ` i is a nice
example.

Can you spot an obstruction in frame 6?

(124) Pick your favorite postcritically finite quadratic polynomial fpzq “ z2 ` c, and let P
be the postcritical set of f . Pick your favorite orientation-preserving homeomorphism
h : C Ñ C that fixes the elements of P pointwise. Consider the composition h ˝ f .
Is it obstructed? If not, what polynomial is it equivalent to?

Matings of polynomials. Here is a construction that leads to interesting examples
of PCF branched covers.

Let S be the unit sphere in C ˆ R. If P : C Ñ C and Q : C Ñ C are two monic
polynomials of the same degree d ě 2, the formal mating of P and Q is the ramified covering
f “ P \Q : S Ñ S obtained as follows.

2Right now, we suppose that f is not a Lattès map - this rules out a standard family of counter-examples.



Figure 7. Twisting z ÞÑ z2 ` i

Figure 8. An obstruction for twisting z ÞÑ z2 ` i.

We identify the dynamical plane of P to the upper hemisphere H` of S and the dynamical
plane of Q to the lower hemisphere H´ of S via the gnomonic projections:

νP : CÑ H` and νQ : CÑ H´

given by

νP pzq “
pz, 1q
›

›pz, 1q
›

›

“
pz, 1q

a

|z|2 ` 1
and νQpzq “

pz̄,´1q
›

›pz̄,´1q
›

›

“
pz̄,´1q

a

|z|2 ` 1
.

Since P and Q are monic polynomials of degree d, the map νP ˝P ˝ν
´1
P defined on the upper

hemisphere and νQ ˝ Q ˝ ν
´1
Q defined in the lower hemisphere extend continuously to the

equator of S by

pe2iπθ, 0q ÞÑ pe2iπdθ, 0q.



The two maps fit together so as to yield a ramified covering map f : S Ñ S, which is called
the formal mating P \Q of P and Q.

(125) Find an obstructing multicurve for the map f , where f is the formal mating of the
basilica with itself.

Geometric mating. Let us now consider the smallest equivalence relation „ray on S
such that for all θ P R{Z,

‚ points in the closure of νP
`

RP pθq
˘

are in the same equivalence class, and

‚ points in the closure of νQ
`

RQpθq
˘

are in the same equivalence class.

In particular, for all θ P R{Z, νP
`

RP pθq
˘

and νQ
`

RQp´θq
˘

are in the same equivalence class

since the closures of these sets intersect at the point pe2iπθ, 0q on the equator of S.

We say that a rational map F : pCÑ pC is a geometric mating of P and Q if

‚ the quotient space S{„ray is homeomorphic to S (which will have a natural orienta-
tion), and

‚ the formal mating P \ Q induces a map S{„ray Ñ S{„ray which is topologically

conjugate to F : pCÑ pC via an orientation preserving homeomorphism.

Figure 9. The rational map F : z ÞÑ pz2 ´ e´2iπ{3q{pz2 ´ 1q is a geometric
mating of the basilica polynomial and the rabbit polynomial (see Figure 1).
The rational map F has a superattracting cycle of period 3 (the basin of which
is colored in magenta), and a superattracting cycle of period 2 (the basin of
which is colored in yellow).

Definition. Let’s say the polynomial f : C Ñ C is hyperbolic if every critical point of f is
attracted to an attracting cycle of f .

(126) Prove that if f is a PCF hyperbolic polynomial, then every periodic cycle of f con-
tained in the postcritical set is necessarily superattracting.



Theorem. (Rees) Assume P : CÑ C and Q : CÑ C are two postcritically finite hyperbolic

polynomials and F : pCÑ pC is a rational map. The formal mating P \Q is combinatorially
equivalent to F if and only if F is a geometric mating of P and Q.

A similar result also holds in the case P and Q are postcritically finite polynomials, not
necessarily hyperbolic.

Question. Which polynomials are mateable?

Theorem. (Tan Lei, Rees, Shishikura) The polynomials z ÞÑ z2 ` c1 and z ÞÑ z2 ` c2

are mateable if and only if c1 and c2 do not belong to conjugate limbs of the Mandelbrot
set.

Definition. The limbs of the Mandelbrot set are precisely the parts that are growing off of
the main cardiod.

