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1 Introduction

Fix an algebraic closure Q. All our number fields will be inside this fixed algebraic closure.
Let C be a collection of finite groups. If K is a number field, we define

K(C) := K

 ⋃
K⊆L⊆Q

Gal(L/K)∼=G for some G∈C

L


and GK,C = Gal(K(C)/K).

Question 1.1. What information of a number field K can we recover from the isomorphism
type of GK,C as profinite group?

2 Known results

Theorem 2.1 (Neukirch, 1969). One can recover K, up to isomorphism, from GK,{fin.}.

Theorem 2.2 (Uchida, 1976). One can recover K, up to isomorphism, from GK,{solv.}.

Theorem 2.3 (Säıdi–Tamagawa, 2019). For every integer m ≥ 3 one can recover K, up to
isomorphism, from GK,{m−solv.}.

Theorem 2.4 (Onabe, 1976). There are two imaginary quadratic fields K and L with K 6= L
but GK,{ab} ∼= GL,{ab}.

There are also some results that allow one to recover K from GK,{ab} together with some
extra data (CdSLMS).

Theorem 2.5 (K.–Pagano, 2022). There are two imaginary quadratic fields K and L with
K 6= L but GK,{2−nil} ∼= GL,{2−nil}.

Conjecture 2.6 (K.–Pagano, 2022). There are two number fields K and L with GK,{nil} ∼=
GL,{nil} and K 6∼= L.
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Theorem 2.7 (K.–Pagano, 2022). Let K and L be two imaginary quadratic class number 1
fields, not equal to Q(

√
−2). Then we have GK,{C4,D4}

∼= GL,{C4,D4} if and only if

• ζ4 is in both K and L;

• ζ4 is not in K and not in L. Furthermore, there exists a C4-extension of K containing
K(
√
−1) and a C4-extension of L containing L(

√
−1);

• ζ4 is not in K and not in L. Furthermore, there does not exist a C4-extension of K
containing K(

√
−1) and there does not exist a C4-extension of L containing L(

√
−1).

Remark 2.8. We have K({C4, D4}) = K({D4}).

3 The Rado graph

Definition 3.1 (Rado graph). An undirected graph G = (V,E) is Rado if

• V is countably infinite;

• for all finite disjoint set of vertices U1 and U2, there exists a vertex v 6∈ U1 ∪ U2 that is
adjacent to all vertices in U1 and is not adjacent to all vertices in U2.

Theorem 3.2 (Back-and-forth method). Let G1 = (V1, E1) and G2 = (V2, E2) be two Rado
graphs. Then G1

∼= G2.

Proof. Fix enumerations a1, a2, a3, . . . of V1 and b1, b2, b3, . . . of V2. We will construct a partial
graph isomorphism fn : V1 → V2 at each stage n ∈ Z≥0. Initially, f0 is the empty map.

(1) At odd stages n, take the smallest i such that ai 6∈ dom(fn). Take bj ∈ V2 \ ran(fn)
such that

(bj , fn(a)) ∈ E2 ⇐⇒ (ai, a) ∈ E1

for all a ∈ dom(fn). Define fn+1 by extending fn by matching ai with bj .

(2) At even stages n, take the smallest j such that bj 6∈ ran(fn). Take ai ∈ V1 \ dom(fn)
such that

(bj , fn(a)) ∈ E2 ⇐⇒ (ai, a) ∈ E1

for all a ∈ dom(fn). Define fn+1 by extending fn by matching ai with bj .

Now
⋃∞
n=0 fn is the desired isomorphism.

So how do we explicitly construct Rado graphs? Here is a classical result due to Erdős.

Theorem 3.3 (Erdős–Rényi model). Consider a random countably infinite graph G by choos-
ing, independently and with probability 1/2 for each pair of vertices, whether to connect them
by an edge. Then G is Rado with probability 1.
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Proof. For fixed U1 and U2

P(∃v 6∈ U1 ∪ U2 such that x is adjacent to U1, but not to U2) = 0.

Since there are only countably many choices for U1 and U2, the result follows.

For our purposes the following example will be an important source of inspiration.

Example 3.4 (Cameron). Consider the following graph G. The vertices V are the primes 1
modulo 4. We connect the vertices p and q by an edge if (p/q) = 1. This is well-defined by
quadratic reciprocity.

The resulting graph is Rado thanks to Dirichlet’s theorem on primes in arithmetic pro-
gressions.

4 Galois cohomology and D4

Our graphs are now also allowed to have loops.

Definition 4.1. We attach a graph G(K) = (V,E) to a number field K. Let V = K∗/K∗2.
Then

(a, b) ∈ E ⇐⇒ χa ∪ χb is trivial in H2(GK ,F2)

⇐⇒ x2 = ay2 + bz2 has a non-trivial solution (x, y, z) ∈ K3.

Lemma 4.2. Let a, b ∈ K∗/K∗2 be linearly independent.

(a) There exists a D4-extension containing K(
√
a,
√
b) if and only if (a, b) ∈ E.

(b) There exists a C4-extension containing K(
√
a) if and only if (a, a) ∈ E.

Proof. Use the inflation–restriction exact sequence and the explicit description of H2(F2
2,F2)

and H2(F2,F2).

Theorem 4.3. Let K and L be two number fields. Then we have

GK,{C4,D4}
∼= GL,{C4,D4} ⇐⇒ G(K) ∼= G(L).

Proof. One can formally recover the group using cocycles and 1-cochains.

5 End of proof

Lemma 5.1. We have

(v, a) ∈ E ⇐⇒ (a, a) ∈ E for all a ∈ V

if and only if v = −1.
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Proof. ⇐=: Since χ−a ∪ χa is trivial, it follows that

χ−1 ∪ χa is trivial ⇐⇒ χa ∪ χa is trivial.

=⇒: Conversely, suppose that χv ∪ χa is trivial if and only if χa ∪ χa is trivial if and only if
χ−1 ∪ χa is trivial.

Let p be an odd prime ideal of K that is unramified in K(
√
v,
√
−1). We claim that p splits

in K(
√
v) if and only if p splits in K(

√
−1). Let L be the ray class field of conductor 8∞r,

where r is the product of the ramified prime ideals in K(
√
v). By the Chebotarev Density

Theorem there exists q with ArtL(p) = −ArtL(q). Then there exists a totally positive element
a ≡ 1 mod 8r such that (a) = pq, and for such a

χ−1 ∪ χa is trivial ⇐⇒ p splits in K(
√
−1)

and
χv ∪ χa is trivial ⇐⇒ p splits in K(

√
v).

Having established the claim, the lemma follows by another application of the Chebotarev
Density Theorem.

We now construct three isomorphism invariants of the graph G(K).

• we have (a, a) ∈ E for all a ∈ V ;

• there exists a ∈ V such that (a, a) 6∈ E, and (−1,−1) ∈ E;

• we have (−1,−1) 6∈ E.

Now our main theorem follows from back-and-forth method similar to the case of the
Rado graph (need only deal with second case). Differences in the argument:

• we start by matching −1 with −1. Then match 2 with 2;

• list the odd prime elements π1, π2, . . . of K and the odd prime elements ρ1, ρ2, . . . of L.
Observe that 2 is inert in K, K2 = Q2(

√
5) and K∗/K∗2 = 〈−1, 2, π1, π2, . . . 〉.

Lemma 5.2. Fix some character χ : GQ2(
√

5) → F2. Given some odd prime elements

π1, . . . , πk of K and elements a1, . . . , ak ∈ Q/Z[2], there exists a prime element π such
that

– χπ|GQ2(
√
5)

= χ;

– invπ(χπ ∪ χπi) = ai.
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