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History of Pell’s equation

For a fixed squarefree integer d > 0, the equation

x2 − dy2 = 1 to be solved in x , y ∈ Z

has been studied since at least the ancient Greeks.

Bhaskara II (12th century) gave an algorithm to find non-trivial solutions
of this equation.

Unbeknownst of Bhaskara’s work, Fermat challenged English
mathematicians Brouncker and Wallis to solve the notorious case d = 61.
The smallest non-trivial solution is

17663190492 − 61 · 2261539802 = 1.
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The negative Pell equation

The equation
x2 − dy2 = −1

is known as the negative Pell equation and is not always soluble.

Question: as we vary d , how often is the negative Pell equation soluble?

Define D to be the set of squarefree integers having as odd prime divisors
only primes p ≡ 1 mod 4 and define D− to be the set of squarefree
integers for which the negative Pell equation is soluble.

By the Hasse-Minkowski Theorem we have for all squarefree d

d ∈ D ⇐⇒ x2 − dy2 = −1 is soluble with x , y ∈ Q,

so in particular D− ⊆ D. Classical techniques in analytic number theory
give a constant C > 0 such that

#{d ≤ X : d ∈ D} ∼ C · X√
logX

.

Refined question: what is the density of D− inside D?
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Conjectures on the negative Pell equation

Nagell (1930s) conjectured that

lim
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

exists and lies in (0, 1).

Stevenhagen (1995) conjectured that

lim
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

= 1− α,

where

α =
∞∏
j=1

(1 + 2−j)−1 ≈ 0.41942.
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Progress towards Stevenhagen’s conjecture

Fouvry and Klüners (2010) proved that

5α

4
≤ lim inf

X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

≤ lim sup
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

≤ 2

3
.

Together with Stephanie Chan, Djordjo Milovic and Carlo Pagano, I
improved the lower bound to

α ·
∞∑
n=0

2−n(n+3)/2 ≈ α · 1.28325.

Theorem (K., Pagano (2021))

We have

lim
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

= 1− α

in accordance with Stevenhagen’s conjecture.
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A criterion for solubility

We have

x2 − dy2 = −1 is soluble ⇔ fundamental unit ε has negative norm

⇔ (
√
d) is trivial in Cl+(Q(

√
d)).

There is a basic exact sequence

1→ PK

P+
K

→ Cl+(K )→ Cl(K )→ 1

with #PK

P+
K

∈ {1, 2} and PK

P+
K

generated by (
√
d).

Goal: study joint distribution of (Cl+(K )[2∞],Cl(K )[2∞]).
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Genus theory

The group Cl+(K )[2] has a very predictable behavior unlike Cl+(K )[p] for
p odd.

The description of Cl+(K )[2] is due to Gauss and is known as genus
theory. We have that

#Cl+(K )[2] = 2ω(DK )−1

and Cl+(K )[2] is generated by the ramified prime ideals of OK .

There is precisely one relation between the ramified primes.
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Cohen–Lenstra–Gerth

Gerth adapted the Cohen–Lenstra conjectures to p = 2, i.e. we have

lim
X→∞

# {K im. quadr. : |DK | < X , 2Cl(K )[2∞] ∼= A}
# {K im. quadr. : |DK | < X}

=

∏∞
i=1

(
1− 1

2i

)
#Aut(A)

for every finite, abelian 2-group A.

Theorem (Alexander Smith (2017))

Gerth’s conjecture is true.

Idea: adapt Smith’s method to the family D.

Two difficulties: D has density 0 in the set of squarefree integers, and D
naturally ends up in the error term in Smith’s proof!
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Strategy for Stevenhagen’s conjecture

Find for every integer m ≥ 1, the density of d ∈ D for which

rk2k Cl+(Q(
√
d)) = rk2k Cl(Q(

√
d)) > 0 for 1 ≤ k ≤ m and

rk2m+1Cl+(Q(
√
d)) = 0.

This gives better and better lower bounds for negative Pell.

Similarly,
find for every integer m ≥ 1, the density of d ∈ D for which

rk2k Cl+(Q(
√
d)) = rk2k Cl(Q(

√
d)) > 0 for 1 ≤ k ≤ m and

rk2m+1Cl+(Q(
√
d)) = rk2m+1Cl(Q(

√
d)) + 1.

This gives better and better upper bounds for negative Pell.
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Duality of abelian groups

For a finite abelian group A, define

A∨ := Hom(A,C∗).

There is a natural pairing

Art1 : A[2]× A∨[2]→ {±1}, (a, χ) 7→ χ(a).

Left kernel of Art1 is 2A[4] and right kernel is 2A∨[4].

Goal: in order to compute 4-rank, understand Art1.
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The Artin pairing

By class field theory we get a bijection

Cl+,∨(K )[2]↔ {quadratic unramified characters of Gal(K/K )}.

Under the earlier identifications, we have that

Art1 : Cl+(K )[2]× Cl+,∨(K )[2]→ {±1}, (p, χ) 7→ χ(Art p).

Let p1, . . . , pt be the prime divisors of d . The Rédei matrix is

χp1 χp2 . . . χpt

p1 ∗
(

p2
p1

)
. . .