Figure 10. Every limb of M is connected to the main cardiod at a unique
parabolic parameter on BM. All points of M that can be disconnected from
the main cardiod by removing this one point are in the same limb. By the
theorem above, the rabbit and the basilica are mateable, but the rabbit and
cokokopellli are not. The basilica and the airplane are not mateable, but the
airplane and z ÞÑ z2 ` i are mateable.

(127) Find an example of a PCF quadratic rational function that is NOT a mating of two
PCF quadratic polynomials. (Hint: Can you say something about the orbits of the
critical points in the case of a mating?)

(128) Find an example of a shared mating; that is, find an example of a PCF rational map
that is a mating of two polynomials in more than one way.

(129) The definition Dylan likes: Let f : pS2, P q Ñ pS2, P q be a PCF branched cover.
The multicurve Γ Ď pS2, P q is f -stable if for all γ P Γ, there is some γ1 P Γ so



that, up to homotopy rel P , γ P f´1pγ1q. If you use this definition, what does the
corresponding matrix MΓ look like? Give an example of a matrix that could arise as
MΓ for Γ an f -stable multicurve according to the previous definition, but could not
arise if one uses this Dylan definition.

Modulus and extremal length. The uniformization theorem tells us that every
Riemann surface that is homeomorphic (as a topological space) to an annulus is biholomor-
phic to one of the following models:

$

&

%

r0, `s ˆ r´8,8s{„
r0, `s ˆ r0,8s{„
r0, `s ˆ r0, ws{„

,

.

-

or

$

&

%

Czt0u
Dzt0u
t z P C | r1 ă |z| ă r2 u

,

.

-

.

The left hand models are “rectangular” models, where we quotient a rectangular region by
gluing vertical sides with the relation p0, tq „ p`, tq. The right hand models are alternative
“circular” models. The first two models (in either the rectangular or circular models) are
(half-)infinite annuli, which we will be less concerned with.

Definition. The modulus of an annulus A equivalent to one of the models above is ModpAq “
w{` (rectangular model) or 1

2π
ln
`

r2
r1

˘

(annular model). Its extremal length is ELpAq “

1{ModpAq. These are defined to be 8 or 0, respectively, for (half-)infinite annuli.

If C is a simple closed curve on a Riemann surface Σ, then the modulus of (the homotopy
class of) C is

ModrCs “ sup
AãÑΣ

ModpAq,

where the supremum runs over all conformal annuli A together with a holomorphic injection
φ : A ãÑ Σ, so that the core curve of A maps to a curve in the homotopy class rCs. It
is a theorem of Jenkins and/or Strebel that for non-peripheral curves C this supremum is

realized, and that the supremum fills the surface: φpAq “ Σ. (They furthermore give more
information about the supremum, relating it to quadratic differentials, which we will not get
into here.)

(130) Show that ModrCs “ 8 if and only if C is a peripheral curve on Σ.

(131) Let Σ be a Riemann surface with a hyperbolic metric (which usually exists, by the
uniformization theorem), and let C be a simple curve on Σ. Show that

`hyprCs ď π ¨ ELrCs

where `hyp means the length in the hyperbolic metric, minimized over the homotopy
class.

Hint: First consider the case when Σ is an annulus A: find explicitly the unique
hyperbolic structure on A from one of the models above. (It may help to think about
the quotient of the upper-half plane by z ÞÑ kz.) Then apply the Schwarz lemma.

(132) Look up the collar lemma from hyperbolic geometry. Use this to get an inequality
the other way, an upper bound on ELrCs in terms of `hyprCs.



There are other definitions of extremal length/modulus.

Definition. Let rCs be a homotopy class of curves on a Riemann surface. The extremal
length of rCs is

ELrCs “ sup
conformal

metrics g on Σ

`grCs
2

AreagpΣq
.

where:

‚ We take the supremum over all Riemannian metrics g on Σ, coming from the confor-
mal class from the complex structure on Σ.

‚ The length `grCs is the length of the curve C on the Riemannian metric g, minimized
over the homotopy class.

‚ AreagpΣq is the total area of Σ with respect to the metric g.

In practice, we may restrict to metrics with finite area. (Otherwise the supremand is 0.)
Note that the supremand is unchanged if we scale the metric g by a constant factor every-
where.

(133) Show that the two definitions of extremal length of an annulus agree, by showing that
the Euclidean metric coming from the rectangular model of an annulus is extremal in
the supremum. Do this by taking the Euclidean metric as a base metric and writing
any other metric as a local rescaling of the Euclidean metric by a local factor ρpzq.
(You can find this written up many places, for instance in Hubbard’s Teichmüller
Theory, Vol. 1, but it is instructive to do it yourself.)

