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Malle’s conjecture

Conjecture (Malle’s conjecture)

Let G be a finite, non-trivial group. Then there exist numbers
a(G) € Q=o, b(G) € Z>o and c(G) > 0 such that

#{K/Q: Dk < X,Gal(K/Q) = G} ~ ¢(G)X?(®)(log X)5(©),
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a(G) € Q=o, b(G) € Z>o and c(G) > 0 such that

#{K/Q: Dk < X,Gal(K/Q) = G} ~ ¢(G)X()(log X)?(®),
This is a generalization of the inverse Galois problem.
As phrased above, this conjecture is widely believed to be correct.

Malle proposed some explicit values amaie(G) and byaie(G). Malle's
bmatie(G) is known to be wrong in general.

Sometimes ¢(G) is an Euler product. This is expected to be true for S,
(Malle-Bhargava principle).
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An exercise about hyperbolas

We have

da=>" N 1= > (l))i+0(1))

ab?<X b<v/X a<X/b? b<v/X
=1
=X> =zt O(VX).
b=1

Observations:
> main contribution comes from b < log log log log X;;
» every given b contributes a positive proportion to the main term.

Compare instead with

doi=> > 1= <i+0(1)) = Xlog X + O(X).
ab<X b<X a<X/b b< X

Both observations fail now.
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Ramification theory

Let K/Q be a Galois extension and suppose that p does not divide
[K:Q]. Then

vp(DK)_[K:Q]-(l—IlA),

where Z,, is an inertia subgroup.
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Ramification theory

Let K/Q be a Galois extension and suppose that p does not divide
[K:Q]. Then

vp(DK)_[K:Q]~(1—Ilp|),

where Z,, is an inertia subgroup.

Counting by discriminant has some strong similarities with counting
under the hyperbola.

Heuristically: almost all ramified primes p in a typical field K/Q are such
that |Z,| equals the smallest prime divisor of [K : Q].

Moral: inertia subgroups tend to “typically” be as small as possible when
counting by discriminant.
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An example

Example (Non-Galois quartic D,)
If L/Q is quartic Dy with quadratic subfield K, then for all p # 2

vp(Dr) =

O~ N W

if p is totally ramified

if p is in all other cases

if p is unramified in K/Q but ramifies in the biquadratic
if p is unramified.
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An example

Example (Non-Galois quartic D,)
If L/Q is quartic Dy with quadratic subfield K, then for all p # 2

if p is totally ramified
if p is in all other cases

Vp(DL) = . . ‘e . e . . .
if p is unramified in K/Q but ramifies in the biquadratic

O~ N W

if p is unramified.

Thus, when we count quartic D,-extensions, the discriminant has the
shape ab?c3.

Observations:
» main contribution comes from quadratic fields K with
Dk < loglogloglog X;
> a positive proportion of the quartic D,-extensions have a given
quadratic field K as their subfield.
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Group theoretic properties greatly influence how difficult it is to count by
discriminant, heavily exploited in previous works. Difficult example:

Example (L/Q Galois with Gal(L/Q) = D,.)
Note that Don = 7,/2"7 % 7Z./27.. The elements of minimal order are
(k,1) (reflections) and (2"~1k,0) (rotations with order dividing 2).

L

L(@10)

Q3 V) = L)
oA T QW=D W)
Q

Positive proportion of extensions have L{2"""-0) /Q(+/ab) unramified. So
at least as hard as getting distribution of CI(Q(v/d))[2%°].
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Fair counting functions

Ordering by discriminant has some undesirable features: leading constant
need not be an Euler product and subfields may occur a positive
proportion of the time.
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Fair counting functions

Ordering by discriminant has some undesirable features: leading constant
need not be an Euler product and subfields may occur a positive
proportion of the time.

Wood (2010) introduced a class of "fair counting functions”.

Important examples of fair counting functions are the conductor and the
product of ramified primes.

Maki (1993): Malle's conjecture for abelian extensions ordered by
conductor.

Wood (2010): Malle's conjecture for abelian extensions ordered by any
fair counting function with local conditions.

Altug—Shankar-Varma—-Wilson (2017): Malle's conjecture for Dy by Artin
conductor.
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analogue of Malle's b(G) in this situation.
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Main result

A group G is called nilpotent if it is a direct product of p-groups.

Theorem (K.—Pagano)
Assume GRH. Let G be a nilpotent group with #G odd. Then

- #* {K/@ 40y P < X, Gal(K/Q) = G}
X /(G)X(log X)2'(€)

21,
where c’(G) is the expected Euler product and where b'(G) is the naive
analogue of Malle's b(G) in this situation.

Surprisingly, the corresponding asymptotic

. # {K/Q : Hp:lpgﬁ{id} P < X’ Gal(K/Q) = G}
lim =1

X—s00 c/(G)X(log X)'(6)

is not true in general. Counterexamples exist for nilpotency class 2.
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Inverse Galois problem

The assumption that |G| is odd corresponds to the substantial difference
in our understanding of the inverse Galois problem.

If |G| is odd and nilpotent, the inverse Galois problem was solved by
Scholz-Reichardt.

For 2-groups, the situation is much more involved. The only known proof
is a famous result of Shafarevich (inverse Galois for solvable groups).
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so we argue inductively.
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Scholz—Reichardt sketch |

Every nilpotent group can be built up from repeated central extensions,
so we argue inductively.

Let H be a p-group and let G be a central F,-extension of H, i.e.
1-F,—-G—H—=1

Suppose that we have a H-extension 7 : Gg — H, and consider

1 F, G/H 1
e

Go

It is well-known that we have a local-to-global for the above diagram,
which roughly means that we have to control 7(Frob, ) for all v.
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get m+x: Gg = H.

