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The Cohen-Lenstra heuristics

Let p be an odd prime and K be a quadratic field. The group Cl(K )[p∞]
is believed to behave as a random finite, abelian p-group.

More formally, Cohen and Lenstra conjectured that

lim
X→∞

|{K im. quadr. : |DK | < X and Cl(K )[p∞] ∼= A}|
|{K im. quadr. : |DK | < X}|

=

∏∞
i=1

(
1− 1

pi

)
|Aut(A)|

for every finite, abelian p-group A.

For real quadratic fields

lim
X→∞

|{K re. quadr. : |DK | < X and Cl(K )[p∞] ∼= A}|
|{K re. quadr. : |DK | < X}|

=

∏∞
i=2

(
1− 1

pi

)
|A||Aut(A)|

,

where Cl(K )[p∞] is now the quotient of a random abelian group.
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Genus theory

Why is p = 2 excluded from the Cohen–Lenstra heuristics?

The group Cl(K )[2] has a predictable behavior unlike Cl(K )[p] for p odd.

The description of Cl(K )[2] is due to Gauss and is known as genus
theory. We have that

|Cl(K )[2]| = 2ω(DK )−1

and Cl(K )[2] is generated by the ramified prime ideals of OK .

Indeed, if p divides the discriminant of Q(
√
d), then p ramifies, so

Q(
√
d) p p2 = (p).

Q p

There is precisely one relation between the ramified primes.
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Gerth’s modification

Instead of Cl(K )[2∞], it is the group 2Cl(K )[2∞] that behaves randomly.

To be precise, Gerth conjectured the following

lim
X→∞

|{K im. quadr. : |DK | < X , 2Cl(K )[2∞] ∼= A}|
|{K im. quadr. : |DK | < X}|

=

∏∞
i=1

(
1− 1

2i

)
|Aut(A)|

for every finite, abelian 2-group A, and similarly for real quadratics.

Fouvry and Klüners dealt with the distribution of 2Cl(K )[4].

Theorem 1 (Smith, 2017)

Gerth’s conjecture is true.
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The dual class group

Theorem 2 (Class field theory)

We have an isomorphism

Cl(K ) ∼= Gal(H(K )/K )

given by sending a prime ideal p to Art(p). Furthermore, if K is Galois,
this isomorphism respects the natural Galois action of Gal(K/Q).

From this we get a bijection

Cl∨(K )[2]↔ {quadratic unramified extensions of K}.

Indeed,

Cl∨(K )[2] = Hom(Cl(K ),C∗)[2] ∼= Hom(Gal(H(K )/K ), {±1}).

Given χ ∈ Hom(Gal(H(K )/K ), {±1}), look at H(K )ker(χ). The quadratic
unramified characters are generated by χp with p dividing d .
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The Artin pairing

Let A be a finite abelian 2-group. We have a natural pairing

Artm : 2m−1A[2m]× 2m−1A∨[2m]→ F2

given by sending (a, χ) to ψ(a), where ψ satisfies 2m−1ψ = χ.

Duality of finite abelian groups implies that the left kernel is 2mA[2m+1]
and the right kernel is 2mA∨[2m+1].

For A = Cl(K ), we have that A∨ ∼= Hom(Gal(H(K )/K ),Q/Z). Then the
Artin pairing becomes

Artm,K : (p, χ) 7→ ψ(Frobp).

Smith essentially proves that the Artin pairing is random. This implies
Cohen–Lenstra.
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Random Artin pairings

What does it mean that the Artin pairing is random? How does one
compare Artin pairings?

Take an integer d and let p1, . . . , pr be its prime divisors ordered by size.
Then we have natural surjective maps

Fr
2 → Cl(Q(

√
d))[2], Fr

2 → Cl∨(Q(
√
d))[2].

This allows us to compare various Artin pairings if we fix the number of
prime divisors r .

If d is negative, then (1, . . . , 1) is in the kernel of both maps. For d
positive, this is no longer true!

Real quadratic: random N + 1 by N matrices.
Imaginary quadratic: random N by N matrices.
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The first Artin pairing

In matrix form Art1 becomes

χp1 χp2 . . . χpr

p1 ∗
(

p2
p1

)
. . .

