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The goal of this article is to analyze an equation that arises naturally in the study of the
generalized Catalan equation in positive characteristic, see [1].

Setup
Let K be a finitely generated field over Fq with q a power of some prime p > 0. We assume
that Fq is algebraically closed in K. Fix α, γ ∈ K∗ and consider the equation

αξm = γp
t

(1)

with ξ ∈ K∗ and m, t ∈ Z≥0. We say that t ∈ Z≥0 is m-admissible if there is ξ ∈ K∗ such
that (ξ,m, t) is a solution of (1). Define

Γ := 〈α, γ〉

to be the multiplicative group generated by α and γ.

Theorem 1. Suppose that rk(Γ) = 2. Then there are only finitely many possibilities for m.
Furthermore, for each fixed m the set of m- admissible t is empty or an arithmetic progression.

Proof. Define
Γ′ := {x ∈ K∗ : ∃m > 0 such that xm ∈ Γ}.

Because K and Γ are finitely generated, it follows that Γ′ is finitely generated too. Recall
that Fq was algebraically closed in K. It follows that Γtors = Γ ∩ F∗q and that Γ′tors = F∗q .
Hence we get that

Γ/(Γ ∩ F∗q) E Γ′/F∗q ,

where Γ′/F∗q is a finitely generated free abelian group. So we can find a basis γ1, . . . , γr of
Γ′/F∗q such that

Γ′/F∗q = 〈γ1, . . . , γr〉

Γ/(Γ ∩ F∗q) = 〈γd11 , . . . , γ
dr′
r′ 〉

for some r′ ≤ r, d1 | . . . | dr′ .
Then, using the definition of Γ′ and our assumption that rk(Γ) = 2, it follows that

r = r′ = 2. We conclude that
Γ′/F∗q = 〈γ1, γ2〉.

So we can write uniquely

Γ′ = {ζm0γm1
1 γm2

2 : m0 ∈ {0, . . . , q − 2},m1,m2 ∈ Z}
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with ζ a primitive element of F∗q . Observe that ξ ∈ Γ′, so we can write

α = ζa0γa11 γ
a2
2

γ = ζc0γc11 γ
c2
2

ξ = ζx0γx1
1 γx2

2

with a0.c0, x0 ∈ {0, . . . , q− 2} and ai, ci, xi ∈ Z for i = 1, 2. Then (ξ,m, t) is a solution to (1)
if and only if

a0 +mx0 ≡ ptc0 mod (q − 1)

a1 +mx1 = ptc1

a2 +mx2 = ptc2.

(2)

Our assumption rk(Γ) = 2 tells us that a1c2 6= a2c1. Write m = psm′ with p - m′. We claim
that there are only finitely many options for s and m′, hence for m. But indeed

m(a2x1 − a1x2) = pt(a2c1 − a1c2),

so m′ | a2c1 − a1c2. Since a2c1 − a1c2 6= 0, this gives finitely many possibilities for m′.
Now we are going to bound s and for this we note that a1 6= 0 or a2 6= 0, again by

the fact that a1c2 6= a2c1. Suppose without loss of generality that a1 6= 0. The equation
a1 +mx1 = ptc1 implies

pmin(s,t) | a1,

so min(s, t) is bounded. On the other hand recall that

m | pt(a2c1 − a1c2),

which implies that s ≤ t+ ordp(a2c1 − a1c2). This shows that s is bounded, which completes
the proof of the first part of Theorem 1.

So from now on we assume that m′, s and hence m are fixed. If (ξ, t) is a solution to (2),
then t satisfies

a0 ≡ ptc0 mod gcd(m, q − 1)

a1 ≡ ptc1 mod m

a2 ≡ ptc2 mod m.

(3)

Reversely, if t satisfies (3), then (ξ, t) satisfies (2) for a uniquely determined ξ. Therefore it
suffices to analyze (3). By the Chinese remainder theorem (3) is the same as

a0 ≡ ptc0 mod gcd(m, q − 1)

a1 ≡ ptc1 mod m′

a2 ≡ ptc2 mod m′

a1 ≡ ptc1 mod ps

a2 ≡ ptc2 mod ps.

(4)

First we look at the first three equations of (4). If there is no solution t ∈ Z≥0, then the
set of m-admissible t is empty. So for the remainder of this article we assume that there is
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a solution t ∈ Z≥0. Let t0 be the smallest solution and let t be any solution. Then the first
three equations can be rewritten as

ptc0 ≡ pt0c0 mod gcd(m, q − 1)

ptc1 ≡ pt0c1 mod m′

ptc2 ≡ pt0c2 mod m′,

which is equivalent to

pt−t0 ≡ 1 mod
gcd(m, q − 1)

gcd(m, q − 1, c0)

pt−t0 ≡ 1 mod
m′

gcd(c1,m′)

pt−t0 ≡ 1 mod
m′

gcd(c2,m′)
.

(5)

Define

O1 := order of p in

(
Z/

gcd(m, q − 1)

gcd(m, q − 1, c0)
Z
)∗

O2 := order of p in

(
Z/

m′

gcd(c1,m′)
Z
)∗

O3 := order of p in

(
Z/

m′

gcd(c2,m′)
Z
)∗

.

Then t satisfies the first equation of (5) if and only if

t = t0 + nO1

for some n ∈ Z≥0 and similarly for the second and third equation. Hence t satisfies (5) if and
only if

t = t0 + nlcm(O1, O2, O3)

for some n ∈ Z≥0.
We still need to study the last two equations of (4), i.e.

a1 ≡ ptc1 mod ps

a2 ≡ ptc2 mod ps.
(6)

We distinguish two cases. If a1 ≡ a2 ≡ 0 mod ps, then t satisfies (6) if and only if t ≥
s−ordp(c2). We conclude that in this case t satisfies (4) if and only if t = t0+nlcm(O1, O2, O3)
for some n ∈ Z≥0 and t ≥ s − ordp(c2). Clearly, the t ∈ Z≥0 satisfying these two conditions
form an arithmetic progression as desired.

Suppose instead without loss of generality that a1 6≡ 0 mod ps. Then the equation

a1 ≡ ptc1 mod ps

can have at most one solution t ∈ Z≥0. Hence (4) has either a single or no solution. Again
we reach the desired conclusion, which completes the proof of Theorem 1.
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Discussion
The case rk(Γ) = 1 leads to slightly different behavior. It is easy to see that the first part of
Theorem 1 no longer holds. Indeed, take K = Fp(u) over Fp. Choose α = γ = u, then we
have

u · upt−1 = up
t

for all t ∈ Z≥0.
Define t to be admissible if it is m-admissible for some m ≥ 2. Then t is admissible if and

only if there is m ∈ Z≥2 such that m | ptc1 − a1 and gcd(m, q − 1) = 1. Then, using results
on S-unit equations (see Mahler), one can show that t is admissible for all sufficiently large t.
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