(134) Show that, for a curve C on a Riemann surface Σ, ELrCs “ 0 iff C is peripheral.
(This is why we avoid peripheral curves when talking about obstructions.)

(135) Let Σ “ pCzt´1, 0, 1,8u, and let C be the homotopy class of a curve around 0 and 1
(in the most obvious way). What is ELrCs? (Hint : First find a conformal mapping
of the upper half-plane to a rectangle, taking the points ´1, 0, 1,8 to the corners.)
Pick a more complicated curve C2 on the same surface Σ; can you find ELrC2s?

(136) More generally, let Σλ “
pCzt0, 1,8, λu be a sphere with four punctures, and again

let C be the curve around 0 and 1. What is ELrCs? To answer this you will need
tools that we have not talked about in class, in particular the Weierstrass ℘ function.

This second definition of extremal length gives the Grötsch inequality: If a large annulus A
contains two smaller annuli A1 and A2, then

ModpAq ě ModpA1q `ModpA2q.

This in turn shows that obstructions are obstructions, at least in cases that the Perron-
Frobenius eigenvalue of the obstruction matrix is bigger than 1.

(137) Find an example of a PCF branched cover where (a) there is no obvious Levy cycle
(so the hyperbolic geometry argument doesn’t work) and (b) the leading (Perron-
Frobenius) eigenvalue of the obstruction matrix is ą 1.



Teichmüller theory. We are now discussing the ideas behind Bill Thurston’s proof
his topological characterization of rational maps. We have seen these ideas before, when we
discussed real cartoons. Roughly, we will follow the same outline: given some kind of data
(a kneading sequence for a real cartoon, or a PCF branched cover f : pS2, P q Ñ pS2, P q
in the general setting), we will define a space, and an iteration scheme on that space, so
that if our iteration converges, then our initial data is realized by a rational map, and if our
iteration scheme diverges, then there is a topological obstruction (which will be a collection
of obstructing intervals in the case of kneading data, or an obstructing multicurve in the
case of f : pS2, P q Ñ pS2, P q).

Let’s begin with an oriented topological 2-sphere, and a finite set B Ď S2.

Definition. The Teichmüller space TeichpS2, Bq is equal to the set

TB :“ torientation-preserving homeomorphisms φ : pS2, Bq Ñ ppC, hpBqq such that φ1 „B φ2

ðñ D µ P AutppCq where φ1 “ µ ˝ φ2 on B and φ1 is isotopic to µ ˝ φ2 relative to Bu.

Note that an element rφs P TB records two pieces of data: i) information about the points in

set B; that is φ|B : B ãÑ pC, and ii) the homotopy class of φ : pS2, Bq Ñ ppC, φpBqq.

Fun Facts. The Teichmüller space is a complex manifold of dimension |B|´3. As a complex
manifold, it is isomorphic to an open bounded, simply connected subset of C|B|´3. The space
TB has a natural metric called the Teichmüller metric. In the 1970s, Royden proved that
this metric coincides with the Kobayashi metric on TB. The upshot is that TB is Kobayashi
hyperbolic. (wooooo!).

Suppose that A Ď B. Thinking of marked points instead of punctures, a homeomorphism

φ : pS2, Bq Ñ ppC, φpBqq restricts to a homeomorphism φ : pS2, Aq Ñ ppC, φpAqq. Moreover, if
φ1 „B φ2, then φ1 „A φ2 since A is contained in B. This means that there is a well-defined
map eB,A : TB Ñ TA given by eB,A : rφsB ÞÑ rφsA. This map is a holomorphic submersion
that is forgetting the points in B ´ A; we use the letter e in this notation for ‘erase’.

(138) Verify the claim made above; that is, if A Ď B, show that the map eB,A described
above is well-defined.

The pullback map. Given a PCF branched cover, we would like to define a map σf : TP Ñ
TP . We will do this in a few steps. Let φ : pS2, P q Ñ ppC, φpP qq represent an element of TP ,
and consider the honest covering map f : pS2, f´1pP qq Ñ pS2, P q. Because a covering map

is a local homeomorphism, we can pullback the complex structure φ : pS2, P q Ñ ppC, φpP qq
by f to obtain a complex structure on pS2, f´1pP qq. But this is just a homeomorphism

ψ : pS2, f´1
pP qq Ñ

´

pC, ψpf´1
pP qq

¯

(3)

such that the map

Fφ,ψ :“ φ ˝ f ˝ ψ´1 :
´

pC, ψpf´1
pP qq

¯

Ñ ppC, φpP qq

is holomorphic (hence rational).



