On the equation $\alpha \xi^{m}=\gamma^{p^{t}}$

Peter Koymans
p.h.koymans@math.leidenuniv.nl

February 15, 2016

The goal of this article is to analyze an equation that arises naturally in the study of the generalized Catalan equation in positive characteristic, see [1].

Setup

Let K be a finitely generated field over \mathbb{F}_{q} with q a power of some prime $p>0$. We assume that \mathbb{F}_{q} is algebraically closed in K. Fix $\alpha, \gamma \in K^{*}$ and consider the equation

$$
\begin{equation*}
\alpha \xi^{m}=\gamma^{p^{t}} \tag{1}
\end{equation*}
$$

with $\xi \in K^{*}$ and $m, t \in \mathbb{Z}_{\geq 0}$. We say that $t \in \mathbb{Z}_{\geq 0}$ is m-admissible if there is $\xi \in K^{*}$ such that (ξ, m, t) is a solution of (1). Define

$$
\Gamma:=\langle\alpha, \gamma\rangle
$$

to be the multiplicative group generated by α and γ.
Theorem 1. Suppose that $r k(\Gamma)=2$. Then there are only finitely many possibilities for m. Furthermore, for each fixed m the set of m - admissible t is empty or an arithmetic progression.

Proof. Define

$$
\Gamma^{\prime}:=\left\{x \in K^{*}: \exists m>0 \text { such that } x^{m} \in \Gamma\right\} .
$$

Because K and Γ are finitely generated, it follows that Γ^{\prime} is finitely generated too. Recall that \mathbb{F}_{q} was algebraically closed in K. It follows that $\Gamma^{\text {tors }}=\Gamma \cap \mathbb{F}_{q}^{*}$ and that $\Gamma^{\text {tors }}=\mathbb{F}_{q}^{*}$. Hence we get that

$$
\Gamma /\left(\Gamma \cap \mathbb{F}_{q}^{*}\right) \unlhd \Gamma^{\prime} / \mathbb{F}_{q}^{*},
$$

where $\Gamma^{\prime} / \mathbb{F}_{q}^{*}$ is a finitely generated free abelian group. So we can find a basis $\gamma_{1}, \ldots, \gamma_{r}$ of $\Gamma^{\prime} / \mathbb{F}_{q}^{*}$ such that

$$
\begin{aligned}
\Gamma^{\prime} / \mathbb{F}_{q}^{*} & =\left\langle\gamma_{1}, \ldots, \gamma_{r}\right\rangle \\
\Gamma /\left(\Gamma \cap \mathbb{F}_{q}^{*}\right) & =\left\langle\gamma_{1}^{d_{1}}, \ldots, \gamma_{r^{\prime}}^{d_{r^{\prime}}}\right\rangle
\end{aligned}
$$

for some $r^{\prime} \leq r, d_{1}|\ldots| d_{r^{\prime}}$.
Then, using the definition of Γ^{\prime} and our assumption that $\operatorname{rk}(\Gamma)=2$, it follows that $r=r^{\prime}=2$. We conclude that

$$
\Gamma^{\prime} / \mathbb{F}_{q}^{*}=\left\langle\gamma_{1}, \gamma_{2}\right\rangle
$$

So we can write uniquely

$$
\Gamma^{\prime}=\left\{\zeta^{m_{0}} \gamma_{1}^{m_{1}} \gamma_{2}^{m_{2}}: m_{0} \in\{0, \ldots, q-2\}, m_{1}, m_{2} \in \mathbb{Z}\right\}
$$

with ζ a primitive element of \mathbb{F}_{q}^{*}. Observe that $\xi \in \Gamma^{\prime}$, so we can write

$$
\begin{aligned}
& \alpha=\zeta^{a_{0}} \gamma_{1}^{a_{1}} \gamma_{2}^{a_{2}} \\
& \gamma=\zeta^{c_{0}} \gamma_{1}^{c_{1}} \gamma_{2}^{c_{2}} \\
& \xi=\zeta^{x_{0}} \gamma_{1}^{x_{1}} \gamma_{2}^{x_{2}}
\end{aligned}
$$