(
pr
p1

)
p2

(
p1
p2

)
∗ . . .

(
pr
p2

)
...

...
...

. . .
...

pr
(

p1
pr

) (
p2
pr

)
. . . ∗

.

Indeed,

Q(
√
d ,
√
p1)

Q(
√
p1) Q(

√
d) p2 Q(

√
d/p1)

Q p2
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Prime divisors part I

This is an entirely analytic problem. To tackle this problem, our first aim
is to gain a deeper understanding of the typical structure of the prime
divisors of an integer.

An integer n has typically log log n prime divisors. More precisely, the set
of integers n such that

|ω(n)− log log n| > (log log n)2/3

has density zero.

A good heuristic model is that log log pi is roughly equal to i .

0.4 1.1 1.7 3.5 4.1
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Prime divisors part II

Hence to prove equidistribution of Art1, restrict to integers n with
ω(n) = r , where

|r − log log n| ≤ (log log n)2/3.

We can cover the set of squarefree integers up to N with r prime divisors
with product sets of the shape

X := X1 × · · · × Xr

where the Xi are suitable, disjoint intervals of primes. We view an
element x ∈ (x1, . . . , xr ) as a squarefree integer by multiplying out its
coordinates.

For this to work out, we need that most integers n satisfy

log pi+1 − log pi ≥ 1 for all i .

We also need to shrink the intervals at the end.
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Prime divisors part III

These boxes X are extremely useful. It will be the most natural way to
set up our algebraic results later for the higher Artin pairings, while it
also helps with analytic questions (allowing for inductive arguments).

Smith shows that a typical integer is regularly spaced, i.e.

| log log pi − i | ≤ (log log logN)1/5 max(i , log log logN)4/5

for all i ≤ r/3.

Smith also shows that there is typically at least one big gap, i.e.

log pi > log log pi ·

 i−1∑
j=1

log pj


for some i ∈ (0.5r1/4, 0.5r1/2). It is then easy to show that this is also
true for boxes (except for a negligible amount).
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Equidistribution of the first Artin pairing

We now need to deal with nice boxes X . Suppose that kgap is the index
where the huge gap occurs.

Pick any elements x1, . . . , xkgap in X1, . . . ,Xkgap respectively. For the Xi

with i > kgap now apply Chebotarev with respect to the field obtained by
adjoining the square roots of the xi .

By the regular spacing the remaining primes are of decent size and we
can apply the large sieve.

χp1 χp2 χp3

p1 ? Cheb Cheb
p2 Cheb LarSie LarSie
p3 Cheb LarSie LarSie

This information is enough to recover for example the rank distribution
as r goes to infinity, since there is only a ? in at most the top 0.5

√
r part

of the matrix.
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Recap: the Artin pairing

If A is a finite, abelian 2-group, we have a pairing

Artm : 2m−1A[2m]× 2m−1A∨[2m]→ F2

given by sending (a, χ) to ψ(a), where ψ satisfies 2m−1ψ = χ.

Duality of finite abelian groups implies that the left kernel is 2mA[2m+1]
and the right kernel is 2mA∨[2m+1].

For A = Cl(K ), we have that A∨ ∼= Hom(Gal(H(K )/K ),Q/Z). Then the
Artin pairing becomes

Artm,K : (p, χ) 7→ ψ(Frobp).
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Recap II: comparing Artin pairings

By genus theory we have a natural surjective map Fr
2 → Cl(K )[2] and

Fr
2 → Cl∨(K )[2], where r = ω(∆K ).

Pulling back Artm,K then induces a pairing Fr
2 × Fr

2 → F2. Concretely, if
p1, . . . , pr are the ramified prime ideals ordered by norm, then we are
keeping track of the set of (e1, . . . , er ) ∈ Fr

2 such that

pe11 · . . . · p
er
r ∈ 2mCl(K )[2m+1]

for all m ≥ 1.

Similarly, if χp1 , . . . , χpr are the unramified characters, then we bookkeep
the set of (e1, . . . , er ) ∈ Fr

2 with

e1χp1 + · · ·+ erχpr ∈ 2mCl∨(K )[2m+1].
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Higher Artin pairings

The key idea for the higher Artin pairings is to use reflection principles.