(139) Show that if ψ1 : pS2, f´1pP qq Ñ
´

pC, ψ1pf´1pP qq
¯

is another homeomorphism that

has the property that the map

Fφ,ψ1 :“ φ ˝ f ˝ pψ1q´1 :
´

pC, ψ1pf´1
pP qq

¯

Ñ ppC, φpP qq

is rational, then there exists a Möbius transformation µ so that ψ “ µ ˝ ψ1, and

Fφ,ψ1 “ Fφ,ψ ˝ µ.

The previous exercise shows that the map ψ in Equation (3) is unique up to postcomposition
by a Möbius transformation.

(140) Show that if φ1 „P φ2 in TP , then ψ1 „f´1pP q ψ2 in Tf´1pP q. This essentially comes
from the homotopy-lifting property for covering spaces.

As a consequence, we have a map f˚ : TP Ñ Tf´1pP q given by

f˚ : rφs ÞÑ rψs.

Recall that P Ď f´1pP q so there is a forgetful, or erasing map

ef´1pP q,P : Tf´1pP q Ñ TP .

The map we are interested is defined as

σf : TP Ñ TP , σf :“ ef´1pP q,P ˝ f
˚.

Definition. The map σf : TP Ñ TP is called the pullback map associated to the PCF
branched cover f : pS2, P q Ñ pS2, P q.

Here is one way to think about it. Let’s suppose that P “ tp1, . . . , pnu, for n ě 3. By
postcomposing by a Möbius transformation if necessary, we may suppose that the home-

omorphism φ : pS2, P q Ñ ppC, φpP qq sends p1 to 0, sends p2 to 8, and sends p3 to 1.
Then:

‚ there is a unique homeomorphism ψ : pS2, P q Ñ ppC, ψpP qq so that

ψpp1q “ 0, ψpp2q “ 8, and ψpp3q “ 1,

and

‚ there is a unique rational map Fφ : ppC, ψpP qq Ñ ppC, φpP qq so that the following
diagram commutes:

pS2, P q

f

��

ψ // ppC, ψpP qq

Fφ
��

pS2, P q
φ // ppC, φpP qq

Then the pullback map σf : TP Ñ TP sends rφs to rψs in TP .

If rφs is a fixed point of the pullback map σf , then there are some things we can say. Just
following the definitions, this means that in the diagram above, the homeomorphisms φ



and ψ represent the SAME point of TP . This means that there is a Möbius transformation

µ P AutppCq so that

φ|P “ µ ˝ ψ|P and φ is isotopic to µ ˝ ψ rel P.

But since we normalized our homeomorphisms such that

φpp1q “ ψpp1q “ 0, φpp2q “ ψpp2q “ 8, and φpp3q “ ψpp3q “ 1,

the Möbius transformation µ must be the identity. As a consequence, we have

φ|P “ ψ|P .

(141) Show that if φ|P “ ψ|P , then the map

Fφ : ppC, ψpP qq Ñ ppC, φpP qq

is postcritically finite, and the postcritical set of Fφ is equal to ψpP q. Then show
that the ramification portrait of Fφ is isomorphic (as a weighted directed graph) to
the ramification portrait of our original branched cover f : pS2, P q Ñ pS2, P q.

So if φ|P “ ψ|P , then Fφ is PCF. Good. But we can do better. If rφs “ rψs in TP , then we
also know that φ is isotopic to ψ relative to P . This means EXACTLY that the pair pφ, ψq
provides a combinatorial equivalence between the topological map f : pS2, P q Ñ pS2, P q and

the rational map Fφ : ppC, ψpP qq Ñ ppC, φpP qq.

(142) Show that f : pS2, P q Ñ pS2, P q is combinatorially equivalent to a rational map if
and only if σf : TP Ñ TP has a fixed point.

This is the first amazing idea behind Bill Thurston’s theorem: reduce the question in the
theorem to a fixed point problem. This is already a good step. Now, if we only knew
something about the map σf so that we might use some topology to draw conclusions about
its fixed points...

