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Today’s aim

Let P(a, b) be the probability that a random a× a matrix (with
coefficients in F2) has kernel of dimension b.

Theorem 1

We have for all n ≥ 0

lim
X→∞

|{K im. quadr. : DK < X , rk4Cl(K ) = n}|
|{K im. quadr. : DK < X}|

= lim
r→∞

P(r , n).

Furthermore, for all n ≥ m ≥ 0

lim
X→∞

|{K im. quadr. : DK < X , rk4Cl(K ) = n, rk8Cl(K ) = m}|
|{K im. quadr. : DK < X , rk4Cl(K ) = n}|

= P(n,m).



3/48

Today’s aim

Let P(a, b) be the probability that a random a× a matrix (with
coefficients in F2) has kernel of dimension b.

Theorem 1

We have for all n ≥ 0

lim
X→∞

|{K im. quadr. : DK < X , rk4Cl(K ) = n}|
|{K im. quadr. : DK < X}|

= lim
r→∞

P(r , n).

Furthermore, for all n ≥ m ≥ 0

lim
X→∞

|{K im. quadr. : DK < X , rk4Cl(K ) = n, rk8Cl(K ) = m}|
|{K im. quadr. : DK < X , rk4Cl(K ) = n}|

= P(n,m).



4/48

Today’s aim

Let P(a, b) be the probability that a random a× a matrix (with
coefficients in F2) has kernel of dimension b.

Theorem 1

We have for all n ≥ 0

lim
X→∞

|{K im. quadr. : DK < X , rk4Cl(K ) = n}|
|{K im. quadr. : DK < X}|

= lim
r→∞

P(r , n).

Furthermore, for all n ≥ m ≥ 0

lim
X→∞

|{K im. quadr. : DK < X , rk4Cl(K ) = n, rk8Cl(K ) = m}|
|{K im. quadr. : DK < X , rk4Cl(K ) = n}|

= P(n,m).



5/48

Main algebraic theorem

Write Artx for the second Artin pairing of Cl(x) := Cl(Q(
√
x)).

Theorem 2

Let p1, p2, q1, q2 be distinct prime numbers and let d < 0 be a squarefree
integer coprime to the pi and qj . Take a, b | d. Suppose that
b ∈ 2Cl(dpiqj)[4] for all i and j. In case we have χa ∈ 2Cl∨(dpiqj)[4]

2∑
i=1

2∑
j=1

Artdpiqj (b, χa) = 0.

Next suppose that χpia ∈ 2Cl∨(dpiqj)[4] for all i and j. Then

2∑
i=1

2∑
j=1

Artdpiqj (b, χpia) =
∑
r |b

FrobKp1p2,q1q2
/Q(r).

Here Kp1p2,q1q2 is an unramified quadratic extension of Q(
√
p1p2,

√
q1q2)

with Galois group D4 over Q and

FrobKp1p2,q1q2
/Q(r) ∈ Gal(Kp1p2,q1q2/Q(

√
p1p2,

√
q1q2)) ∼= F2.
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Main analytic theorem

To simplify matters, we will ignore all issues with small primes.

A Legendre specification is a function a : {(i , j) : 1 ≤ i < j ≤ r} → {±1}.
To a Legendre specification and a product space X , we define X (a) to be
the subset of x = (x1, . . . , xr ) ∈ X (a) such that(

xi
xj

)
= a(i , j).

Assumption 1

Let X = X1 × · · · × Xr be a nice product space. Then we have for all
Legendre specifications a

|X (a)| ≈ |X |
2r(r−1)/2 .

Remark: x , x ′ ∈ X (a) have the same Rédei matrix.
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Combinatorial results

Let Y1,Y2 be non-empty sets and put Y = Y1 × Y2. Put

V := {F : Y → F2}, W := {g : Y × Y → F2}.

Let d : V →W be the linear map given by

dF ((p1, q1), (p2, q2)) = F (p1, q1) + F (p1, q2) + F (p2, q1) + F (p2, q2).

Define A(Y ) := im(d).

Theorem 3

We have
dimF2 A(Y ) = (|Y1| − 1) · (|Y2| − 1).
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Main combinatorial theorem

Call g ∈ A(Y ) ε-bad if there exists F : Y → F2 with dF = g and∣∣∣∣F−1(0)− |Y |
2

∣∣∣∣ > ε|Y |. (1)

Theorem 4

Let ε > 0 be given. Then we have

|{g ∈ A(Y ) : g is ε-bad}|
|A(Y )|

≤ 21+|X |−
∏2

i=1(|Xi |−1) · exp(−2ε2|X |).

Proof.

Bounding the F satisfying equation (1) using Hoeffding’s inequality yields

21+|X | exp(−2ε2|X |).

Then multiply this bound with the size of the kernel of d .
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Proof of main theorem

Consider the squarefree integers up to a large parameter N. Let r be an
integer satisfying

|r − log logN| < (log logN)2/3. (2)

Reduction step I: we will prove that the theorem holds within the set of
squarefree integers with r prime divisors with r satisfying (2).