In the literature there are many known results that compare different
class groups. For example, we have

dimF3Cl(Q(
√
d)) ≤ dimF3Cl(Q(

√
−3d)) ≤ 1 + dimF3Cl(Q(

√
d)),

which is known as Scholz’s reflection principle.

The main algebraic result in Smith’s work is in fact a reflection principle
that compares the 2m-torsion of 2m quadratic fields.

How can we find such reflection principles?
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Reflection principles for the second Artin pairing

Suppose that we have four fields

{p, p′} × {q, q′} × {d}

such that χa is a double in the dual class group (with a | d), i.e. in the
right kernel of the various Art1.

Inspecting Art1, we see that χa is a double in Cl∨(Q(
√
m)) if and only if

x2 = ay2 +
m

a
z2

is non-trivially soluble over Q.

To make a cyclic degree 4 unramified extension of Q(
√
m) containing

Q(
√
a), one needs to pick a primitive point on the above equation and

adjoin the square root of x + y
√
a.

This is a Galois extension of Q (in fact a D4).
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A small compositum

But from the equations

x2 − ay2 =
dpq

a
z2, x2 − ay2 =

dpq′

a
z2, x2 − ay2 =

dp′q

a
z2

we get a solution to

x2 − ay2 =
dp′q′

a
z2.

Concretely, a part of the Hilbert class field of Q(
√
dp′q′) is already inside

the compositum of the Hilbert class fields of Q(
√
dpq), Q(

√
dpq′) and

Q(
√
dp′q).

This implies for b | d a common 4-rank ideal

Art2,dpq(χa, b) + Art2,dpq′(χa, b) + Art2,dp′q(χa, b) + Art2,dp′q′(χa, b) = 0.
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Rephrasing in terms of cocycles

To generalize this, it turns out to be convenient to work with cocycles.

We define N = Q2/Z2 with trivial GQ action and the discrete topology.

For a character χ : GQ → {±1} we define the twist N(χ) by
σ ∗χ n = χ(σ) · n.

We have a split exact sequence

0→ Cocy(Gal(K/Q),N(χ))[2k ]→
Cocy(Cl(K ) o Gal(K/Q),N(χ))[2k ]→ Cl(K )∨[2k ]→ 0,

where χ is the character corresponding to Gal(K/Q). Also note that
Cl(K ) o Gal(K/Q) ∼= Gal(H(K )/Q).

In simple words, we can lift dual class group elements to cocycles of
Gal(H(K )/Q) valued in N(χ) (with an easily described kernel).
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Cocycles surject to class group

On this slide we will prove that

Cocy(Cl(K ) o Gal(K/Q),N(χ))[2k ]→ Cl(K )∨[2k ]→ 0.

Take ψ ∈ Cl(K )∨[2k ] = Hom(Cl(K ),N[2k ]). Denote by σ a lift of the
non-trivial element of Gal(K/Q). Then a direct computation shows that
σ2 = id.

We claim that we can send σ to any element of N(χ)[2k ] and this

uniquely defines our cocycle lift ψ̃. The cocycle rule forces

0 = ψ̃(σ2)
cocycle rule

= σ ∗ ψ̃(σ) + ψ̃(σ) = −ψ̃(σ) + ψ̃(σ) = 0,

since χ(σ) = −1, so no conditions as claimed. Now check that this
extends to a cocycle.
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A common space

But now we can view our cocycles as elements in

Cocy(GQ,N(χ)) ⊆ Map(GQ,N),

so that everything lives in a common space.

Now take elements Cocy(Gal(HK/Q),N(χ))[2k ] with 2ψK = χa.

Look at

dψdpq(σ, τ) := ψdpq(στ)− ψdpq(σ)− ψdpq(τ)

= χdpq(σ) ∗ ψdpq(τ)− ψdpq(τ)

= (χdpq(σ)− 1) · ψdpq(τ)

= ι(χdpq(σ)) · χa(τ),

where ι : {±1} → F2.
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A small compositum: a cocycle perspective

We have

d (ψdpq + ψdp′q + ψdpq′ + ψdp′q′) (σ, τ) =

ι(χdpq(σ) · χdp′q(σ) · χdpq′(σ) · χdp′q′(σ)) · χa = 0,

which recovers our previous computation.