Proposition. The map σf : TP Ñ TP is a weak contraction with respect to the Teichmüller
metric.

Proof. This follows from the fact that the Teichmüller metric coincides with the Kobayashi
metric on TP (Royden’s theorem), and from the fact that the map σf : TP Ñ TP is holomor-
phic.

Proposition. If f is not a Lattès map, the second iterate of σf is a strict contraction.

Corollary. Fix some τ P TP . If σf has a fixed point, then the sequence n ÞÑ σnf pτq will
converge to it.

Since Teichmüller space is a complete metric space with respect to the Teichmüller metric,
we would really like to appeal to the Contraction Mapping Fixed Point Theorem to conclude
that σf always has a unique fixed point. We can’t do this though. The reason is that σf is
not a uniform contraction on TP . The amount by which it contracts depends on where we are
in TP . BUT if we know that the sequence of iterates n ÞÑ σnf pτq stays in a compact subset of
TP , then over this compact subset, we have uniform contraction, and we can conclude that
the sequence n ÞÑ σnf pτq converges, and it therefore converges to a fixed point.



Corollary. Suppose that f is not a Lattès map. Then if σf has a fixed point, it is
unique.

Bill Thurston’s theorem says that f is equivalent to a rational map if and only if f has no
obstructions. Thus far in the discussion, we know that f is equivalent to a rational map
if and only if the pullback map σf : TP Ñ TP has a fixed point. In order to complete our
discussion of the ideas behind Bill Thurston’s theorem, we need to establish the following
statement:

Statement. The map σf has no fixed point if and only if the map f has an obstruction.

We already indirectly discussed one of the implications in the Statement. In class, Dylan went
over some ideas about why rational maps cannot have obstructing curves. In the Statement
above, this addresses the direction: if f has an obstruction, then σf has no fixed point. We
now address the harder direction: if σf has no fixed point, then f has an obstruction. One
immediate question is: where the heck is the obstruction going to come from? We will have
to work on a new space.

Moduli space. Given an orientation homeomorphism φ : pS2, Bq Ñ ppC, φpBqq, we can

get rid of the homotopy information and just record φ|B : B ãÑ pC. This gives us a map

π : TB ÑMB

where MB is the moduli space of pS2, Bq. By definition, this is the space

MB :“ tϕ : B ãÑ pC up to postcomposition by Möbius transformationsu.

Let B “ tb1, . . . , bnu, and suppose that n ě 3. By choosing coordinates, we may suppose
that ϕ PMB satisfies ϕpb1q “ 0, ϕpb2q “ 8, and ϕpb3q “ 1. In this way, the class rϕs PMB

is determined by the complex numbers

pϕpb4q, . . . , ϕpbnqq P Cn´3,

We can therefore identify MB with an open subset of Cn´3. The map

π : TB ÑMB given by rφs ÞÑ rφ|Bs

is a universal covering map.

(143) Using the coordinates above prove that MB is isomorphic to the complement of
finitely many hyperplanes in Cn´3, and be explicit.

Let’s go back to our setting. We have a sequence n ÞÑ σnf pτq in TP . We are assuming this
sequence does not converge (if it did converge, it would converge to a fixed point). Consider
the associated sequence n ÞÑ πpσnf pτqq in MP .

Lemma. If the sequence n ÞÑ σnf pτq diverges in TP , then n ÞÑ πpσnf pτqq leaves every compact
subset of MP .

Proof idea. The proof of this lemma is very particular to our setting. The way one proves
this is by showing that the pullback map descends to a finite covering space of MP . More
details available upon request. In my research, I have gotten A LOT of mileage out of this
lemma and its cousins.



(144) Give an example of a covering map f : X Ñ Y , and a sequence n ÞÑ xn P X so that
n ÞÑ xn diverges but n ÞÑ fpxnq converges. Can you give an example of a finite cover
that has this property? (See the ‘Proof idea’ above).

The lemma above is useful because of the following theorem. For this theorem, suppose that
|P | ě 3. Then each X P MP is a Riemann sphere with |P | marked points (or punctures)
on it. Because |P | ě 3, this means that X is a hyperbolic Riemann surface (of genus 0).
Consider the hyperbolic metric on X. With respect to this metric, we can measure the
lengths of simple closed curves. It is a fact that in each isotopy class, there is a unique
simple closed curve of smallest hyperbolic length; this curve is called a geodesic in the given
isotopy class. Given X, we can look at the geodesics in each isotopy class. Note that there
are infinitely many isotopy classes of simple closed curves on X.