with $a_{0} . c_{0}, x_{0} \in\{0, \ldots, q-2\}$ and $a_{i}, c_{i}, x_{i} \in \mathbb{Z}$ for $i=1,2$. Then (ξ, m, t) is a solution to (1) if and only if

$$
\begin{align*}
a_{0}+m x_{0} & \equiv p^{t} c_{0} \quad \bmod (q-1) \\
a_{1}+m x_{1} & =p^{t} c_{1} \tag{2}\\
a_{2}+m x_{2} & =p^{t} c_{2} .
\end{align*}
$$

Our assumption $\operatorname{rk}(\Gamma)=2$ tells us that $a_{1} c_{2} \neq a_{2} c_{1}$. Write $m=p^{s} m^{\prime}$ with $p \nmid m^{\prime}$. We claim that there are only finitely many options for s and m^{\prime}, hence for m. But indeed

$$
m\left(a_{2} x_{1}-a_{1} x_{2}\right)=p^{t}\left(a_{2} c_{1}-a_{1} c_{2}\right),
$$

so $m^{\prime} \mid a_{2} c_{1}-a_{1} c_{2}$. Since $a_{2} c_{1}-a_{1} c_{2} \neq 0$, this gives finitely many possibilities for m^{\prime}.
Now we are going to bound s and for this we note that $a_{1} \neq 0$ or $a_{2} \neq 0$, again by the fact that $a_{1} c_{2} \neq a_{2} c_{1}$. Suppose without loss of generality that $a_{1} \neq 0$. The equation $a_{1}+m x_{1}=p^{t} c_{1}$ implies

$$
p^{\min (s, t)} \mid a_{1}
$$

so $\min (s, t)$ is bounded. On the other hand recall that

$$
m \mid p^{t}\left(a_{2} c_{1}-a_{1} c_{2}\right),
$$

which implies that $s \leq t+\operatorname{ord}_{p}\left(a_{2} c_{1}-a_{1} c_{2}\right)$. This shows that s is bounded, which completes the proof of the first part of Theorem (1).

So from now on we assume that m^{\prime}, s and hence m are fixed. If (ξ, t) is a solution to (2), then t satisfies

$$
\begin{array}{ll}
a_{0} \equiv p^{t} c_{0} & \bmod \operatorname{gcd}(m, q-1) \\
a_{1} \equiv p^{t} c_{1} & \bmod m \tag{3}\\
a_{2} \equiv p^{t} c_{2} & \bmod m .
\end{array}
$$

Reversely, if t satisfies (3), then (ξ, t) satisfies (2) for a uniquely determined ξ. Therefore it suffices to analyze (3). By the Chinese remainder theorem (3) is the same as

$$
\begin{align*}
a_{0} & \equiv p^{t} c_{0} \\
a_{1} & \bmod \operatorname{gcd}(m, q-1) \\
a^{t} c_{1} & \bmod m^{\prime} \tag{4}\\
a_{2} & \equiv p^{t} c_{2}
\end{align*} \bmod m^{\prime} .
$$

First we look at the first three equations of (4). If there is no solution $t \in \mathbb{Z}_{\geq 0}$, then the set of m-admissible t is empty. So for the remainder of this article we assume that there is
a solution $t \in \mathbb{Z}_{\geq 0}$. Let t_{0} be the smallest solution and let t be any solution. Then the first three equations can be rewritten as

$$
\begin{aligned}
& p^{t} c_{0} \equiv p^{t_{0}} c_{0} \quad \bmod \operatorname{gcd}(m, q-1) \\
& p^{t} c_{1} \equiv p^{t_{0}} c_{1} \quad \bmod m^{\prime} \\
& p^{t} c_{2} \equiv p^{t_{0}} c_{2} \quad \bmod m^{\prime} \text {, }
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
p^{t-t_{0}} & \equiv 1 \quad \bmod \frac{\operatorname{gcd}(m, q-1)}{\operatorname{gcd}\left(m, q-1, c_{0}\right)} \\
p^{t-t_{0}} & \equiv 1 \quad \bmod \frac{m^{\prime}}{\operatorname{gcd}\left(c_{1}, m^{\prime}\right)} \tag{5}\\
p^{t-t_{0}} & \equiv 1 \quad \bmod \frac{m^{\prime}}{\operatorname{gcd}\left(c_{2}, m^{\prime}\right)} .
\end{align*}
$$

