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The ternary Goldbach problem

A very classical problem in analytic number theory is the ternary
Goldbach problem, which asks if every odd integer n > 5 can be written
as the sum of three primes.

Hardy and Littlewood (1923) were the first to seriously attack this
problem using their well-known circle method.

They were able to show that every sufficiently large odd integer is the
sum of three primes conditional on the veracity of GRH.

Vinogradov (1930s) was able to remove the GRH assumption, and
recently Helfgott (2013) completely settled the ternary Goldbach problem.
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Artin’s conjecture

An integer g is called a primitive root modulo p if it is a generator of the
multiplicative group F∗p.

Throughout this talk we fix an integer g which is neither −1 nor a
square.

Then Artin’s conjecture (∼1930) states that g is a primitive root modulo
infinitely many primes p.

In fact, as part of his conjecture, Artin gave an explicit formula for the
natural density of such primes.

Hooley (1967) proved Artin’s conjecture under the assumption of GRH,
but no unconditional proof has been found yet.
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Artin’s conjecture and arithmetic progressions

Given g , let ∆ be the discriminant of the quadratic field Q(
√
g) and let

h ≥ 1 be the largest integer such that g is a h-th power.

Theorem 1 (Lenstra (1977))

Let a, f be integers with gcd(a, f ) = 1 and let Pa,f ,g denote the set of
primes p such that g is a primitive root modulo p and p ≡ a mod f .
Then, assuming GRH, Pa,f ,g has a natural density δ(a, f , g) in the set of
prime numbers. Furthermore, δ(a, f , g) = 0 if and only if one of the
following holds

I gcd(a− 1, f , h) > 1;

I ∆ | f and
(

∆
a

)
= 1;

I ∆ | 3f , 3 | ∆, 3 | h and
(
−∆/3

a

)
= −1.

In this case Pa,f ,g is a finite set, which one can explicitly compute.

Example: for g = 27 we have ∆ = 12 and h = 3. Taking f = 12 one can
check that δ(a, 12, 27) 6= 0 if and only if a = 5.
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Our problem

Let n > 5 be an odd integer and let g be an integer not equal to −1 or a
square. Can we express n as

n = p1 + p2 + p3,(1)

where p1, p2, p3 are odd primes having g as a primitive root?

Example: If g = 27, then Lenstra’s Theorem implies that p can only have
g as primitive root if p ≡ 5 mod 12 or p = 2. In this case (1) can only
have a solution if n ≡ 3 mod 12.

Theorem 2 (Frei, Koymans, Sofos (2017))

Assume GRH. Then every sufficiently large integer n ≡ 3 mod 12 can be
written as the sum of three odd primes p1, p2, p3 all having 27 as a
primitive root.
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General asymptotic results

For general g we have proven the following theorem.

Theorem 3 (Frei, Koymans, Sofos (2017))

Let g be an integer such that g is neither −1 nor a square. Assuming
GRH we have for all positive odd integers n and all reals β ∈ (0, 1)

∑
p1+p2+p3=n
∀i : F∗

pi
=〈g〉

3∏
i=1

log pi = Cg (n)n2 + Og ,β(n2(log n)−β)

for some explicit function Cg (n) ≥ 0.

Trying the circle method directly leads to problems, because no good
Siegel–Walfisz type asymptotic formula for the number of primes up to x
having g as a primitive root is currently available.

The proof is a combination of Hooley’s method with the circle method.
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An explicit formula for Cg(n)

A large part of the paper is devoted to finding an explicit formula for
Cg (n) and in particular establishing when Cg (n) 6= 0. Define Ag as

Ag := lim
x→+∞

#{p ≤ x : F∗p = 〈g〉}
#{p ≤ x}

.

Also define

σg ,n(d) := d
∑

b1,b2,b3 mod d
b1+b2+b3≡n mod d

3∏
i=1

δ(bi , d , g)

Ag
,

where the factors δ(bi , d , g) are as in Lenstra’s Theorem. Then we have
the following explicit expression for Cg (n)

Cg (n) = A3
g · σg ,n(|∆|) ·

∏
p-∆

σg ,n(p),

where ∆ is the discriminant of Q(
√
g).
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More results about Cg(n)

In contrast to the usual applications of the circle method, the constant
Cg (n) does not factorize completely as an Euler product.

Provided that Cg (n) 6= 0, we have the following lower bound for Cg (n)

Cg (n)�
(
ϕ(h)

|∆|2h

)3

with an absolute implied constant, where h ≥ 1 is the largest integer such
that g is a h-th power.

Theorem 4 (Frei, Koymans, Sofos (2017))

Let n be an odd positive integer and g an integer not equal to −1 or a
square. Then we have the following equivalence

Cg (n) > 0⇔ σg ,n(|∆|)σg ,n(3) > 0.
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When is Cg(n) > 0

Our previous theorem gives a nice criterion for Cg (n) > 0, but it is in
terms of σg ,n(|∆|) and σg ,n(3). We have to make this more explicit.

It is easy to determine when σg ,n(3) > 0. To decide whether
σg ,n(|∆|) > 0 we need to find an equivalent condition that is easier to
handle.

Using some elementary estimates one can show that σg ,n(|∆|) > 0
provided that ∆ has a prime factor greater than 7. This leaves only finite
many possibilities for ∆ to check.
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Final examples

Let g be an integer neither −1 nor a square. In case ∆ = 12 the
following table gives us necessary and sufficient congruence conditions for
odd n to satisfy Cg (n) > 0

Disc(Q(
√
g)) Power properties of g Congruence conditions for n

12 g is not a cube n ≡ 3, 5, 7, 9 mod 12
12 g is a cube n ≡ 3 mod 12.

If |∆| > 840 = 8 · 3 · 5 · 7, then we have
Disc(Q(

√
g)) Power properties of g Congruence conditions for n

3 - ∆ g is a cube n ≡ 0 mod 3
Otherwise - No conditions on n.

The complete table can be found in our paper.
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Questions

Thank you for your attention!
Questions?