(
pt
p1

)
p2

(
p1
p2

)
∗ . . .

(
pt
p2

)
...

...
...

. . .
...

pt
(

p1
pt

) (
p2
pt

)
. . . ∗

.

Left kernel gives a generating set for 2Cl+(K )[4].
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χp1 χp2 . . . χpt

p1 ∗
(

p2
p1

)
. . .

(
pt
p1

)
p2

(
p1
p2

)
∗ . . .

(
pt
p2

)
...

...
...

. . .
...

pt
(

p1
pt

) (
p2
pt

)
. . . ∗

.

Left kernel gives a generating set for 2Cl+(K )[4].

11 / 17



The Artin pairing

By class field theory we get a bijection

Cl+,∨(K )[2]↔ {quadratic unramified characters of Gal(K/K )}.

Under the earlier identifications, we have that

Art1 : Cl+(K )[2]× Cl+,∨(K )[2]→ {±1}, (p, χ) 7→ χ(Art p).

Let p1, . . . , pt be the prime divisors of d . The Rédei matrix is
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Interlude: Stevenhagen’s conjecture

Fact: for d ∈ D, we have (
√
d) ∈ 2Cl+(Q(

√
d))[4].

Heuristic assumption: every non-zero element in the generating set of
2Cl+(Q(

√
d))[4] is equally likely to be trivial.

Conjecture (Stevenhagen’s conjecture)

We have

lim
X→∞

#{d ≤ X : d ∈ D−}
#{d ≤ X : d ∈ D}

=
∞∑
j=0

P(4-rank of d ∈ D equals j)

2j+1 − 1
.

Furthermore,

P(4-rank of d ∈ D equals j) = lim
t→∞

P(t×t sym. matrix has ker. of dim. j).
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The second Artin pairing

There is a natural pairing

Art2 : 2A[4]× 2A∨[4]→ {±1}, (a, χ) 7→ ψ(a), 2ψ = χ.

Left kernel is 4A[8] and right kernel is 4A∨[8].

As before, class field theory gives that this pairing becomes

(p, χ) 7→ ψ(Art p), 2ψ = χ.

Goal: understand cyclic degree 4 unramified extensions of Q(
√
d).

Fact: a degree 4 unramified, abelian extension of Q(
√
d) is Galois over Q

with Galois group D4.

Such extensions are of the shape Q(
√
d ,
√
a,
√
α), where

x2 = ay2 +
d

a
z2 with x , y , z ∈ Z and gcd(x , y , z) = 1, α := x + y

√
a.
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Reflection principles

In the literature there are many known results that compare different
class groups. For example, we have

rk3Cl(Q(
√
d)) ≤ rk3Cl(Q(

√
−3d)) ≤ 1 + rk3Cl(Q(

√
d)),

which is known as Scholz’s reflection principle.

The main algebraic result in Smith’s work is in fact a reflection principle
that compares Artm of 2m quadratic fields.

How can we find such reflection principles?

Smith’s idea is to look for situations where the compositum of various
Hilbert class fields is in some sense small.
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Intersections of Hilbert class fields

Take primes p1, p2, q1, q2. Now suppose that we have a degree 4
unramified, abelian extension of Q(

√
dpiqj) each lifting the character χa.

Recall that we then get αi,j ∈ Q(
√
a) with

NormQ(
√
a)/Q(αi,j) =

dpiqj
a

z2i,j .

Then we see that the norm of α1,1α1,2α2,1α2,2 is a square.

In other words, part of H2(Q(
√
dp2q2)) is contained in the other

H2(Q(
√
dpiqj)). This implies

Art2,dp1q1(b, χa)+Art2,dp1q2(b, χa)+Art2,dp2q1(b, χa)+Art2,dp2q2(b, χa) = 0

for b ∈ 2Cl(Q(
√
dpiqj))[4] a fixed divisor of d .

We develop two new reflection principles. Unlike Smith’s work, they
make essential use of Hilbert reciprocity in multiquadratic fields.
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Bonus slide: new reflection principles

For the Artin pairing with dpiqj we have (following Smith’s ideas)

Art2,dp1q1(dp1q1, χap1) + Art2,dp1q2(dp1q2, χap1)+

Art2,dp2q1(dp2q1, χap2) + Art2,dp2q2(dp2q2, χap2) = FrobKp1p2,q1q2
/Q(∞).

Our reciprocity law shows that

FrobKp1p2,q1q2
/Q(∞) = FrobKp1p2,−1/Q(q1) + FrobKp1p2,−1/Q(q2).

For the pairing between a and χa we also develop a new reflection
principle.
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Potential applications

Some potential applications of these new techniques

I non-vanishing of L(1/2, χ) for 100% of the quadratic characters χ of
Fq(t);

I prove Greenberg’s conjecture for the cyclotomic Z2-extension for
100% of the real quadratic fields;

I many new cases of the strong form of Malle’s conjecture;

I extend Smith’s result (on the distribution of 2k -Selmer groups) to
elliptic curves with a rational 4-torsion point.

Thank you for your attention!
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