The negative Pell equation and applications

Peter Koymans
University of Michigan

UNIVERSITY OF

MICHIGAN

Canadian Mathematical Society winter meeting

5 December 2021

1/17



History of Pell’s equation

For a fixed squarefree integer d > 0, the equation
x? — dy? =1 to be solved in x,y € Z

has been studied since at least the ancient Greeks.
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History of Pell’s equation

For a fixed squarefree integer d > 0, the equation
x? — dy? =1 to be solved in x,y € Z

has been studied since at least the ancient Greeks.

Bhaskara Il (12th century) gave an algorithm to find non-trivial solutions
of this equation.

Unbeknownst of Bhaskara's work, Fermat challenged English
mathematicians Brouncker and Wallis to solve the notorious case d = 61.
The smallest non-trivial solution is

1766319049 — 61 - 2261539802 = 1.
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The negative Pell equation

The equation
x2—dy?=-1

is known as the negative Pell equation and is not always soluble.
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The negative Pell equation

The equation
x2—dy?=-1
is known as the negative Pell equation and is not always soluble.

Question: as we vary d, how often is the negative Pell equation soluble?

Define D to be the set of squarefree integers having as odd prime divisors
only primes p = 1 mod 4 and define D~ to be the set of squarefree
integers for which the negative Pell equation is soluble.

By the Hasse-Minkowski Theorem we have for all squarefree d
d € D<= x* — dy? = —1 is soluble with x, y € Q,

so in particular D~ C D. Classical techniques in analytic number theory
give a constant C > 0 such that

X
Vieg X'

Refined question: what is the density of D~ inside D?

#{d<X:deD}~C-
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Conjectures on the negative Pell equation

Nagell (1930s) conjectured that

i #ld<X:deD)
X #{d< X :d €D}

exists and lies in (0,1).
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Conjectures on the negative Pell equation

Nagell (1930s) conjectured that

i #{d<X:deD}
X #{d< X :d €D}

exists and lies in (0,1).

Stevenhagen (1995) conjectured that

i #ld<X:deD)
Xooo #{d< X:d €Dt ’

where
oo

a=JJa+27)" ~ 041042,
j=1
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Progress towards Stevenhagen’s conjecture

Fouvry and Kliiners (2010) proved that

5—Oé<Iiminf#{dsx:dep_}<Iimsu #ldsX:deD ) 2
SANE H{d<X:.deD) - NP 4ld<X:.deD) — 3
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Progress towards Stevenhagen’s conjecture

Fouvry and Kliners (2010) proved that

5—04<Iiminf#{dgx:dep_}<Iims #ld<X:deD } 2
SANE H{d<X:.deD) - NP 4ld<X:.deD) — 3

Together with Stephanie Chan, Djordjo Milovic and Carlo Pagano, |
improved the lower bound to

o0
a- Zz—"<"+3>/2 ~ o - 1.28325.
n=0

Theorem (K., Pagano (2021))

We have
lim #{d<X:deD} _

X—oo #{d<X:d €D}

in accordance with Stevenhagen’s conjecture.

11—«
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A criterion for solubility

We have

x? — dy? = —1is soluble < fundamental unit € has negative norm

& (Vd) s trivial in CIT(Q(Vd)).
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A criterion for solubility

We have

x? — dy? = —1is soluble < fundamental unit € has negative norm

& (Vd) s trivial in CIT(Q(Vd)).

There is a basic exact sequence

P
1 Pé — CIM(K) = CI(K) = 1
K

with # e {1,2} and generated by (v/d).

Goal: study joint distribution of (CIT(K)[2°°], CI(K)[2°°]).
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The group CIT(K)[2] has a very predictable behavior unlike CI*(K)[p] for
p odd.

7/17



The group CIT(K)[2] has a very predictable behavior unlike CI*(K)[p] for
p odd.

The description of CI"(K)[2] is due to Gauss and is known as genus
theory. We have that

#CIT(K)[2] = 29(Px)-1

and CIT(K)[2] is generated by the ramified prime ideals of O.

7/17



The group CIT(K)[2] has a very predictable behavior unlike CI*(K)[p] for
p odd.

The description of CI"(K)[2] is due to Gauss and is known as genus
theory. We have that

#CIT(K)[2] = 29(Px)-1

and CIT(K)[2] is generated by the ramified prime ideals of O.

There is precisely one relation between the ramified primes.
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Cohen—Lenstra—Gerth

Gerth adapted the Cohen—Lenstra conjectures to p = 2, i.e. we have

o #{Kim. quadr.: [Dx| < X, 2C(K)R* = A} 17 (1~ 3)
X #{K im. quadr. : |Dx| < X} T T HAut(A)

for every finite, abelian 2-group A.
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Cohen—Lenstra—Gerth

Gerth adapted the Cohen—Lenstra conjectures to p = 2, i.e. we have

o #{Kim. quadr.: [Dx| < X, 2C(K)R* = A} 17 (1~ 3)
X #{K im. quadr. : |Dx| < X} T T HAut(A)

for every finite, abelian 2-group A.