The Mumford Compactness theorem. Assume |P | ě 3. Let ML Ď MP be the set of
all X P MP whose shortest closed hyperbolic geodesic is of length ě L ą 0. Then ML is
compact.

We will apply the contrapositive of this theorem to our setting. Remember, we are assuming
that the sequence n ÞÑ σnf pτq diverges in TP . By the Lemma, this means that the associated
sequence n ÞÑ πpσnf pτqq leaves every compact subset of the moduli space MP . This means
that there are marked points on our Riemann spheres Xn :“ πpσnf pτqq that are getting
dangerously close to each other (in the hyperbolic metric). This means that as a hyperbolic
surface, our Riemann spheres are developing very short curves (in the complement of the
punctures, or marked points). We use these curves to find the obstruction for f : pS2, P q Ñ
pS2, P q. Why will we get an obstruction this way? First we have to show that we get an
f -stable multicurve. Then we have to show that it is an obstruction. It will be an obstruction
since the curves are getting very short, there is a very large annulus that we can embed in
our hyperbolic surface. This annulus will have very large modulus.

That was a sketch of the key ingredients in the proof of Bill Thurston’s theorem. There are
lots of details to check - it is a substantial theorem!

The rabbit, again. Understanding the pullback map is not easy, and part of the
difficulty is that understanding points of TP is not easy. The moduli space MP is somewhat
more user-friendly. An immediate question is: does the pullback map σf : TP Ñ TP descend
to yield a map MP ÑMP so that the following diagram commutes?

TP
σf //

π

��

TP
π

��
MP

//MP

This almost NEVER happens. I know of only one class of examples where σf descends to
the moduli space, and for those examples, σf is actually constant (so of course it extends!).
However, sometimes an inverse of σf descend, yielding a map MP Ð MP so that the



following diagram commutes.

TP
σf //

π

��

TP
π

��
MP MP

oo

We’ll call this map gf : MP ÑMP . Let’s compute it a familiar example. Let f : pS2, P q Ñ
pS2, P q be a PCF branched cover with P “ tp0, p1, p2,8u, and suppose that f has the
following ramification portrait.

p0
2 // p1

// p2cc 8 2hh

Let φ : pS2, P q Ñ ppC, φpP qq be an orientation-preserving homeomorphism normalized so
that φpp0q “ 0, φpp1q “ 1, and φp8q “ 8. For notation, set y :“ φpp2q. Note that the point

rφ|P s PMP is completely determined by the complex number y P pC “ t0, 1,8u. Think of y
as a moduli space variable.

There is:

‚ a unique orientation-preserving homeomorphism ψ : pS2, P q Ñ ppC, ψpP qq, so that
ψpp0q “ 0, ψpp1q “ 1, and ψp8q “ 8, and

‚ a unique rational map F : ppC, ψpP qq Ñ ppC, φpP qq so that the following diagram
commutes

pS2, P q

f

��

ψ // ppC, ψpP qq

F
��

pS2, P q
φ // ppC, φpP qq

For notation, set x :“ ψpp2q; again, think of x P pC ´ t0, 1,8u as a moduli space variable.
Let’s determine as much as we can about the rational map F :

‚ F is a quadratic polynomial (why?)

‚ F has a critical point at 0, and the corresponding critical value is 1; that is, F p0q “ 1

‚ F p0q “ x, and

‚ F p1q “ y.

The previous conclusions are based on the fact that the diagram above commutes, and the
coordinates we chose. The first two points above imply that a normal form for F is given
by

F : t ÞÑ At2 ` 1, where A is a complex parameter.

Imposing the third condition above implies that A “ ´1{x2, so we really have

F : t ÞÑ ´
t2

x2
` 1.



Imposing the last condition above implies that y “ ´1{x2 ` 1. We just did something
REMARKABLE! We found a relation between the moduli space variables x and y. In fact,
we did this:

φ
σf //

π

��

ψ

π

��
y xgf
oo

where gf : pCÑ pC is gf : x ÞÑ y, y “ ´1{x2 ` 1. This map gf is rather interesting; note that
it is also postcritically finite!!!! In fact, the ramification portrait for gf is

0
2 // 8

2 // 1bb

This is not a coincidence. The map gf has three fixed points: ζr, ζc, and ζa. Note that each

of these fixed points is in pC ´ t0, 1,8u, or each of the fixed points is in the moduli space
MP .