Reduction step II: we will prove that the theorem holds within the set of
nice boxes X = X1 × · · · × Xr with r satisfying (2).
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Bad Legendre matrices

We would next like to consider sets of the shape X (a). We throw away
the following Legendre specifications a

I in case the 4-rank of elements in X (a) is exceedingly large;

I we want the left and right kernel of the Rédei matrix to be as
“unrelated” as possible.

By our fundamental assumption that |X (a)| is of the correct size, this
becomes a combinatorial problem about matrices. From now on suppose
that the 4-rank is 2 and we will make the second condition explicit.

Take a basis c1, c2 ∈ Fr
2 for the characters in 2Cl∨(K )[4], and a basis

i1, i2 ∈ Fr
2 for the ideals in 2Cl(K )[4]. We want

|{v ∈ {1, . . . , r} : πv (x1c1 + x2c2 + x3i1 + x4i2) = 1}| ≈ r

2

for every non-trivial (x1, x2, x3, x4) ∈ F4
2.
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Reduction to characters

We want to show that every matrix Artx occurs equally often as x ranges
over X (a).

Take a non-trivial character ρ from 2× 2-matrices to F2.

Reduction step IV: we need to estimate the sum∑
x∈X (a)

ρ(Artx)

for each non-trivial character ρ.

As an example let us take the following character ρ that sends a matrix
to the sum in the top row. Then we get∑

x∈X (a)

Artx(i1, c1) + Artx(i1, c2).
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Variable indices

Pick a small index z1 with πz1(c1) = 1, πz1(c2) = πz1(i1) = πz1(i2) = 0.
Also pick a small index z2 with πz2(c1) = πz2(c2) = πz2(i1) = πz2(i2) = 0.
Finally pick a large index zCheb for which πzCheb(i1) = 1, but the other
projections are 0.

Reduction step V: for every element

P ∈
kgap∏
j=1

j 6=z1,z2

Xi

prove equidistribution of∑
x∈X (a)

π[kgap]−{z1,z2}(x)=P

Artx(i1, c1) + Artx(i1, c2).
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Variable indices II

Rreduction step VI (HARD): for every element

Q ∈
r∏

j=1
j 6=z1,z2,zCheb

Xi

and for two small subsets Yz1 ⊆ Xz1 and Yz2 ⊆ Xz2 show that∑
x∈Yz1

×Yz2
×X†zCheb×Q

Artx(i1, c1) + Artx(i1, c2)

with Y1 × Y2 consistent with Q and a and X †zCheb the subset of XzCheb

consistent with Y1 × Y2, Q and a.
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Finishing the proof: moral idea

We get the linear equations

Artdpiqk (i1, c1) + Artdpiql (i1, c1) + Artdpjqk (i1, c1) + Artdpjql (i1, c1) = RHS .

There are |Yz1 × Yz2 | variables on the LHS, while there are
(|Yz1 | − 1)(|Yz2 | − 1) independent equations.

The RHS behaves randomly by Chebotarev.

More formally it is a random additive function in A(Yz1 × Yz2).

The system is underdetermined, so we can not solve for Art. But
fortunately the system is only barely underdetermined.

Then it is still true that for almost all choices of RHS we have that all
choices of Art satisfying the equations are equidistributed.
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Finishing the proof

Now put
F = Artx(i1, c1) + Artx(i1, c2).

Define
M :=

∏
p1,p2∈Yz1

∏
q1,q2∈Yz2

Kp1p2,q1q2 .

Then it follows from the main algebraic result

dF ((p1, q1, x), (p2, q2, x)) = FrobKp1p2,q1q2
/Q(πzCheb(x)) + g0

with g0 ∈ A(Yz1 × Yz2) not depending on πzCheb(x).

Now consider the map XzCheb → Gal(M/Q) that sends

r 7→ FrobM/Q(r).

We have that

Gal

M/
∏

p1,p2∈Yz1

∏
q1,q2∈Yz2

Q(
√
p1p2,

√
q1q2)

 ∼= A(Yz1 × Yz2)

and FrobM/Q(r) lands in the above Galois group.
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Finishing the proof II

The Chebotarev Density Theorem shows that as r varies we get every
element of

Gal

M/
∏

p1,p2∈Yz1

∏
q1,q2∈Yz2

Q(
√
p1p2,

√
q1q2)


equally often.

Hence varying r , we get every element of

g ∈ A(Yz1 × Yz2)

equally often.

The combinatorial theorem shows that almost all g are such that all F
with dF = g are ε-equidistributed.

Then F is equidistributed as was to be shown.
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Remarks about `∞

In case ` = 2 our cocycles were valued in Q2/Z2. The correct analogue
for Cl(K )[`∞] with K cyclic of degree ` is Q`[ζ`]/Z`[ζ`].

In this case one gets reflection principles which compare `2 Artin pairings.
Alternatively one can compare 4 Artin pairings (but with appropriate
signs).

If p ≡ q ≡ 1 mod `, there are two cyclic degree ` fields that are ramified
only at p and q. Their class groups are essentially independent.

Character sums get more intricate since (choosing one character χq for
each q) ∑

1≤q≤X

χq(Frob(p))

need not oscillate for a bad choice of characters χq.
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