Theorem (Alexander Smith (2017))

Gerth's conjecture is true.

Idea: adapt Smith’s method to the family D.

Two difficulties: D has density 0 in the set of squarefree integers, and D
naturally ends up in the error term in Smith’s proof!
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Strategy for Stevenhagen’s conjecture

Find for every integer m > 1, the density of d € D for which

rko« CIT(Q(Vd)) = rkpx CI(Q(V/d)) > 0 for 1 < k < m and
rkom1 CIT(Q(Vd)) = 0.

This gives better and better lower bounds for negative Pell.
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Find for every integer m > 1, the density of d € D for which

rko« CIT(Q(Vd)) = rkpx CI(Q(V/d)) > 0 for 1 < k < m and
rkom1 CIT(Q(Vd)) = 0.

This gives better and better lower bounds for negative Pell. Similarly,
find for every integer m > 1, the density of d € D for which

rko CIT (Q(V/d)) = rkp« CI(Q(V/d)) > 0 for 1 < k < m and
rkom1 CIT(Q(Vd)) = rkomii CI(Q(Vd)) + 1.

This gives better and better upper bounds for negative Pell.
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Duality of abelian groups

For a finite abelian group A, define
AY := Hom(A,C*).
There is a natural pairing
Arty : Al2] x AY[2] — {£1}, (a,x) — x(a).

Left kernel of Art; is 2A[4] and right kernel is 2AV[4].
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Duality of abelian groups

For a finite abelian group A, define
AY := Hom(A,C*).
There is a natural pairing
Arty : Al2] x AY[2] — {£1}, (a,x) — x(a).

Left kernel of Art; is 2A[4] and right kernel is 2AV[4].

Goal: in order to compute 4-rank, understand Art;y.
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The Artin pairing

By class field theory we get a bijection

CI™Y(K)[2] ++ {quadratic unramified characters of Gal(K/K)}.
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The Artin pairing

By class field theory we get a bijection

CI™Y(K)[2] ++ {quadratic unramified characters of Gal(K/K)}.
Under the earlier identifications, we have that

Arty : CIT(K)[2] x CITY(K)[2] = {1},  (p,x) = x(Art p).

Let py1,..., p: be the prime divisors of d. The Rédei matrix is

Xp1 Xp2 -+ Xpe

P2 =3

P1 * (Pl) p1
PL P

P P2
pe (2) (2) .
Left kernel gives a generating set for 2CI*(K)[4].
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Interlude: Stevenhagen’s conjecture

Fact: for d € D, we have (V/d) € 2CIT(Q(V/d))[4].
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Interlude: Stevenhagen’s conjecture

Fact: for d € D, we have (v/d) € 2CIT(Q(V/d))[4].

Heuristic assumption: every non-zero element in the generating set of
2C1T(Q(V/d))[4] is equally likely to be trivial.

Conjecture (Stevenhagen’s conjecture)

We have
. #{d<X:deD} XP(4-rank of d € D equals j)
lim = Z . .
X—oo #{d < X :d € D} = 2/t —1

Furthermore,

P(4-rank of d € D equals j) = tlim P(txt sym. matrix has ker. of dim. j).
—00
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The second Artin pairing

There is a natural pairing
Arty : 2A[4] x 2AY[4] — {£1}, (a,x) — ¥(a), 2v = x.

Left kernel is 4A[8] and right kernel is 4AY[8].
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The second Artin pairing

There is a natural pairing
Arty : 2A[4] x 2AY[4] — {£1}, (a,x) — ¥(a), 2v = x.

Left kernel is 4A[8] and right kernel is 4AY[8].

As before, class field theory gives that this pairing becomes

(P, X) = P(Art p), 2¢ = x.

Goal: understand cyclic degree 4 unramified extensions of Q(v/d).

Fact: a degree 4 unramified, abelian extension of Q(+/d) is Galois over Q
with Galois group Dj.

Such extensions are of the shape Q(v/d, v/a, /), where
d
x? =ay® + 322 with x,y,z € Z and gcd(x,y,z) =1, a:=x+yva.
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Reflection principles

In the literature there are many known results that compare different
class groups. For example, we have

rksCl(Q(Vd)) < rksCl(Q(V=3d)) < 1+ rksCl(Q(Vd)),

which is known as Scholz's reflection principle.
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Reflection principles

In the literature there are many known results that compare different
class groups. For example, we have

rksCl(Q(Vd)) < rksCl(Q(V=3d)) < 1+ rksCl(Q(Vd)),

which is known as Scholz's reflection principle.

