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1 Introduction

Fix an algebraic closure Q. All our number fields will be inside this fixed algebraic closure.
Let C be a collection of finite groups. If K is a number field, we define

K({C):=K U L

KCLCQ
Gal(L/K)=G for some GeC

and G ¢ = Gal(K(C)/K).

Question 1.1. What information of a number field K can we recover from the isomorphism
type of Gi ¢ as profinite group?

2 Known results

Theorem 2.1 (Neukirch, 1969). One can recover K, up to isomorphism, from Gg (gn.-
Theorem 2.2 (Uchida, 1976). One can recover K, up to isomorphism, from Gg fsolv.}-

Theorem 2.3 (Saidi-Tamagawa, 2019). For every integer m > 3 one can recover K, up to
isomorphism, from Gg (m_solv.} -

Theorem 2.4 (Onabe, 1976). There are two imaginary quadratic fields K and L with K # L
but G {any = 9L {ab}-

There are also some results that allow one to recover K from Gy (.1,1 together with some
extra data (CdSLMS).

Theorem 2.5 (K.—Pagano, 2022). There are two imaginary quadratic fields K and L with
K # L but G 2wty = 91, {2—nil} -

Conjecture 2.6 (K.-Pagano, 2022). There are two number fields K and L with Gg (i =
gL7{nﬂ} and K Ayé L.
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Theorem 2.7 (K.-Pagano, 2022). Let K and L be two imaginary quadratic class number 1
fields, not equal to Q(v/—2). Then we have G 10, D,y = Gr{ca,pa} if and only if

e (4 is in both K and L;

e (4 is not in K and not in L. Furthermore, there exists a Cy-extension of K containing

K(v/—1) and a Cy-extension of L containing L(v/—1);

e (4 is mot in K and not in L. Furthermore, there does not exist a Cy-extension of K
containing K (v/—1) and there does not exist a Cy-extension of L containing L(v/—1).

Remark 2.8. We have K({C4,D4}) = K({D4}).

3 The Rado graph
Definition 3.1 (Rado graph). An undirected graph G = (V, E) is Rado if
o V is countably infinite;

o for all finite disjoint set of vertices Uy and Us, there exists a vertex v & Uy U Us that is
adjacent to all vertices in Uy and is not adjacent to all vertices in Us.

Theorem 3.2 (Back-and-forth method). Let Gy = (Vi, E1) and Gy = (Va, E3) be two Rado
graphs. Then G1 = Gs.

Proof. Fix enumerations a1, as,as,... of Vi and by, bg, b3, ... of V5. We will construct a partial
graph isomorphism f, : Vi1 — V5 at each stage n € Z>¢. Initially, fo is the empty map.

(1) At odd stages n, take the smallest ¢ such that a; ¢ dom(f,). Take b; € V5 \ ran(f)
such that

(ijfn(a’)) € E2 <~ (CLZ‘,CL) € El
for all @ € dom(f,). Define f,, 1 by extending f,, by matching a; with b;.

(2) At even stages n, take the smallest j such that b; ¢ ran(f,). Take a; € V7 \ dom(fy,)
such that

(bj,fn(a)) € by <— (ai,a) e b
for all @ € dom(f,). Define f,, 1 by extending f,, by matching a; with b;.
Now ;2 fn is the desired isomorphism. ]
So how do we explicitly construct Rado graphs? Here is a classical result due to Erdds.

Theorem 3.3 (Erdés—Rényi model). Consider a random countably infinite graph G by choos-
ing, independently and with probability 1/2 for each pair of vertices, whether to connect them
by an edge. Then G is Rado with probability 1.



Proof. For fixed Uy and Uy
P(Jv ¢ Uy U Uz such that x is adjacent to Uy, but not to Us) = 0.
Since there are only countably many choices for U; and Us, the result follows. O

For our purposes the following example will be an important source of inspiration.

Example 3.4 (Cameron). Consider the following graph G. The vertices V' are the primes 1
modulo 4. We connect the vertices p and q by an edge if (p/q) = 1. This is well-defined by
quadratic reciprocity.

The resulting graph is Rado thanks to Dirichlet’s theorem on primes in arithmetic pro-
gressions.
4 (Galois cohomology and Dy,

Our graphs are now also allowed to have loops.

Definition 4.1. We attach a graph G(K) = (V, E) to a number field K. Let V = K*/K*2.
Then

(a,b) € E <= xq U xp is trivial in H*(G,Fs)

= 2?2 = ay® + bz* has a non-trivial solution (z,y, z) € K*.

Lemma 4.2. Let a,b € K*/K*? be linearly independent.
(a) There exists a Dy-extension containing K(v/a,/d) if and only if (a,b) € E.

(b) There exists a Cy-extension containing K (v/a) if and only if (a,a) € E.

Proof. Use the inflation-restriction exact sequence and the explicit description of H?(F3,Fs)
and H?(Fy,Fy). O

Theorem 4.3. Let K and L be two number fields. Then we have
UK (C1,Ds} = 9IL{Cs,Ds} = G(K)=G(L).

Proof. One can formally recover the group using cocycles and 1-cochains. O

5 End of proof
Lemma 5.1. We have
(v,a) € E <= (a,a) € Eforalla eV

if and only if v = —1.



Proof. <=: Since x_, U X, is trivial, it follows that
X—1 U Xq is trivial <= x4 U x, is trivial.

=>: Conversely, suppose that x, U x, is trivial if and only if x, U x, is trivial if and only if
X—1 U Xq is trivial.

Let p be an odd prime ideal of K that is unramified in K (1/v, v/—1). We claim that p splits
in K (y/v) if and only if p splits in K(v/—1). Let L be the ray class field of conductor 8ocor,
where t is the product of the ramified prime ideals in K(y/v). By the Chebotarev Density
Theorem there exists q with Artz(p) = —Artz(q). Then there exists a totally positive element
a = 1 mod 8t such that (a) = pg, and for such a

X—1U Xq is trivial <= p splits in K(v/—1)

and
Xv U Xq is trivial <= p splits in K(1/v).

Having established the claim, the lemma follows by another application of the Chebotarev
Density Theorem. O

We now construct three isomorphism invariants of the graph G(K).

e we have (a,a) € E for all a € V;
e there exists a € V such that (a,a) € E, and (—1,—1) € E;

e we have (—1,—1) € E.

Now our main theorem follows from back-and-forth method similar to the case of the
Rado graph (need only deal with second case). Differences in the argument:

e we start by matching —1 with —1. Then match 2 with 2;

e list the odd prime elements 7, w2, ... of K and the odd prime elements p1, po2,... of L.
Observe that 2 is inert in K, Ky = Qo(v/5) and K*/K*? = (—1,2,7,72,...).

Lemma 5.2. Fiz some character x : GQQ(\/S) — Fy. Given some odd prime elements
1, ...,k of K and elements ay,...,a € Q/Z[2], there exists a prime element w such
that

- XTK"GQ2(\/5) = XJ
— invge(xxr U Xxr,) = @i
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