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Malle’s conjecture

Conjecture (Malle’s conjecture)

Let G be a finite, non-trivial group. Then there exist numbers
a(G) € Q=o, b(G) € Z>o and c(G) > 0 such that

#{K/Q: Dk < X,Gal(K/Q) = G} ~ ¢(G)X?(®)(log X)5(©),
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#{K/Q: Dk < X,Gal(K/Q) = G} ~ ¢(G)X()(log X)?(®),
This is a generalization of the inverse Galois problem.
As phrased above, this conjecture is widely believed to be correct.

Malle proposed some explicit values amaie(G) and byaie(G). Malle's
bmatie(G) is known to be wrong in general.

Sometimes ¢(G) is an Euler product. This is expected to be true for S,
(Malle-Bhargava principle).
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> abelian G by Wright;

» S3 by Davenport—Heilbronn (with much follow-up work);
» S4, S5 by Bhargava;

» S3 C S by Bhargava—Wood;

>

Dy C S4 by Cohen—Diaz y Diaz—Olivier (with follow-up work by
Bucur—Florea—Serrano Lépez—Varma);

v

generalized quaternion groups and some wreath products by Kliiners;

» any nilpotent group G, in the regular representation, such that all
elements of order p are central, where p is the smallest prime
dividing #G by K.—Pagano;

» nonic Heisenberg extensions by Fouvry-K.;

» direct products S, X A for n € {3,4,5} and A abelian by Wang (with
#A coprime to some values) and later by Masri—Thorne-Tsai-Wang.
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need not be an Euler product and subfields may occur a positive
proportion of the time.
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Ordering by discriminant has some undesirable features: leading constant
need not be an Euler product and subfields may occur a positive
proportion of the time.

Wood (2010) introduced a class of "fair counting functions”.

Important examples of fair counting functions are the conductor and the
product of ramified primes.

Maki (1993): Malle's conjecture for abelian extensions ordered by
conductor.

Wood (2010): Malle's conjecture for abelian extensions ordered by any
fair counting function with local conditions.

Altug—Shankar-Varma—-Wilson (2017): Malle's conjecture for Dy by Artin
conductor.
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) #{K/Q:Hp:lp;ﬁ{id}pSX7Ga|(K/Q)%G}
im

=1
X—00 c’(G)X(log X)¥'(6)

is not true in general. Counterexamples exist for nilpotency class 2.

Work in progress: asymptotic for a slightly modified counting function.
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an overview for the proof of the asymptotic for the number of Galois
Dy4-extensions by product of ramified primes.

We have a central exact sequence
0—=F,— Dy BF2—0
and a bijection
Epi(Go,F3) <> {(a, b) € (Q*/Q**)? : a,b lin. ind.}.

Given 7 € Epi(Gg,F3), this leads to the central embedding problem

0 F, D, F2 0

It is well-known that a F3-extension Q(v/a,/b) of Q is contained in a
Dy4-extension if and only if x2 = ay? + bz? has a non-trivial point.
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Step 1b: parametrization

If p € Epi(Gg, Ds) is a lift of m € Epi(Gg,F2) and q : Dy — T3, then
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Under this parametrization, the product of ramified primes maps to
rad(]abc|) (ignoring minor issues with ramification at 2).

It turns out to be more convenient to work with seven variables a5 for
) € S C{a,b,c}, where as is the product over all primes p dividing the
variables in S and not dividing the variables in {a, b,c} — S.

The variables as are squarefree and pairwise coprime, and we have
rad((abcl) = [Tpcscqa ey losl-
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Step 2: character sums

Define T(a) to be the subsets of {a, b, c} containing a. Then we have

a:Has

SeT(a)

and similarly for b, c.
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and similarly for b, c. So to count Dj-extensions, must evaluate

2
E 2 (I I |O¢5|> ) 1X2:OéaOta,baa,caa,b,cy2+aboéa,boéb,caa,b,c22 sol. -
S

H@ng{a,b,c} |045‘SX
a,b lin. ind.

Hasse-Minkowski: detect solubility of conic locally at primes dividing as.

Now rewrite the above sum as a sum over Legendre symbols involving
the variables as.

8/10



Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large
sieve.
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How does this process generalize?

» Build a nilpotent extension by iterated central extensions. This
yields a parametrization of G-extensions by tuples of squarefree
integers satisfying central embedding problems.

» These central embedding problems get much more complicated, but
still satisfy local-to-global and are certainly determined by Frob, for
p dividing the variables of the parametrization.

> In our chosen ordering, a typical extension is a rather large twist of a
“minimally ramified central extension”. Getting equidistribution of
Frobenius in minimally ramified extensions is very hard. The key
idea of the proof is to exploit the twisting.

» Proof can most likely be made unconditional with a suitably strong
large sieve for nilpotent extensions.
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Questions?

Thank you for your attention!
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