11/16



Scholz—Reichardt sketch Il

Note that H also fits in an exact sequence
1-F,>H—-H -1

Therefore we may twist our H-extension 7 : Gg — H by x : Gg — F,, to
get m+x: Gg = H.

Idea: we take x; to be of prime conductor ¢, unramified in 7, and use it
to fix the Frobenius elements at all primes ramified in .

11/16



Scholz—Reichardt sketch Il

Note that H also fits in an exact sequence
1-F,>H—-H -1

Therefore we may twist our H-extension 7 : Gg — H by x : Gg — F,, to
get m+x: Gg = H.

Idea: we take x; to be of prime conductor ¢, unramified in 7, and use it
to fix the Frobenius elements at all primes ramified in .

The resulting map 7 + x¢ : Gg — Fp also ramifies at ¢, so we need to
check local-to-global also at /.

11/16



Scholz—Reichardt sketch Il

Note that H also fits in an exact sequence
1-F,>H—-H -1

Therefore we may twist our H-extension 7 : Gg — H by x : Gg — F,, to
get m+x: Gg = H.

Idea: we take x; to be of prime conductor ¢, unramified in 7, and use it
to fix the Frobenius elements at all primes ramified in .

The resulting map 7 + x¢ : Gg — Fp also ramifies at ¢, so we need to
check local-to-global also at /.

Here we use that p is odd in an essential way: x¢(Frobg) and x4(Froby)
are independent.
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Step la: parametrization

To give an idea how the techniques work, we will (unconditionally!) give
an overview for the proof of the asymptotic for the number of Galois
Dy4-extensions by product of ramified primes.
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Step la: parametrization

To give an idea how the techniques work, we will (unconditionally!) give
an overview for the proof of the asymptotic for the number of Galois
Dy4-extensions by product of ramified primes.

We have a central exact sequence
0—=F,— Dy BF2—0
and a bijection
Epi(Go,F3) <> {(a, b) € (Q*/Q**)? : a,b lin. ind.}.

Given 7 € Epi(Gg,F3), this leads to the central embedding problem

0 F, D, F2 0

It is well-known that a F3-extension Q(v/a,/b) of Q is contained in a
Dy4-extension if and only if x2 = ay? + bz? has a non-trivial point.
12/16



Step 1b: parametrization

If p € Epi(Gg, Ds) is a lift of m € Epi(Gg,F2) and q : Dy — T3, then

{f € Epi(Gg,Ds): fog=m}={p-x:x € Hom(Gg,F2)}.
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Therefore we have a bijection
Epi(Gg, Ds) ++ {(a, b,c) € (Q*/Q*?)? : a, b ind., x* = ay? + bz sol.}.

Under this parametrization, the product of ramified primes maps to
rad(]abc|) (ignoring minor issues with ramification at 2).

It turns out to be more convenient to work with seven variables a5 for
) € S C{a,b,c}, where as is the product over all primes p dividing the
variables in S and not dividing the variables in {a, b,c} — S.

The variables as are squarefree and pairwise coprime, and we have
rad((abcl) = [Tpcscqa ey losl-
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Step 2: character sums

Define T(a) to be the subsets of {a, b, c} containing a. Then we have

a:Has

SeT(a)

and similarly for b, c.
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Define T(a) to be the subsets of {a, b, c} containing a. Then we have

a:Has

SeT(a)

and similarly for b, c. So to count Dj-extensions, must evaluate

2
E 2 (I I |O¢5|> ) 1X2:OéaOta,baa,caa,b,cy2+aboéa,boéb,caa,b,c22 sol. -
S

H@ng{a,b,c} |045‘SX
a,b lin. ind.

Hasse-Minkowski: detect solubility of conic locally at primes dividing as.

Now rewrite the above sum as a sum over Legendre symbols involving
the variables as.
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Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large
sieve.

15/16



Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large
sieve.

How does this process generalize?

15/16



Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large
sieve.

How does this process generalize?

» Build a nilpotent extension by iterated central extensions. This
yields a parametrization of G-extensions by tuples of squarefree
integers satisfying central embedding problems.

15/16



Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large
sieve.

How does this process generalize?

» Build a nilpotent extension by iterated central extensions. This
yields a parametrization of G-extensions by tuples of squarefree
integers satisfying central embedding problems.

» These central embedding problems get much more complicated, but
still satisfy local-to-global and are certainly determined by Frob, for
p dividing the variables of the parametrization.

15/16



Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large
sieve.

How does this process generalize?

» Build a nilpotent extension by iterated central extensions. This
yields a parametrization of G-extensions by tuples of squarefree
integers satisfying central embedding problems.

» These central embedding problems get much more complicated, but
still satisfy local-to-global and are certainly determined by Frob, for
p dividing the variables of the parametrization.

> In our chosen ordering, a typical extension is a rather large twist of a
“minimally ramified central extension”. Getting equidistribution of
Frobenius in minimally ramified extensions is very hard. The key
idea of the proof is to exploit the twisting.

15/16



Step 3: equidistribution

Evaluate the resulting character sum using Chebotarev and the large
sieve.

How does this process generalize?

» Build a nilpotent extension by iterated central extensions. This
yields a parametrization of G-extensions by tuples of squarefree
integers satisfying central embedding problems.

» These central embedding problems get much more complicated, but
still satisfy local-to-global and are certainly determined by Frob, for
p dividing the variables of the parametrization.

> In our chosen ordering, a typical extension is a rather large twist of a
“minimally ramified central extension”. Getting equidistribution of
Frobenius in minimally ramified extensions is very hard. The key
idea of the proof is to exploit the twisting.

» Proof can most likely be made unconditional with a suitably strong
large sieve for nilpotent extensions.
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Happy birthday Peter!

16/16