The main algebraic result in Smith’s work is in fact a reflection principle
that compares Art,,, of 2™ quadratic fields.

How can we find such reflection principles?

Smith’s idea is to look for situations where the compositum of various
Hilbert class fields is in some sense small.
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Intersections of Hilbert class fields

Take primes p1, p2, g1, g2. Now suppose that we have a degree 4
unramified, abelian extension of Q(./dp;qj) each lifting the character x..
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Take primes p1, p2, g1, g2. Now suppose that we have a degree 4
unramified, abelian extension of Q(./dp;qj) each lifting the character x..

Recall that we then get o j € Q(y/a) with

dpiq; -
a z"J.
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Then we see that the norm of oy 11 000 100 is a square.

In other words, part of Ha(Q(+/dp2g2)) is contained in the other
H>(Q(\/dpig;)). This implies

Art2,dP1CI1 (ba Xa)+Art2,dP1q2 (bv Xa)+Art2,dp2q1 (ba Xa)+Art2,dp2q2(ba Xa) =0

for b € 2CI(Q(+/dpiq;))[4] a fixed divisor of d.
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Intersections of Hilbert class fields

Take primes p1, p2, g1, g2. Now suppose that we have a degree 4
unramified, abelian extension of Q(./dp;qj) each lifting the character x..

Recall that we then get o j € Q(y/a) with

dp;q; 2

Normgz)/a(aij) = == 2i;:

Then we see that the norm of oy 11 000 100 is a square.

In other words, part of Ha(Q(+/dp2g2)) is contained in the other
H>(Q(\/dpig;)). This implies

Art2,dP1CI1 (ba Xa)+Art2,dP1q2 (bv Xa)+Art2,dp2q1 (ba Xa)+Art2,dp2q2(ba Xa) =0

for b € 2CI(Q(+/dpiq;))[4] a fixed divisor of d.

We develop two new reflection principles. Unlike Smith's work, they
make essential use of Hilbert reciprocity in multiquadratic fields.
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Bonus slide: new reflection principles

For the Artin pairing with dp;q; we have (following Smith'’s ideas)

Art2,dP1Q1 (dP1CI17 Xap1) =+ Art2,dplqz(dp1q2v Xapy )+

Art27dP2q1(dp2q17 Xapz) + Art27dpzqz(dp2q27 Xapz) = FrOprlpz,qlqz/Q(oo)'
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Bonus slide: new reflection principles

For the Artin pairing with dp;q; we have (following Smith'’s ideas)

Art2,dP1Q1 (dP1CI17 Xap1) =+ Art2,dp1qz(dplq2v Xapy )+
Art27dP2q1(dp2q17 Xapz) + Art27dpzqz(dp2q27 Xapz) = FrOprlpz,qlqz/Q(oo)'

Our reciprocity law shows that

FrObKP1P2vQ1q2/Q(OO) = FrOprlpz,fl/Q(ql) + FrOprl,,z,,l/Q(Q2)~

For the pairing between a and y, we also develop a new reflection
principle.
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Potential applications

Some potential applications of these new techniques

» non-vanishing of L(1/2, x) for 100% of the quadratic characters x of
IFq(t)?

17/17



Potential applications

Some potential applications of these new techniques
» non-vanishing of L(1/2, x) for 100% of the quadratic characters x of
IFq(t)?
» prove Greenberg's conjecture for the cyclotomic Zp-extension for
100% of the real quadratic fields;

17/17



Potential applications

Some potential applications of these new techniques
» non-vanishing of L(1/2, x) for 100% of the quadratic characters x of
IFq(t)?
» prove Greenberg's conjecture for the cyclotomic Zp-extension for
100% of the real quadratic fields;

» many new cases of the strong form of Malle’s conjecture;

17/17



Potential applications

Some potential applications of these new techniques
» non-vanishing of L(1/2, x) for 100% of the quadratic characters x of
Fq(t);
» prove Greenberg's conjecture for the cyclotomic Zp-extension for
100% of the real quadratic fields;

» many new cases of the strong form of Malle’s conjecture;

» extend Smith’s result (on the distribution of 2%-Selmer groups) to
elliptic curves with a rational 4-torsion point.

17/17



Potential applications

Some potential applications of these new techniques
» non-vanishing of L(1/2, x) for 100% of the quadratic characters x of
Fq(t);
» prove Greenberg's conjecture for the cyclotomic Zp-extension for
100% of the real quadratic fields;

» many new cases of the strong form of Malle’s conjecture;

» extend Smith’s result (on the distribution of 2%-Selmer groups) to
elliptic curves with a rational 4-torsion point.

Thank you for your attention!
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