Define

$$
\begin{aligned}
& O_{1}:=\text { order of } p \text { in }\left(\mathbb{Z} / \frac{\operatorname{gcd}(m, q-1)}{\operatorname{gcd}\left(m, q-1, c_{0}\right)} \mathbb{Z}\right)^{*} \\
& O_{2}:=\text { order of } p \text { in }\left(\mathbb{Z} / \frac{m^{\prime}}{\operatorname{gcd}\left(c_{1}, m^{\prime}\right)} \mathbb{Z}\right)^{*} \\
& O_{3}:=\text { order of } p \text { in }\left(\mathbb{Z} / \frac{m^{\prime}}{\operatorname{gcd}\left(c_{2}, m^{\prime}\right)} \mathbb{Z}\right)^{*} .
\end{aligned}
$$

Then t satisfies the first equation of (5) if and only if

$$
t=t_{0}+n O_{1}
$$

for some $n \in \mathbb{Z}_{\geq 0}$ and similarly for the second and third equation. Hence t satisfies (5) if and only if

$$
t=t_{0}+n \operatorname{lcm}\left(O_{1}, O_{2}, O_{3}\right)
$$

for some $n \in \mathbb{Z}_{\geq 0}$.
We still need to study the last two equations of (4), i.e.

$$
\begin{array}{lll}
a_{1} \equiv p^{t} c_{1} & \bmod p^{s} \\
a_{2} & \equiv p^{t} c_{2} & \bmod p^{s} . \tag{6}
\end{array}
$$

We distinguish two cases. If $a_{1} \equiv a_{2} \equiv 0 \bmod p^{s}$, then t satisfies (6) if and only if $t \geq$ $s-\operatorname{ord}_{p}\left(c_{2}\right)$. We conclude that in this case t satisfies (4) if and only if $t=t_{0}+n \operatorname{lcm}\left(O_{1}, O_{2}, O_{3}\right)$ for some $n \in \mathbb{Z}_{\geq 0}$ and $t \geq s-\operatorname{ord}_{p}\left(c_{2}\right)$. Clearly, the $t \in \mathbb{Z}_{\geq 0}$ satisfying these two conditions form an arithmetic progression as desired.

Suppose instead without loss of generality that $a_{1} \not \equiv 0 \bmod p^{s}$. Then the equation

$$
a_{1} \equiv p^{t} c_{1} \quad \bmod p^{s}
$$

can have at most one solution $t \in \mathbb{Z}_{\geq 0}$. Hence (4) has either a single or no solution. Again we reach the desired conclusion, which completes the proof of Theorem 1 .

Discussion

The case $\operatorname{rk}(\Gamma)=1$ leads to slightly different behavior. It is easy to see that the first part of Theorem 1 no longer holds. Indeed, take $K=\mathbb{F}_{p}(u)$ over \mathbb{F}_{p}. Choose $\alpha=\gamma=u$, then we have

$$
u \cdot u^{p^{t}-1}=u^{p^{t}}
$$

for all $t \in \mathbb{Z}_{\geq 0}$.
Define t to be admissible if it is m-admissible for some $m \geq 2$. Then t is admissible if and only if there is $m \in \mathbb{Z}_{\geq 2}$ such that $m \mid p^{t} c_{1}-a_{1}$ and $\operatorname{gcd}(m, q-1)=1$. Then, using results on S-unit equations (see Mahler), one can show that t is admissible for all sufficiently large t.

References

[1] P. Koymans (2015), The generalized Catalan equation in positive characteristic, http: //pub.math.leidenuniv.nl/~koymansph/CatalanFinalResult2.pdf