(145) Prove that each of these fixed points corresponds to a quadratic polynomial of the
form t ÞÑ At2 ` 1, such that the critical point t0 “ 0 is in a cycle of period 3. Then
draw the Julia set of gf and find these fixed points.

Figure 11. This is a superposition of two parameter spaces. One of them,

the moduli space MP « pC ´ t0, 1,8u is a nondynamical parameter space,
and it has a dynamical system on it, the map gf . The Julia set of gf is
visible in this picture. There are three repelling fixed points of the map gf :
ζr, ζc, ζa. The other parameter space is a dynamical parameter space; that is,
it parameterizes quadratic polynomials as dynamical systems, and it contains
the Mandelbrot set M . In the coordinates chosen, the three fixed points of
gf line up EXACTLY with the corresponding parameters of M : the rabbit,
corabbit, airplane. This is my absolute favorite picture.

We can lift the Julia set of gf up to the Teichmüller space TP to help understand the dynamics
of the map σf : TP Ñ TP .



Figure 12. On the left is the Julia set of gf : x ÞÑ ´1{x2 ` 1, and on the
right is a picture of π´1pthis Julia setq Ď TP . The Teichmüller space in this
example is isomorphic to the open disk, and if f is the rabbit polynomial,
then σf has a unique fixed point ζ P TP . The disk on the right is centered
at this fixed point. The dynamics of σf is visible in this picture. The three
large components comprise one cycle of period 3. The rabbit fixed point in the
center is attracting, and one can use the map gf to compute the derivative of
σf at the rabbit fixed point. Just compute the multiplier of gf at the repelling
fixed point ζr and invert it.

Note that the only thing that I used to compute the map gf was the ramification portrait
of f . I did not use the combinatorial equivalence class at all. This is another reason why
the map gf is very helpful; it can be computed from some finite combinatorial data. This
is somewhat misleading; the map gf depends on just more than the portrait. It actually
depends on some nondynamical data; the covering combinatorics of f , or the Hurwitz class
of f . It turns out that if f is a Thurston map of degree 2, then there is a unique Hurwitz
class, so the portrait is enough to determine gf .

Small wrinkle. Unfortunately, the map gf does not always exist. What does exist is a
Hurwitz correspondence Wf which is sometimes the graph of a map. Regardless of whether
it is or not, it is an algebraic object that can be used to understand the dynamics of σf .

Elastic graphs. We end with a positive characterization of rational maps, a crite-
rion that lets us know for sure that a rational map does exist. This is in terms of elastic
graphs.

Definition. An elastic graph G is a graph with a positive number αpeq associated to each
edge e, which we will sometimes use as a metric or measure (with α giving the length of the
edge). If f : G Ñ X is a suitably nice map to a length space, then the elastic energy of f
is

EE pfq “

ż

xPG

|f 1pxq| dx,

where the derivatives and integral are taken with respect to the length α. If the derivative
is constant along each edge and is taken to a segment of length `, then |f 1pxq| “ `{α. We



get an extra factor of α in the integration, so overall we get

EE pfq “
ÿ

ePEdgespGq

`pfpeqq2

αpeq
,

which looks familiar from Hooke’s law for spring energy. We are also interested in the
minimum of EE pfq as f ranges over a homotopy class, which we will write EE rf s.

(146) Use calculus of variations to show that if we minimize over a homotopy class, then
Erf s is realized when the derivative |f 1pxq| is constant on each edge. What can you
say about what happens at the vertices? (You may assume that X is Rn, where
some vertices are pinned at fixed locations to make the “up to homotopy” statement
non-trivial.)

Definition. A map φ : G1 Ñ G2 of elastic graphs is loosening if

ess sup
yPG2

ÿ

xPφ´1pyq

|φ1pxq| ă 1,

where ess sup is the “essential supremum”, which means the supremum ignoring sets of
measure 0, for instance the vertices of G2 where the derivatives are not defined. Also define
in general

Fillpφq “ ess sup
yPG2

ÿ

xPφ´1pyq

|φ1pxq|.

As with the elastic energy, we will be interested in whether there is a loosening map in a
homotopy class, or minimizing Fillpφq over the homotopy class.

(147) Show that if φ is loosening, then for any map f : G2 Ñ X to a length space, then

EE pf ˝ φq ă EE pfq,

thus justifying the name “loosening”. Show the same thing after minimizing in a
homotopy class:

EE rf ˝ φs ă EE rf s,

(You will need almost nothing about the space X, and this is not so hard.)

(148) Show that the above criterion is an if and only if. More precisely, suppose we have a
map φ : G1 Ñ G2 so that, for ANY map f : G2 Ñ X to a length space, EE pf ˝ φq ă
EE pfq. Show that φ must be loosening. (This is also not so bad. You can assume
that X is G2 with another metric.)

(149) Now show that the criterion is ALSO an if and only if when you take homotopy
classes. Let φ : G1 Ñ G2 be a map so that, for any map f : G2 Ñ X to a length
space, EE rf ˝ φs ă EE rf s. Show that there is a loosening map in rφs. (This is much
harder.)

Theorem. [Positive criterion for rational maps] Suppose f : pS2, P q ý is a hyperbolic PCF
branched cover (i.e., with a branch point in each cycle in P ). Then the following conditions
are equivalent:

‚ f is equivalent to a rational map.



‚ There is an elastic spine G for S2zP and n ą 0 so that there is a loosening map from
f´npGq to G.

‚ For ANY elastic spine G for S2zP and ANY sufficiently large n ą N , there is a
loosening map from f´npGq to G.

In the second two conditions, the map is required to be in the homotopy class coming from
the deformation retraction of S2zP onto G.

(150) We did the map fpzq “ 1´ 1{z2 in class, using a spine G that was topologically like
a theta graph Θ. Suppose that we had chosen a different spine G1, maybe one that
looks topologically like a dumbbell, with two loops connected by an edge. Show that
there is a loosening map from f´npG1q to G1 for some sufficiently large G1.

(151) Consider the PCF rational map

fpzq “
1` z2

1´ z2
.

Find a spine G for the post-critical set of f for which there is a loosening map from
f´1pGq to G.

(152) Consider the critically fixed map on S2 described in Kevin Pilgrim’s talk:

Concretely, this is the map from S2 to S2 that, in the left picture, maps each shaded
triangle on top to the shaded triangle on the bottom (preserving colors) and maps
each unshaded triangle to the shaded triangle.

(a) Verify that this map has three critical points, at the corners of the triangle, each
one is mapped to itself (it is “critically fixed”), and that it has degree 4.

(b) Find a spine G for S2zP and its inverse image f´1pGq.

(c) Show that this map is equivalent to a rational map by finding an explicit loos-
ening map from f´1pGq to G.

(d) Verify your work by finding the map algebraically, completing the exercise Kevin
suggests in the image on the right.

(e) Can you generalize this argument?



(153) (Milnor’s question) Prove or disprove: the map z ÞÑ z2 ´ 1.5 has an attracting
periodic cycle.

(154) Name one of the filled Julia sets who doesn’t already have a name.

(155) Compute the entropy of the map z ÞÑ z2 ´ 2 restricted to its filled Julia set.

(156) Prove or disprove: the Julia set of the geometric mating of the airplane and kokopelli
is homeomorphic to a Sierpinski carpet.

(157) Recover the mating theorem from Dylan’s machinery.



FractalStream Scripts.

(1) Draw the Mandelbrot set:

iterate z2 ` c until z escapes.

(2) Draw a Julia set of a polynomial:

iterate z2 ´ 1 until z escapes.

(3) Draw the Julia set of the second iterate of the basilica, and color the superattracting
basins in different colors.

iterate pz2 ´ 1q2 ´ 1 until z escapes or z vanishes or pz ` 1q vanishes.

If z escapes then [blue].

If z vanishes then [green].

If pz ` 1q vanishes then [yellow].

(4) Enable period counter in M .

probe integer “Period Counter”:

repeat 100 times:
set z to z2 ` c.
end.

set w to z.
set p to 0.

do
set z to z2 ` c.
set p to p` 1.
until z “ w.

report p.
end.

iterate z2 ` c until z escapes.

(5) Color M according to period.

set q to 0.
do
set z to z2 ` c.
set q to q ` 1.
until q “ 100.

set w to z.
set p to 0.



do
set z to z2 ` c.
set p to p` 1.
until z “ w.

report p.
end.

iterate z2 ` c until z escapes.


